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COVERING A COMPACT SET IN A BANACH SPACE BY AN
OPERATOR RANGE OF A BANACH SPACE WITH BASIS

V. P. FONF, W. B. JOHNSON, A. M. PLICHKO, AND V. V. SHEVCHYK

Abstract. A Banach space X has the approximation property if and only if
every compact set in X is in the range of a one-to-one bounded linear operator
from a space that has a Schauder basis. Characterizations are given for Lp

spaces and quotients of Lp spaces in terms of covering compact sets in X by
operator ranges from Lp spaces. A Banach space X is a L1 space if and only
if every compact set in X is contained in the closed convex symmetric hull of
a basic sequence which converges to zero.

1. Introduction

A Banach space Y is said to have the approximation property (AP) if for every
compact K ⊂ Y and every ε > 0 there exists a linear operator T of finite rank
such that ‖Tx − x‖ < ε, x ∈ K. If, in addition, T can be chosen with ‖T‖ ≤ λ,
for some constant λ independent of K and ε, then Y is said to have the bounded
approximation property (BAP). To complete the line (AP) ⇐= (BAP) denote the
property of a Banach space to have a basis by (BP). Thus we have

(AP) ⇐= (BAP) ⇐= (BP).

All these properties are different (see [FJ] and [Sz]). However, the following in-
teresting connection between the BAP and the BP was established in [P1] and
[JRZ].

Theorem 1.1. A separable Banach space E has the BAP iff E is isomorphic to a
complemented subspace of a Banach space with basis.

Actually the space with basis in this theorem may be chosen to be universal for
all spaces with the BAP (see [P2] and [Sc]).

In this paper we establish the following connection between the AP and the BP.

Theorem 1.2. For a Banach space X the following properties are equivalent:
(i) X has the AP.
(ii) For each compact subset K of X there exist a Banach space Y with basis and

a one-to-one linear operator T : Y → X such that T (Y ) ⊃ K.
(iii) There exists a reflexive Banach space R with basis and with unconditional

finite-dimensional decomposition such that for each compact K ⊂ BX and for each
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γ > 0 there is a compact one-to-one operator T : R → X with T (BR) ⊃ K and
‖T‖ ≤ 1 + γ.

The condition that T is one-to-one is essential. Indeed, it is not difficult to show
that each compact set in every Banach space may be covered by an operator range
of �1.

In Section 2 we prove that the space R in (iii) may be chosen to be universal for
all spaces with AP (see Theorem 2.1).

Section 3 contains the “converse result” and a characterization of the AP in
terms of the existence of an M -basis with special properties. Here we recall that
a sequence {xn, x∗

n}∞n=1 in X × X∗ is biorthogonal provided x∗
n(xm) = δnm for all

n and m. A biorthogonal sequence {xn, x∗
n}∞n=1 is fundamental provided the linear

span of {xn}∞n=1 is dense in X and is total provided {x∗
n}∞n=1 separates the points

of X. An M -basis is a fundamental and total biorthogonal sequence. A basis can
then be thought of as a biorthogonal sequence {xn, x∗

n}∞n=1 such that for every x in
X, the series

∑
x∗

n(x)xn converges to x, so that a basis is an M -basis.
With the help of the results proved in Sections 2 and 3 we get (in Section 3) a

factorization theorem for compact operators acting into spaces with the AP (see
Theorem 3.3 below).

In Section 4 we deal with Lp-spaces. We characterize these spaces in terms of
covering compact sets and in terms of the factorization of compact operators. We
also classify those Banach spaces X in which every compact set is contained in the
closed, convex, symmetric hull of a basic sequence which converges to zero.

We use standard Banach space geometry notation (see [LT]). If X is a Banach
space and A ⊂ X, then [A] is the closed linear span of A. Let H ⊂ X be a closed,
convex, symmetric, and bounded subset of a Banach space X. Then it is well-
known that the linear submanifold spanH becomes a Banach space if we introduce
in it the norm with the unit ball H. We denote this later Banach space by EH .

The authors thank J. Lindenstrauss for a fruitful discussion and for a series of
suggestions that improved the paper.

2. Covering a compact set in a Banach space with the AP

Theorem 2.1. There exists a reflexive Banach space R with basis and with uncon-
ditional finite-dimensional decomposition such that for each Banach space X with
AP, for each compact K ⊂ BX and for each γ > 0 there is a compact one-to-one
operator T : R → X with T (BR) ⊃ K and ‖T‖ ≤ 1 + γ.

We start with some auxiliary results.

Lemma 2.2. Let {Ei} be a sequence of finite-dimensional subspaces of a Banach
space X and let {Ci} be a sequence of linear operators on X with Ci(X) ⊂ Ei, i =
1, 2, .... Let Y be the set of all sequences y = (xi)∞i=1, xi ∈ Ei, such that the series∑

xi converges, and let Z be the set of all vectors x ∈ X such that x =
∑∞

i=1 Cix.
Then Y is a Banach space with monotone finite-dimensional decomposition (FDD)
in the norm ‖y‖′ = sup{‖

∑n
i=1 xi‖ : n = 1, 2, ...} and Z is a Banach space in the

norm |||x||| = supn ‖
∑n

i=1 Cix‖, x =
∑∞

i=1 Cix. Moreover the operator J : Z → Y
defined by Jx = (Cix), x ∈ Z, is an isometry.

