
SUPERSTRICTLY SINGULAR AND
SUPERSTRICTLY COSINGULAR

OPERATORS ∗

Anatolij Plichko

Abstract

We prove some known and new results on superstrictly singular opera-
tors and establish full duality between superstrictly singular and superstrictly
cosingular operators.

1 Introduction
Unless otherwise stated, in this paper the space denotes a Banach space and

the operator denotes a bounded linear operator.
Definition 1 [6]. An operator T from a space X into a space Y is called strictly
singular if there does not exist a number c > 0 and an infinite dimensional sub-
space E ⊂ X such that ‖Tx‖ ≥ c‖x‖ for all x in E.

The following local version of this definition is natural.
Definition 2. An operator T is called superstrictly singular (SSS for short) if there
does not exist a number c > 0 and a sequence of subspaces En ⊂ X , dim En = n,
such that

‖Tx‖ ≥ c‖x‖ for all x in ∪n En . (1)

Put for an operator T
bn(T ) = sup inf

x∈S(En)
‖Tx‖ , (2)

where supremum is taken over all n-dimensional subspaces En ⊂ X and S(En)
is the unit sphere of En.

Obviously
‖T‖ = b1(T ) ≥ b2(T ) ≥ · · · ≥ 0 ,
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T is SSS if and only if
bn(T ) → 0 as n →∞ (3)

and the greatest constant c for which (1) is satisfied, is equal to limn→∞ bn(T ) .
The numbers bn(T ), which are called the Bernštein numbers, were consid-

ered in Approximation Theory (see [21] and the references given there). They
are among the classical widths. However those widths are considered mostly for
compact sets. Evidently, every compact operator is SSS. We almost do not see
noncompact SSS operators in [21]. For operators, defined on a Hilbert space, the
Bernštein numbers are connected with so-called AMD numbers (see [2]).

SSS operators were introduced implicitly in [14] and explicitly, under the
name “S∗

0-operators" or “operators of class C∗
0", in [10]-[12]. Probably, the dif-

ference can be explained by absence of good letter S in Kharkiv. Implicitly these
operators was considered also in [23]. The term “superstrictly singular operator"
was introduced in [4]; where this class was investigated by technique of superide-
als. Our note is inspired by the paper [4]. We do not try specially to calculate the
exact values of bn(T ), but we shall determine whether they converge to zero or
not.

Obviously, every SSS operator is strictly singular. It is easy to see that T has
finite rank if and only if bn(T ) = 0 begining with some number N . Observe
also, that if T is infinite dimensional then the supremum in (2) can be taken over
subspaces En such that T |En are injective, only. Then the formula (2) turns into
following

bn(T ) = sup
1

‖(T |En)−1‖ (2′)

where the supremum is taken over all n-dimensional subspaces En such that the
restrictions T |En are injective.

2 Some properties of SSS operators
V.Milman [11] has shown, using the spectrum of continuous function and

Dvoretzky’s theorem, that SSS operators form a closed ideal, i.e. that a sum of
SSS operators is SSS, a composition (right or left) of SSS operator with bounded
operator is SSS and L(X,Y )-norm limit of SSS operators is SSS. Using su-
perideal technique and the Dvoretzky theorem, this result was proved in [4] also.
We shall deduce Milman’s result from following Theorem 1. This theorem was
proved in [11] too (using the spectrum and Dvoretzky theorem). Our proof of
Theorem 1 is elementary and does not use Dvoretzky’s theorem.
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Theorem 1. An operator T : X → Y is SSS if and only if for every sequence
of subspaces En ⊂ X , dim En = n , there exist subspaces Fn ⊂ En such that
dim Fn →∞ and

‖T |Fn‖ → 0 as n →∞ .

The “if" part of this statement is evident. To prove the “only if" part we need

Lemma 1. For every ε > 0 there exists a sequence k(n) → ∞ as n → ∞ such
that every normed space En , dim En = n, contains subspaces G1, . . . , Gk(n),
each are of dimension k(n), whose finite dimensional decomposition constant is
less than 1 + ε.

The proof of this lemma is deduced easily from Mazur’s lemma on basic se-
quences ([8], p.4). Lemma 1 also follows immediately from the Dvoretzky theo-
rem, but we prefer not to use the Dvoretzky theorem here. ¤

Proof of Theorem 1. Let ε > 0. Construct, using Lemma 1, subspaces (Gn
i )

k(n)
i=1

of En so that dim Gn
i = k(n) → ∞ and (Gn

i )
k(n)
i=1 have, for fixed n, the finite

dimensional decomposition constant less than 1 + ε.
Choose, using (2), elements xn

i in S(Gn
i ) , i = 1, . . . , k(n) such that ‖Txn

i ‖ ≤
bk(n)(T ) (because of finite dimensional nature of En, infimums in (2) are attained).