Proof. First we prove that Y is complete. Let {ym} ⊂ Y, ym = (xm
i ), be such that

limp,q→∞ ‖yp − yq‖′ = 0. Clearly, for each i the sequence {xm
i }∞m=1 converges to
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some xi ∈ Ei. First we check that the series
∑

xi converges. Fix ε > 0 and find an
integer s such that for each p, q ≥ s the inequality ‖yp − yq‖′ < ε holds. Let r be
such that ‖

∑k
i=l xs

i‖ < ε for each k > l > r. We have for k > l > r

‖
k∑

i=l

xi‖ = lim
p

‖
k∑

i=l

xp
i ‖ ≤ lim

p
‖

k∑

i=l

xs
i‖ + lim

p
‖

k∑

i=l

(xp
i − xs

i )‖ < 3ε.

Thus y = (xi) ∈ Y . Finally we show that lim ym = y. Let ε and s be as above.
Then for each n and for each p, q > s we have ‖

∑n
i=1(x

p
i − xq

i )‖ ≤ ε. By pushing q
to infinity we have ‖

∑n
i=1(x

p
i − xi)‖ ≤ ε, for each n and for each p > s. By taking

the supremum we have for each p > s, ‖yp − y‖′ ≤ ε.
Next we prove that Z is complete. Put Bn =

∑n
i=1 Ci, n = 1, 2, ..., B0 = IdX .

It is well known that the set W of all vectors x ∈ X such that the limn Bnx exists
is a Banach space in the norm

|||x||| = sup{‖Bnx‖ : n = 0, 1, 2, ...}.
Clearly, Z ⊂ W . We check that Z is closed in W . Let {xm} ⊂ Z, let |||.|||−lim xm =
x, x ∈ W , and let ε > 0. Take m so large that |||xm − x||| = sup{‖Bnxm − Bnx‖ :
n = 0, 1, 2, ...} < ε. Clearly, ‖xm − x‖ < ε, too. Next by using that xm ∈ Z, find
an n0 such that ‖xm − Bnxm‖ < ε holds for each n > n0. We have for n > n0

‖x − Bnx‖ ≤ ‖x − xm‖ + ‖xm − Bnxm‖ + ‖Bnxm − Bnx‖ < 3ε

which proves that limn Bnx = x, i.e. x ∈ Z.

The remaining part of the lemma is clear.

Remark 2.3. If for each i, dimEi = 1, then the space Y has a monotone basis.

Lemma 2.4. Let E be a Banach space with monotone FDD and let K ⊂ BE be
compact. Then for every ε > 0 there is a compact one-to-one operator A : E → E
with A(BE) ⊃ K and ‖A‖ ≤ 1 + ε.

Proof. Let Sn, n = 1, 2, ..., be the partial sum operators associated with a given
FDD E =

∑
Ei. Take δ > 0 with (1 + δ)2 < 1 + ε and let a sequence {εi}∞i=1 of

positive numbers be such that
∑

εi < δ/2. By using the compactness of K, find
an increasing sequence {ni} of integers such that

sup{‖Sni+1y − Sni
y‖ : y ∈ K} < ε2

i , i = 1, 2, ....

Put

Q0 = Sn1 , Qi = Sni+1 − Sni
, i = 1, 2, ..., A1 =

∞∑

i=0

εiQi, ε0 = 1.

Clearly, A1 is a compact one-to-one operator with ‖A1‖ ≤ 1+ δ. If y ∈ K, then the
series

∑∞
i=0(1/εi)Qiy converges absolutely (say to z). It is not difficult to check

that ‖z‖ ≤ 1 + δ and that A1z = y. Thus A1((1 + δ)BE) ⊃ K. Put A = (1 + δ)A1.

Remark 2.5. Let H = {y ∈ BE : y =
∑∞

i=0 yi , yi ∈ Qi(E), ‖yi‖ ≤ εi, i = 0, 1, ...}.
It is clear from the proof of the lemma that A(H) ⊃ K.

Lemma 2.6. Let L, M ⊂ Y be closed subspaces of a separable Banach space Y
such that dim M = ∞ and L∩M = {0}, and let F ⊂ Y be compact. Then there is
an automorphism D : Y → Y such that L ∩ D(F ) ⊂ {0} and D|M = IdM .
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Proof. Let {fi} ⊂ BM⊥ be a sequence which is total over L and put

V = cl co(BL ∪ ±F ).

The linear manifold spanV , being the image of EV under the injection of EV into
Y , is an operator range, and clearly codim spanV = ∞. By [Fo1], Lemma 3, there
is a minimal (even basic) sequence {ti} ⊂ Y with ‖ti‖ < 2−i−1 and such that∑

aiti �∈ spanV for each non-zero bounded sequence of numbers {ai}. Define an
operator C : Y → Y by Cx = x+

∑
fi(x)ti. Clearly, C is an isomorphism of Y onto

Y and C|M = IdM . We check that C(L) ∩ F ⊂ {0}. Let u ∈ C(L) ∩ F . Then for
some z ∈ L we have u = z +

∑
fi(z)ti ∈ F and hence

∑
fi(z)ti = u − z ∈ spanV .

By the choice of {ti} we have fi(z) = 0, i = 1, 2, ..., and, since {fi} is total over
L, it follows that z = 0. Thus u = 0 which proves that C(L) ∩ F ⊂ {0} and hence
L ∩ C−1(F ) ⊂ {0}. Put D = C−1. This completes the proof.