Now choose a sequence 1 ≤ l(n) ≤ k(n) so that l(n) → ∞ and l(n) ·
bk(n)(T ) → 0 as n → ∞. Put Fn = lin(xn

i )
l(n)
i=1 . Then for x ∈ S(Fn) , x =∑l(n)

i=1 aix
n
i , we have by finite dimensional decomposition nature

|a1| < 1 + ε , |a2| < 2(1 + ε) , . . . , |al(n)| < 2(1 + ε).

Hence

l(n)∑
i=1

|ai|‖Txn
i ‖ ≤ (

∑
|ai|)bk(n)(T ) < 2(1 + ε)l(n)bk(n)(T ) → 0 as n →∞ . ¤

Remark 1. Theorem 1 is, to a certain extent, a development of the well known
Kato’s result [6]: Let X and Y be infinite dimensional spaces. Assume that T :
X → Y is an operator such that the restriction of T to any subspace of finite
codimension is not an isomorphism. Then for every ε > 0 there is an infinite
dimensional subspace E of X so that T |E is compact and ‖T |E‖ ≤ ε.
Corollary 1. An operator T is SSS if and only if for every sequence of finite
dimensional subspaces En ⊂ X , dim En → ∞, there are subspaces Fn ⊂ En

such that dim Fn →∞ and

‖T |Fn‖ → 0 as n →∞ .
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Recall that for given ε > 0, a space E is called (1 + ε)-Euclidean if there exists
an operator U from E onto some Euclidean space with

(1− ε)‖x‖ ≤ ‖Ux‖ ≤ (1 + ε)‖x‖ ∀x ∈ E .

Application of Dvoretzky theorem gives immediately
Corollary 2. The following conditions are equivalent:

(i) T is SSS;
(ii) for every ε > 0 and every sequence of (1 + ε)-Euclidean subspaces

En ⊂ X with dim En →∞ , we have

inf
x∈S(En)

‖Tx‖ → 0 as n →∞ ;

(iii) for every ε > 0 and every sequence of (1 + ε)-Euclidean subspaces
En ⊂ X with dim En →∞ , there are subspaces Fn ⊂ En , dim Fn →∞ such
that

‖T |Fn‖ → 0 as n →∞ .

Corollary 3. A sum T + U of two SSS operators is SSS.
Proof. Let En ⊂ X be an arbitrary sequence of subspaces, dim En → ∞.

There are, by Theorem 1, subspaces Fn ⊂ En so that dim Fn →∞ and ‖T |Fn‖ →
0. By definition, there exists a sequence xn ∈ S(Fn), such that ‖Uxn‖ → 0. Then

‖(T + U)xn‖ → 0 as n →∞ . ¤

The fact that a composition of SSS and bounded operator is SSS, is proved very
simply.
Corollary 4. Let X = X1 ⊕X2 , T1 : X1 → Y and T2 : X2 → Y be SSS. Then
the operator T : X → Y defined by the formula T (x1 + x2) = T1x1 + T2x2,
x1 ∈ X1 , x2 ∈ X2 is SSS.

Proposition 1. An L(X, Y )-norm limit of SSS operators (Tk) is SSS.

Proof. Suppose otherwise, i.e. that there exists c > 0 and a sequence of
subspaces En ⊂ X , dim En → ∞, with the property (1) for T . Choose k such
that ‖T − Tk‖ < c/2. Since Tk is SSS, inf{‖Tkx‖ : x ∈ S(En)} < c/2 for some
n. Hence inf{‖Tx‖ : x ∈ S(E)} < c . This contradicts (1). ¤

The following statement is contained in [11] and [4] but we give a more trans-
parent proof.

Theorem 2. If T is not SSS then for every sequence εn > 0 there are (1 + εn)-
Euclidean subspaces En ⊂ X , dim En → ∞, and a constant d > 0 so that for
every n

(d− εn)‖x‖ ≤ ‖Tx‖ ≤ (d + εn)‖x‖ ∀x ∈ En .
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Proof. Of course, we can not do without the Dvoretzky theorem here. Ap-
plying it twice, we obtain the existence of (1 + εn)-Euclidean subspaces Fn ⊂
X , dim Fn →∞, and a constant c > 0 such that

c‖x‖ ≤ ‖Tx‖ ∀x ∈ ∪nFn ,

and the subspaces TFn are (1 + εn)-Euclidean too.
To continue the proof we use the easily-proved

Lemma 2. Let a segment [a, b] , ε > 0 and a natural number l are given.
Then there exists a natural number k = k(l, a, b, ε) such that whatever num-
bers d1, . . . , dl in [a, b] we take, there exists d ∈ [a, b] and a subset di1 , . . . , dik in
d1, . . . , dl so that

|di1 − d| < ε, . . . , |dik − d| < ε .

Moreover k(l, a, b, ε) →∞ as l →∞ .

And also

Lemma 3. Let 0 < a ≤ b , 0 < ε < a and l ∈ N. Then there exists a natural
number k = k(l, a, b, ε) such that k → ∞ as l → ∞ and for any operator
T from l-dimensional Euclidean space F onto l-dimensional Euclidean space G
satisfying the condition

a‖x‖ ≤ ‖Tx‖ ≤ b‖x‖ ∀ x ∈ F

there is a subspace E ⊂ F , dim E = k, and a number d ∈ [a, b] satisfying the
condition

(d− ε)‖x‖ ≤ ‖Tx‖ ≤ (d + ε)‖x‖ ∀ x ∈ E . (4)

Proof of Lemma 3. Let us choose in F an orthonormal basis (ei)
l
1 such that

(Tei)
l
1 is orthogonal basis in G (see f.e. [3], p.175). There exists, by Lemma 2,

d ∈ [a, b] and natural numbers i1, . . . , ik for which

|‖Tei1‖ − d| < ε, . . . , |‖Teik‖ − d| < ε .

Then for any numbers (aj)
k
1 , we have

‖T (
k∑

j=1

ajeij)‖2 =
k∑

j=1

|aj|2‖Teij‖2 ≤
∑

|aj|2(d+ ε)2 = (d+ ε)2‖
∑

ajeij‖2 .

(5)
Put E = lin(eij)

k
j=1. The right inequality in (4) follows from (5). The left one is

verified in the same way. ¤
Now it is clear how to finish the proof of Theorem 2. ¤
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Remark 2. An infinite dimensional version of Theorem 2 is true also : If T is
an isomorphism from one Hilbert space into another then there exists an infinite
dimensional subspace E ⊂ H such that the restriction T |E is proportional to an
isometry up to ε. The same fact is true for lp spaces, 1 ≤ p < ∞ and c0 [11].

Note more two properties of SSS operators.

Proposition 2. Let T : X → Y be an operator and let T be the operator T from
X into TX ⊂ Y. Then T is SSS if and only if T is SSS, moreover for every n

bn(T ) = bn(T ).

Proposition 3. Let T : X → Y be an operator and T̂ : X/ ker T → Y be the
corresponding quotient operator. If T̂ is SSS then T is SSS too, moreover for every
n

bn(T ) ≤ bn(T̂ ) .

Remark 3. An example of quotient map T : l1 → l1/Z ' l2 shows that the
converse statement is not true (we shall show further that T is SSS; of course T̂ is
an isometry).

3 Examples

a) Strictly singular operators which are non SSS

As is well known, every strictly singular operator on lp , 1 ≤ p < ∞ or on c0 is
compact ([8], p.76). Every operator from lp into lq , p 6= q , 1 ≤ p, q < ∞, and
from lp into c0 and from c0 into lp, is strictly singular ([8], p.75). Moreover, every
operator from lp into lq for p > q and from c0 into lp, is compact (Pitt’s theorem
([8], p.76). Let us give
Example 1. A (strictly singular) operator from lp into lq , 1 < p < q < ∞, which
is not SSS.

Denote by En a subspace of lp which consists of sequences with supports
contained between 2n and 2n+1. Let Fn ⊂ En be a subspace spanned by 2n-
dimensional version of Rademacher functions and Gn be its complement spanned
by the remaining 2n-dimensional version of Walsh functions. From Khinchine’s
inequality ([8], p.66) it follows that there are constants a, b > 0 and dn > 0 such
that

adn‖x‖p ≤ ‖x‖q ≤ bdn‖x‖p for every x in Fn ,

and also that the projections in En onto Fn along Gn both in norm lp and in norm
lq are uniformly bounded.
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Define an operator T in the following way: if x ∈ Fn, put Tx = dnx ; if
x ∈ Gn, put Tx = x. Then we extend T to a linear and bounded operator from lp
into lq . ¤
Remark 4. For p = 2 , q > 2 a similar example was given in [10] and [11].
Remark 5. It will follow from next Proposition 6 that each operator from l1 into
lp , 1 < p < ∞, is SSS. We shall consider soon c0-valued operators .
Corollary. Let 1 < p < q < ∞. For every infinite dimensional Lp-space X and
Lq-space Y (in the sense of [7]) there exists a strictly singular operator from X
into Y which is non SSS.