The following lemma is known [P1]. We give a proof for the sake of completeness.

Lemma 2.7. For any finite-dimensional Banach space L and for any ε > 0 there is
a finite-dimensional Banach space M with monotone basis which contains a (1+ε)-
isomorphic copy of L as a (1 + ε)-complemented subspace.

Proof. Let {xi}n
i=1 and {x∗

i }n
i=1 be an Auerbach system for L, n = dim L. Take an

integer p with n/p < ε and define linear operators Ui in L as follows:

Uix =
1
p
x∗

r(x)xr, i = nl + r, 1 ≤ r ≤ n, l = 0, 1, ..., p − 1.

Put m = pn. Clearly,
∑m

j=1 Uj = IdL. For i = nl + r we have the estimate

‖
i∑

j=1

Uj‖ = ‖
nl∑

j=1

Uj +
nl+r∑

j=nl+1

Uj‖ ≤ l/p + r/p ≤ (p − 1 + n)/p ≤ 1 + ε.

Let Ei = span{yi}, ‖yi‖ = 1, i = 1, ..., m, be the (1-dimensional) range of Ui (actu-
ally yi = xr for i = nl+r, 1 ≤ r ≤ n, l = 0, 1, ..., p−1). Define M as the space of all
m-dimensional vectors y = (ai)m

i=1 with the norm ‖y‖ = max1≤q≤m ‖
∑q

i=1 aiyi‖. It
is clear that the vectors ei = (0, ..., 1, ..., 0) (1 stands in the i-th place), i = 1, ..., m,
form a monotone basis of M . Define an operator A : L → M by Ax = (ai)m

i=1,
where ai is defined by Uix = aiyi, i = 1, ..., m. Put L1 = A(L). From the con-
struction it is clear that L is (1 + ε)-isomorphic to L1. Finally define an operator
P : M → L1 as follows:

P (ai) = A(
∑

aiyi), (ai) ∈ M.

It is not difficult to see that P is a projection and ‖P‖ ≤ 1 + ε.

Proof of Theorem 2.1. Take ε > 0 and a sequence of positive numbers {εi}∞i=0, ε0 =
1, with

∑∞
i=1 εi < ε.

Let K ⊂ BX be a compact subset of a Banach space X with the AP. It is
well known (see [LT], Proposition 1.e.2) that there is a sequence {xi} ⊂ X with
limxi = 0 and such that cl co{xi} ⊃ K. By a slight modification of the proof
given in [LT], Proposition 1.e.2, we can get that {xi} ⊂ (1 + ε)BX . Let a sequence
of positive numbers {λi} be such that limλi = ∞, {λixi} ⊂ (1 + ε)BX , and
limλixi = 0. Put K0 = cl co{±λixi}.
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Since X has the AP there is a sequence {Bn} of finite-dimensional operators in
X such that

sup{‖Bnx − x‖ : x ∈ K0} < εn, n = 1, 2, ....

Put C1 = B1, Cn+1 = Bn+1 − Bn, n = 1, 2, .... Then for each x ∈ K0, x =∑∞
n=1 Cnx and

(2.1) sup
1≤n<∞

sup{‖
n∑

i=1

Cix‖ : x ∈ K0} ≤ 1 + 2ε.

Next for each i put Ei = Ci(X) and define the spaces Y and Z as in Lemma 2.2.
In a natural way we can consider K0 as a subset of Z. Thus, from Theorem 2.1 we
have

sup{|||x||| : x ∈ K0} ≤ 1 + 2ε.

Define a summation operator B : Y → X as follows:

B(xi) =
∞∑

i=1

xi, (xi) ∈ Y.

Clearly, ‖B‖ = 1. Put L = KerB.
Since λi → ∞ and since K0 is bounded in Z, it easily follows that K considered

as a subset of Z is compact. Let J : Z → Y be the natural embedding, i.e.
Jx = (Vmx). By Lemma 2.2, J is an isometry and, in particular, M = J(Z) is a
(closed) subspace of Y . A simple verification shows that L ∩ M = {0}.

Now we pass to the space R. We use for R the space constructed in [J]. Recall
the construction of R. Let An be the family of all n-dimensional Banach spaces
with monotone basis, i.e. an n-dimensional space M ∈ An iff there is a basis
{xi}n

i=1 of M such that all partial sum operators have norm 1. Let {Mn,i}∞i=1 be a
dense (in the Banach-Mazur metric) sequence in An, n = 1, 2, .... Enumerate the
set {Mn,i}∞n,i=1 into a sequence {Mn}∞n=1 and put

R = (
∞∑

n=1

Mn)�2 .

Clearly, R has a (monotone) basis and an unconditional finite-dimensional decom-
position.