Indeed, any infinite dimensional Lp-space contains a complemented subspace
isomorphic to lp [7].

Let us consider c0-valued operators .

Proposition 4. Let X be a Banach space with a finite dimensional decomposition
(En). Then there exists an injective operator from X into c0 which is non SSS. If
X has no subspaces isomorphic to c0 then this operator is strictly singular. There
exists an operator from an arbitrary separable Banach space into c0 which is non
SSS.

Proof. Of course, we can assume dim En → ∞. Take ε > 0. Choose, using
the local universality of c0, subspaces Fn ⊂ c0 which are (1 + ε)-isometric to
En, have disjoint supports and let T : En → Fn be these (1 + ε)-isometries. It
remains to extend T to an injective operator from X into c0. To prove the last
statement of the proposition it is sufficient to use the well known fact that any
infinite dimensional separable space has a quotient with basis ([8], p.10). ¤
b) SSS operators which are non compact

A natural example of noncompact SSS operator is the identity inclusion lp ↪→ lq
for 1 ≤ p < q ≤ ∞ [12]. Probably, the widths bn(↪→) for these inclusions
were calculated or estimated in the Approximation Theory. In [21] the inclusion
l1 ↪→ l2 (a width of octahedron) is considered. We shall deduce the result of [12]
from a somewhat general statement on an inclusion into c0. However first recall

Lemma 4. [9],[12]. Let X be some linear space of functions of natural argument
vanishing at infinity. Then every subspace En ⊂ X , dim En = n, contains a
function x(i) such that max{|x(i)| : i ∈ N} is attained in at least n points.

Proof. Obviously, every function |x(i)| , x ∈ X attains maximum in at
least one point. Let for n the lemma be proved. Consider an arbitrary subspace
En+1 ⊂ X , dim En+1 = n + 1. By supposition, there exists a function y ∈ En+1

so that max |y(i)| is attained at least in n points (ik)
n
1 . Without loss of generality

we can assume that the maximum is attained exactly in n points. A subspace
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En = {x ∈ X : x(ik) = 0 for k = 1, . . . , n} has codimension n, hence has a
non-zero intersection with En+1. Let 0 6= z ∈ En∩En+1 and max |z(i)| = |z(j)|.
Since z(ik) = 0, then j 6= ik, k = 1, . . . , n. Then the family {λy + (1 − λ)z :
0 ≤ λ ≤ 1} contains a function, which attains the maximum of modulus in n + 1
points (ik)

n+1
k=1 (in+1 may be not equal to j). ¤

Proposition 5. Let X be a space with a symmetric basis (en) which is not equiv-
alent to the standard basis of c0. Then the natural inclusion X ↪→ c0 is SSS.

Proof. Let En ⊂ X , dim En = n. Choose, using Lemma 4, an element
xn(i) ∈ En, whose maximum modulus is attained at least in n points and is equal
to one. Obviously, ‖xn‖X →∞, which proves that our operator is SSS. ¤
Remark 6. From the proof of Proposition 5 it follows that for the inclusion ↪→p

of lp to c0, we have
bn(↪→p) = n−1/p .

Corollary 1. The natural inclusion lp ↪→ lq for 1 ≤ p < q < ∞ is SSS.
Proof. Indeed,

‖x‖q
q =

∑
|x(i)|q =

∑
|x(i)|p|x(i)|q−p ≤ (

∑
|x(i)|p) max |x(i)|q−p = ‖x‖p

p‖x‖q−p
0 .

If ‖x‖p = 1 then ‖x‖q ≤ ‖x‖(q−p)/q
0 . This and Proposition 5 implies SSS of our

inclusion. ¤
Remark 7. From the proof of Corollary 1 it follows that for the inclusion ↪→pq of
lp to lq , p < p

bn(↪→pq) = n(p−q)/pq .

Corollary 2. Let 1 < p < q < ∞ , X be an infinite dimensional Lp-space and
Y be an infinite dimensional Lq-space. Then there exists an SSS and non compact
operator from X into Y .