Next, by using Lemma 2.4, find a compact one-to-one operator A : Y → Y ,
A =

∑∞
i=0 εiQi, ‖A‖ ≤ (1+2ε)2, such that A(BY ) ⊃ J(K0). Put Lj = Qj(Y ), j =

0, 1, ..., and by Lemma 2.7 find for each j a space Mnj
such that Mnj

= Vj + Wj ,
where Vj is (1 + εj)-isomorphic to Lj and (1 + εj)-complemented in Mnj

. Let
Tj : Vj → Lj be an isomorphism satisfying ‖Tj‖‖̇T−1

j ‖ ≤ 1 + εj , j = 0, 1, ....
Now we define a compact 1-1 operator S : R → Y . We first define S on the

subspace V = (
∑∞

j=0 Vj)�2 ⊂ R as follows: S(xj) =
∑∞

j=0 εjTjxj , xj ∈ Vj , j =
0, 1, .... It is not difficult to see that S|V is a compact 1-1 operator, and ‖S|V ‖ ≤ 1+ε
(recall that ε0 = 1). By [Pl] (see also [Fo1]) there is a (closed) infinite-dimensional
subspace E ⊂ Y with E ∩ S(V ) = {0}. Next define S on the remaining part of R,
i.e., on the subspace W = (

∑
n�=nj

Mn)�2 ⊕ (
∑∞

j=0 Wj)�2 in such a way that S|W is
a one-to-one compact operator into E with norm so small that ‖S‖ ≤ 1 + 2ε.

Put F = AS(BR). It is clear from the construction of S and Remark 2.5 that
F ⊃ K.
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By using Lemma 2.6 find an automorphism D : Y → Y, ‖D‖ ≤ 1 + ε such
that L ∩ D(F ) = {0} and D|M = IdM . Put T = BDAS. Then T : R → X is a
compact one-to-one operator and T (BR) ⊃ K. From the construction it is clear
that ‖T‖ ≤ (1 + 2ε)3. Clearly, for ε > 0 small enough we get ‖T‖ ≤ 1 + γ which
completes the proof.

Remark 2.8. Let U be a Banach space with basis that contains (isomorphically)
each Banach space with basis as a complemented subspace (for constructions of such
spaces see [P2] and [Sc]). We show that such a space U may be used in Theorem
2.1 instead of R. First, by an obvious modification of the proof of Theorem 2.1, we
can get that T−1(K) is compact. Clearly, R ⊂ U . Let P : U → R be a projection
from U onto R and let A1 : U → U be a compact one-to-one operator such that
A1(BU ) ⊃ T−1(K) (see Lemma 2.4). Put F1 = cl A1(BU ), L1 = Ker P and let
D1 : U → U be an automorphism such that L1 ∩ D1(F1) = {0} and D1|R = IdR

(see Lemma 2.6). Then the operator T1 = TPDA : U → X is a one-to-one compact
operator such that T1(BU ) ⊃ K.

Remark 2.9. Let {Kn}∞n=1 be a sequence of compact sets in a Banach space X with
the AP. Put K =

⋃∞
n=1(n max{‖x‖ : x ∈ Kn})−1 Kn. Clearly, K ∪{0} is compact

and, by Theorem 2.1, there is a compact operator T : R → X with T (BR) ⊃ K.
In particular, T (R) ⊃

⋃∞
n=1 Kn.

Lemma 2.10. Let R be a reflexive Banach space with basis and let T : R → X be
a 1-1 linear operator from R into a separable Banach space X. Then there are a
basis {yi} of R and a norming M -basis {xi} of X such that {Tyi} ⊂ {xi}.
Proof. Recall that a subspace Y of X∗ is called norming provided the expression
|||x||| := sup{f(x) : f ∈ Y, ‖f‖ ≤ 1} defines an equivalent norm on X. An M -basis
{xn, x∗

n}∞n=1 is norming provided [x∗
n] is norming.

First we assume that [T (R)] = X. Let F ⊂ X∗ be a countable-dimensional
norming subspace of X∗. Since R is reflexive and T is 1-1, it follows that T ∗(F )
is a countable-dimensional dense subspace of R∗. Clearly, R∗ has a basis. Now we
use the following result from [T]:

Let E be a Banach space with basis and let L ⊂ E be a countable-dimensional
dense subspace of E. Then there is a basis {zn} of E with span{zn} = L.

Take E = R∗ and L = T ∗(F ) and let {gn} be a basis of R∗ with span{gn} =
T ∗(F ). Let {en} be the vectors in R which are biorthogonal to {gn}. It is clear
that xn = Ten, n = 1, 2, ..., is a norming M -basis of X with the desired properties.

If X1 = [T (R)] is a proper subspace of X we first construct as above a norming
M -basis of X1 and then extend it (see [Fo2]) to a norming M -basis of X. The proof
is complete.

Corollary 2.11. Let X be a separable Banach space with the AP. Then for each
compact set K ⊂ X there is a norming M -basis {xi} in X with biorthogonal func-
tionals {x∗

i } such that for each x ∈ K we have

x =
∞∑

i=1

x∗
i (x)xi and sup

n
sup
x∈K

‖
n∑

i=1

x∗
i (x)xi‖ < ∞.

Proof. By Theorem 2.1 there is a linear 1-1 operator T : R → X from a reflexive
space R with basis into X such that T (BR) ⊃ K. Apply Lemma 2.10 and complete
the proof.
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Remark 2.12. Let µ be a probability measure on a separable Banach space X. An
M -basis {xi} for X (with biorthogonal functionals {x∗

i }) is called a stochastic basis
for (X, µ) if µ {x ∈ X : x =

∑
x∗(x)xi} = 1 (see [He]). It follows from Remark 2.9

and Corollary 2.11 that if a Banach space X has the AP, then for each probability
measure µ, (X, µ) has a stochastic basis. For more about stochastic bases and the
stochastic approximation property, see [FJPP], which is a follow-up to this paper.

Remark 2.13. In view of Theorem 2.1 the following question is natural: is it possible
to substitute for the space R in Theorem 2.1 a space with an unconditional basis?
The following example shows that the answer is negative.

By [GL], for each integer n there is a finite-dimensional space En such that
for each Banach space Y with 1-unconditional basis and for any two operators
A : En → Y and B : Y → En with BA = IdEn

, the inequality ‖A‖‖B‖ ≥ n holds.
Put X = (

∑
En)�2 and let X1 be a copy of X. Let T : X → X1 be a linear operator

such that T |En
= IdEn

/
√

n, n = 1, 2, .... Set K = T (BX). Clearly, K is a compact
set. We check that K cannot be covered by a one-to-one operator range of a Banach
space with unconditional basis. Suppose the contrary, i.e., for some Banach space
Y with unconditional basis and for some operator B : Y → X1, K is a subset of
B(Y ). Consider the operator A = B−1T : X → Y . A simple verification shows
that A is a closed operator, so A is bounded by the closed graph theorem. Clearly,
T = BA and

√
nT |En

= Id|En
=

√
nBA|En

for each n. By taking into account
the property of the space En we deduce that

√
n‖A|En

‖‖B‖ ≥ n. In particular,
‖A‖ ≥

√
n/‖B‖ for each n which contradicts the boundedness of A.

3. The converse result

Theorem 3.1. Let X be a Banach space such that for each compact H ⊂ X there
are a Banach space Y with the AP and a one-to-one operator T : Y → X such that
TY ⊃ H. Then X has the AP.

Proof. Fix a compact K ⊂ X and ε > 0. We shall construct a finite-dimensional
operator C in X such that sup{‖Cx − x‖ : x ∈ K} < ε.

By a well-known result (see [LT], Proposition 1.e.2) there is a sequence {xi} ⊂ X
such that lim xi = 0 and that cl co{xi} ⊃ K. Take a sequence of numbers {λi}
with limλi = ∞ and such that limλixi = 0 and then put H = cl co{±λixi}. Let
A : EH → X be the natural injection (recall that EH is the Banach space spanH
with the unit ball H). Let T : Y → X be a one-to-one linear operator from a
Banach space Y with the AP such that T (Y ) ⊃ H. A simple verification shows
that the operator T−1A : EH → Y is closed and by the closed graph theorem it
is bounded. In particular, the set T−1(H) is bounded. From limλi = ∞ it easily
follows that the set F = T−1(K) is compact. Next by using the AP of Y find a
finite-dimensional operator B : Y → Y ,

By =
n∑

i=1

fi(y)ei, fi ∈ Y ∗, ei ∈ Y, y ∈ Y,

such that sup{‖By − y‖ : y ∈ F} < ε/2‖T‖.
Recall that the bw∗-topology on Y ∗ is just the topology of uniform convergence

on the compact subsets of Y . By the Krein-Smulian theorem the bw∗-closure of each
convex subset of Y ∗ coincides with its w∗-closure. In particular, bw∗ − clT ∗(X∗) =
w∗−clT ∗(X∗). Since T is one-to-one it follows that w∗−clT ∗(X∗) = Y ∗ and hence



1428 V. P. FONF, W. B. JOHNSON, A. M. PLICHKO, AND V. V. SHEVCHYK

bw∗ − clT ∗(X∗) = Y ∗. The last equality allows us to find for each i, 1 ≤ i ≤ n, a
linear functional gi ∈ T ∗(X∗) such that

sup{|gi(y) − fi(y)| : y ∈ F} < ε/(2n‖ei‖‖T‖).

Take hi ∈ X∗ such that T ∗hi = gi, i = 1, ..., n, and define an operator C : X → X
by

Cx =
n∑

i=1

hi(x)Tei, x ∈ X.

We check that C is as desired. Take x ∈ K, put y = T−1x ∈ F , and write

‖Cx − x‖ = ‖
n∑

i=1

hi(x)Tei − x‖ = ‖T (
n∑

i=1

hi(x)ei − T−1x)‖

≤ ‖T‖‖
n∑

i=1

gi(y) − y‖ = ‖T‖‖
n∑

i=1

fi(y) − y +
n∑

i=1

(gi(y) − fi(y))ei‖

≤ ‖T‖(ε/2‖T‖ +
n∑

i=1

|gi(y) − fi(y)|‖ei‖) < ε.

The proof is complete.

Alternate proof. By a theorem of Grothendieck (see Theorem 1.e.4 in [LT]), it is
enough to verify that an arbitrary compact operator S from an arbitrary Banach
space Z into X is (uniformly) approximable by finite-dimensional operators. The
operator S factors compactly through some Banach space W (W can even be taken
reflexive; see, e.g., [F]); that is, there are compact operators A : Z → W , D : W →
X so that DA = S. Let T be a one-to-one operator from some space Y which has
the AP into X so that TY contains the closure of D(BW ). The linear mapping
T−1D is closed, hence is a bounded linear operator. Moreover, T−1DA : Z → Y
is a compact operator into a space with the AP, hence is approximable by finite-
dimensional operators, whence S = T (T−1DA) is also approximable by finite-
dimensional operators.

Corollary 3.2. For a Banach space X the following assertions are equivalent:
(i) X has the AP.
(ii) Any compact set K ⊂ X may be covered by a 1-1 operator range of a Banach

space with basis.
(iii) For any compact set K ⊂ X there is an M -basic sequence {xi} in X (with

biorthogonal functionals {x∗
i }) such that x =

∑
x∗

i (x)xi for each x ∈ K.

With the help of the above results we get the following factorization

Theorem 3.3. For a Banach space X the following assertions are equivalent:
(i) X has the AP.
(ii) For each Banach space Z and for each compact operator A : Z → X there

are compact operators B : Z → R and T : R → X such that T is one-to-one and
that A = TB. (Here R = (

∑∞
n=1 Mn)�2 is the space from Theorem 2.1.)

(iii) For each Banach space Z and for each compact operator A : Z → X there
are a Banach space Y with AP and compact operators B : Z → Y and T : Y → X
such that A = TB.
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Proof. (i) =⇒ (ii). Put K = clA(BZ) and as it was done in the proofs of Theorems
2.1 and 3.1, find {xi}∞i=1 ⊂ X, limi xi = 0 with cl co{xi}∞i=1 ⊃ K and a sequence
of numbers {λi}∞i=1, limi λi = ∞ such that limi λixi = 0. Put K1 = cl co{λixi}∞i=1

and by using Theorem 2.1 find a one-to-one compact operator T : R → X T (aBR) ⊃
K1 for some a > 0. Put B = T−1A and check that B is a compact operator.
Indeed, since T−1(K1) is bounded it follows that T−1(K) is compact. But B(BZ) =
T−1A(BZ) ⊂ T−1(K) which proves that B is a compact operator and completes
the proof of (i) =⇒ (ii).

(ii) =⇒ (iii). Obvious.
(iii) =⇒ (i). This is immediate from the result of Grothendieck (Theorem 1.e.4

in [LT]), used in the alternate proof of Theorem 3.1.

4. Covering compact sets in Lp-spaces

and factorizing compact operators into Lp-spaces

As we already mentioned in the Introduction, any compact subset of any Banach
space may be covered by an operator range of �1. In this section we prove that
every compact subset of a Banach space X may be covered by a one-to-one range
of �1 if and only if X is an L1-space (actually we prove a much stronger result;
see Theorem 4.7 below). Also we get a characterization of Lp-spaces in terms of
covering compact sets and in terms of the factorization of compact operators.

We start with with two auxiliary results.

Lemma 4.1. For each natural number n there is m(n) < ∞ so that if E is an
n-dimensional space which is K-isomorphic to a K-complemented subspace of Lp,
1 ≤ p ≤ ∞, and E has a basis with constant K, then E⊕ �

m(n)
p is f(K)-isomorphic

to �
n+m(n)
p .

Proof. By [PR], E is 2K-isomorphic to a 2K-complemented subspace of �m
p , where

m depends only on n. Then by [BDGJN], E⊕p �mn
p is f(K)-isomorphic to �

(m+1)n
p .

The next lemma very slightly improves the results in [JRZ] and [NW] that a
separable Lp space has a basis with certain desirable properties.

Lemma 4.2. Let X be a separable Lp space, 1 ≤ p ≤ ∞. Then X has a basis
{xn}∞n=1 which satisfies

sup
1≤n<m<∞

d(�m−n
p , span {xn, xn+1, . . . , xm−1}) < ∞.

Proof. Note that by Lemma 4.1 it is enough to show that for any sequence 0 =
n1 < n2 < . . . , there is a basis {xn}∞n=1 for X and a constant K so that for all
k = 1, 2, . . . , {xi}nk+1

i=nk+1 is K-equivalent to the unit vector basis for �
nk+1−nk
p .

First we indicate how to get such a basis when p < ∞. In this case X has a
complemented subspace which is isomorphic to �p, and hence X is isomorphic to
X ⊕ �p since for some Y we have X ∼ Y ⊕ �p ∼ Y ⊕ �p ⊕ �p ∼ X ⊕ �p. Let {yn}∞n=1

be a basis for X and let {en}∞n=1 be the unit vector basis for �p. Make a basis
for X ⊕ �p by interlacing these bases for X and �p, i.e., use {y1 ⊕ 0, 0 ⊕ e1, 0 ⊕
e2, . . . , 0⊕ em1 , y2 ⊕ 0, 0⊕ em1+1, 0⊕ em1+2, . . . , 0⊕ em2 , . . . }. As long as mk grows
fast enough, this will be a basis that has the desired property.

The same argument works when X is a separable L∞ space which contains a
(necessarily complemented) isomorphic copy of c0, but to do the general case, one
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needs to “localize” the construction. Again, let {yn}∞n=1 be a basis for X. Let
ε > 0; ε = 1 is fine for our purposes. For appropriate m1, take a sequence {e1

i }m1
i=1

which is 1 + ε-equivalent to the unit vector basis of �m1
∞ and which lies in the linear

span of {yn}∞n=1, say, in span {y1, . . . , ys1}. Let E1 be the linear span of {e1
I}

m1
i=1

and write span {y1, . . . , ys1} = E1 + F1, where F1 is the kernel of a norm 1 + ε
projection from span {y1, . . . , ys1} onto E1. The vectors e1

1, . . . , e
1
m1

form the first
m1 terms of our basis.

For the construction of the next m2 basis vectors (where m2 is appropriately
large, depending on s1 as well as the sequence {nk}∞k=1), take a subspace E2 of
the linear span of {yi}s2

i=s1+1 for some s2 so that E2 is 1 + ε-isomorphic to the �∞
space of its dimension. As long as its dimension is at least m1, the space F1 + E2

is isomorphic to the �∞ space of its dimension (which we take to be m2) with
the isomorphism constant depending only on the basis constant of {yn}∞n=1. Let
{e2

i }m2
i=1 be a basis for F1 +E2 which is d(F1 +E2, �

m2
∞ )-equivalent to the unit vector

basis for �m2
∞ ; these vectors form the next m2 terms of the desired basis for X.

Now just iterate this construction. Let F2 be the kernel of a projection of norm
d(F1 + E2, �

m2
∞ ) from the linear span of {yi}s2

i=s1+1 onto the linear span of {e2
i }m2

i=1.
Then select a subspace E3 of the linear span of {yi}s3

i=s2+1 for some s3 so that E3 is
1+ε-isomorphic to the �∞ space of its (appropriately large) dimension and continue
as in the previous step. It is evident that for any {nk}∞k=1 this construction can
produce a basis {xn}∞n=1 which has the property mentioned in the first paragraph
of the proof.

Theorem 4.3. The following are equivalent for a Banach space X:
(1) X is a Lp space.
(2) Every compact operator into X factors through some Lp space.
(3) If T is a compact operator from some Banach space Z into X and Y is a

separable Lp space, then there are compact operators A from Z into Y and B from
Y into X so that T = BA and B is one-to-one.

Remark 4.4. The equivalence of (1) with (2) is known; see [J].

Proof. We show that (1) implies (3). First assume that X is a separable Lp space
and let T : Z → X be a compact operator; without loss of generality ‖T‖ ≤ 1.
Take a basis {xn}∞n=1 for X which has the property given in Lemma 4.2. Let
{Sn}∞n=1 be the partial sum projections associated with {xn}∞n=1 and set S0 = 0.
Take 0 = n0 < n1 < . . . so that ‖(Snk

− Snk−1)T‖ < 4−k for each k > 1. Now let
Y be any separable Lp space and let {yn}∞n=1 be a basis for Y which also has the
property given in Lemma 4.2. Thus for each k, the spaces span ynk−1+1, . . . , ynk

and
span xnk−1+1, . . . , xnk

are isomorphic with the isomorphism constant independent
of k. Next we use an idea similar to one used in the proof of Lemma 2.4. Take a
norm one isomorphism Uk from span ynk−1+1, . . . , ynk

onto spanxnk−1+1, . . . , xnk
so

that supk ‖Uk‖ < ∞. Define A : Z → Y by Az =
∞∑

k=1

2k−1U−1
k (Snk

− Snk−1)T . Let

{Pn}∞n=1 be the partial sum projections associated with the basis {yn}∞n=1. Define

B : Y → X by By =
∞∑

k=1

2−k+1Uk(Snk
− Snk−1)y. This shows that (1) implies (3).

If X is a non-separable Lp space, we just replace X with any separable Lp

subspace which contains the range of T and proceed as above.
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The implication (3) implies (2) is trivial, so we turn to the implication (2) implies
(1). First assume 1 < p < ∞, so that every separable Lp space is isomorphic to a
complemented subspace of Lp(0, 1) by [LP ]. Thus condition (2) implies that every
compact operator into X factors through Lp(0, 1). Now the operators from a space
Z into X which factor through Lp(0, 1) forms a Banach space under the factorization
norm !T ! = inf ‖A‖ ·‖B‖, where the infimum is over all factorizations T = BA with
A : Z → Lp(0, 1), B : Lp(0, 1) → X (use the fact that Lp(0, 1) is isometric to the
�p sum of itself). Thus the uniform boundedness principle yields that there is a
constant K = KZ so that !T ! ≤ K‖T‖ for all compact T from Z to X. Applying
this with Z the �1 sum of all finite-dimensional subspaces of X, we conclude that
there is a constant K so that the inclusion from every finite-dimensional subspace
of X into X factors through Lp(0, 1) with factorization constant at most K. This
implies that X is an Lp space.

This argument does not quite work for p = 1 or p = ∞ since not every sep-
arable L1 space is isomorphic to a complemented subspace of L1(0, 1), and no
infinite-dimensional separable L∞ space is isomorphic to a complemented subspace
of L∞[0, 1]. Here is how to get around that annoyance. The argument in [LP ]
yields that the injection JY from a separable Lp space into its second dual factors
through Lp(0, 1) in the extreme case p = 1. When p = ∞, the same is true by
the injectivity of the second dual of an L∞ space. The argument in the preceding
paragragh then yields that the inclusion from every finite-dimensional subspace of
X into X∗∗ factors through Lp(0, 1) with factorization constant at most K. This
is enough, by [LR], to guarantee that X is an Lp space.

Remark 4.5. It is evident that condition (3) in Theorem 4.3 is equivalent to:
(4) For every compact subset K of X and every separable Lp space Y there is a

one-to-one compact operator S from Y to X so that S(BY ) ⊃ K.

That the one-to-oneness is essential in Remark 4.5 is given by the following
proposition.

Proposition 4.6. Let 1 ≤ p < ∞. The following are equivalent for a Banach space
X.

(5) For every compact subset K of X and every Lp space Y there is a compact
operator S from Y to X so that S(BY ) ⊃ K.

(6) For every compact subset K of X there is an Lp space Y and an operator S
from Y to X so that S(BY ) ⊃ K.

(7) X is isomorphic to a quotient of Lp(µ) for some measure µ.

Proof. The case p = 1 is easy because every Banach space is a quotient of �1(Γ)
for some set Γ and every L1 space contains a complemented copy of �1. So assume
that 1 < p < ∞. If condition (6) holds, then the space Y can always be taken
separable and hence Y can be taken to be Lp(0, 1) because every separable Lp

space is isomorphic to a complemented subspace of Lp(0, 1).
We claim that there is a constant C so that every compact subset of the unit ball

of X is covered by S(BLp(0,1)) for some operator S from Lp(0, 1) into X for which
‖S‖ ≤ C. Indeed, otherwise there would be compact subsets Kn ⊂ BX so that if
Kn ⊂ S(BLp(0,1)) with S : Lp(0, 1) → X, then ‖S‖ > n2. Set K =

∞
sup
n=1

n−1Kn∪{0}.
Then K is a compact subset of BX and so there is an operator S : Lp(0, 1) → X
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so that K ⊂ S(BLp(0,1)). Then (nS)(BLp(0,1)) ⊃ Kn and so ‖nS‖ ≥ n2 for all n.
This proves the claim.

By the claim, there is a C so that for each finite-dimensional subspace E of X
there is an operator SE : Lp(0, 1) → X so that SEBLp(0,1) ⊃ BE and ‖SE‖ ≤ C.
Direct the finite-dimensional subspaces of X by inclusion and let U be any ultrafilter
on this directed set which contains all tails TE := {F : E ⊂ F ⊂ X; dimF < ∞},
where E ranges over the finite-dimensional subspaces of X. It is easily checked
that the weak∗ operator limit through U of S∗

E is an isomorphism from X∗ into the
ultrapower Lq(0, 1)U , where 1/p + 1/q = 1. Lq(0, 1)U is isometrically isomorphic
to Lq(µ) for some measure µ, so we now know that X is reflexive and thus X∗ is
separable. This implies that X∗ is isomorphic to a subspace of Lq(0, 1) and hence
X is isomorphic to a quotient of Lp(0, 1). This completes the proof that condition
(6) implies condition (7).

Finally we assume that (7) is satisfied. Let Q be a quotient map from Lp(µ) onto
X. If K is a compact subset of X, then it is easy to see that some superspace of K in
X is the image of some separable Lp subspace of Lp(µ) and hence of Lp(0, 1). That
is, without loss of generality we can assume that X is separable and that Lp(µ) is
Lp(0, 1). Now by Michael’s selection theorem (or the Bartle-Graves theorem) there
is a compact subset K1 of Lp(0, 1) so that QK1 = K. By Lemma 2.4, there is
a compact operator T on Lp(0, 1) so that TBLp(0,1) ⊃ K1. Then S := QT is a
compact operator from Lp(0, 1) into X for which SBLp(0,1) ⊃ K. This completes
the proof of Proposition 4.6.

We have frequently used the fact that every compact subset of a Banach space
is contained in the closed convex symmetric hull of a sequence which converges
to zero. What are the Banach spaces for which the null sequence can always be
chosen to have some extra property such as being basic or at least countably linearly
independent? It is a good exercise for students to show that Hilbert space does not
have one of these stronger properties. A complete answer to the question is given
by the next theorem.

Theorem 4.7. The following are equivalent for a Banach space X:
(1) X is a L1 space.
(2) For each compact subset K of X there is a basic sequence which converges

to zero and whose closed convex symmetric hull contains K.
(3) For each compact subset K of X there is a sequence {yn}∞n=1 which converges

to zero and whose closed convex symmetric hull contains K and such that 0 �=
∞∑

n=1
λnyn whenever 0 <

∞∑
n=1

|λn| < ∞.

If X is separable, the preceding conditions are equivalent to
(4) For each compact subset K of X there is a basis for X which converges to

zero and whose closed convex symmetric hull contains K.

Proof. Assume that (1) holds and K is a compact subset of BX . Let Y be a
separable L1 subspace of X which contains K and let {xn}∞n=1 be a basis for X0

which satisfies the conclusion of Lemma 4.2. Let {Sn}∞n=1 be the partial sum
projections associated with {xn}∞n=1 and set S0 = 0. From Lemma 2.4 we get
0 = n0 < n1 < . . . so that image of BX under the operator

T :=
∞∑

k=1

4−k+1(Snk
− Snk−1)
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contains K. By the property of the sequence {xn}∞n=1, for each k there is a ba-
sis znk−1 , . . . , znk

for the linear span Ek of xnk−1 , . . . , xnk
so that the unit ball

of Ek is contained in the convex symmetric hull of znk−1 , . . . , znk
and such that

sup1≤n<∞ ‖zn‖ := C < ∞. Let C1 := supk ‖Snk
− Snk−1‖. From the property of

the operator T we deduce that K is contained in the closed convex symmetric hull
of the sequence yn, where yj = 2CC12−k+1zj if nk−1 < j ≤ nk. This completes
the proof that (1) implies (2) and that (1) implies (4) when X is separable. The
only remaining non-trivial implication is that (3) implies (1). But (3) implies that
every compact set in X can be covered by the image of the unit ball of �1 under
some one-to-one operator from �1 into X, so X is an L1 space by condition (4) in
the remark after Theorem 4.3.
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