To prove this it is sufficient to recall the arguments of corollary of Example 1.
Corollary 3. There exists an SSS and non compact operator in the space Lp(0, 1), 1 ≤
p < ∞ , p 6= 2 .

Proof. Let X be a subspace of space Lp spanned by Rademacher functions, Y
be its complement (for p 6= 1), U be a complemented subspace of Lp isometric to
lp , V be its complement.

If p < 2 then there exists an SSS and non compact operator from U into X
(Corollary 1). If p > 2 then there exists an SSS and non compact operator from
X into U (Corollary 1, too).

In both case let us consider an arbitrary compact operator from V (resp. Y )
into Lp and extend our operator onto whole space (see Corollary 4 to Theorem 1).
¤
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Remark 8. For 2 < p < ∞ Corollary 3 was proved in [12]. Of course, Corollary
3 remains true for every space containing complemented Lp(0, 1), for example,
for Lp(R) , 1 ≤ p < ∞ , p 6= 2 .

c) Spaces, where SSS(X, Y ) = L(X, Y )

Definition 7. We say that a space X contains no uniformly complemented almost
Euclidean subspaces if there exists ε > 0 such that for every sequence of (1 + ε)-
Euclidean subspaces En ⊂ X , dim En → ∞ , the relative projection constants
λ(En, X) →∞ .
Definition 9 [16]. A space X is called locally π-Euclidean if there is a d ≥ 1 so
that for all n and ε > 0 there is an N such that every N -dimensional subspace of
X contains a (1 + ε)-isomorph of ln2 which is d-complemented in X .

Every L1-space or L∞-space does not contain uniformly complemented al-
most Euclidean subspaces ([7], Corollaries 6,2). The well known Pisier space in
which the norms of all n-dimensional projections grow with n [18] does not con-
tain such subspaces. Locally π-Euclidean spaces coincide with B-convex spaces
i.e. spaces which contain no ln1 uniformly [17]. We shall use both terms B-convex
and locally π-Euclidean.

Proposition 6. Let X contain no uniformly complemented almost Euclidean sub-
spaces and Y be B-convex. Then every operator T from X into Y is SSS.

Proof. Suppose contrary to our claim, that there is a sequence of (1 + ε)-
Euclidean subspaces En ⊂ X , dim En →∞, such that

inf
x∈S(En)

‖Tx‖ ≥ c > 0 for every n .

Passing, if necessary, to subspaces, we may suppose that Fn := TEn are (1 + ε)-
Euclidean and d-complemented. Let Pn be a projection of norm d of the space Y
onto Fn. Put Qn = (T−1|Fn)PnT . Evidently, Qn is a projection of X onto En and

‖Qn‖ ≤ ‖T−1|Fn‖ · ‖Pn‖ · ‖T‖ ≤ d

c
‖T‖ .

Contradiction. ¤
Remark 9. Proposition 6 is inspired by the following
Proposition MP [14]. Let T be an operator from the space C(S) of all continuous
functions on a compact S into l2. Then

bn(T ) ≤ 1/
√

pn ,

where pn is the projection constant of n-dimensional Euclidean space.
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Proof. Probably, we have assume in Proposition MP ‖T‖ ≤ 1. Let En be an
n-dimensional subspace of C(S) such that T |En is one to one and Fn = TEn.
Then there is a projection Qn : C(S) → En with ‖Qn‖ ≤ ‖T−1|Fn‖. As is
well known, the projection constant qn of subspace En satisfies the inequality
pn ≤ qn · ‖T‖‖T−1|Fn‖. Hence,

pn ≤ qn · ‖T−1|Fn‖ ≤ ‖Qn‖ · ‖T−1|Fn‖ ≤ ‖T−1|Fn‖2 ≤ bn(T )−2.

It implies Proposition MP. ¤
d) Absolutely summing and narrow operators

An operator T : X → Y is called p-absolutely summing if there is a constant K
so that, for every choice of an integer n and vectors {xi}n

i=1 in X we have

(
n∑

i=1

‖Txi‖p)1/p ≤ K sup
‖f‖=1

(
n∑

i=1

|f(xi)|p)1/p .

The following proposition was known to the authors of [14].

Proposition 7. Every p-absolutely summing operator T , 1 ≤ p < ∞, is SSS.

Proof. Since any p-absolutely summing operator is q-absolutely summing if
p < q ([8], p.65), we can assume p > 2. Suppose T is not SSS. Take subspaces
En from Theorem 2. Obviously, for “almost orthogonal" bases {xi}n

i=1 in these
spaces we can not find a common K in the definition of p-absolutely summing
operator. ¤

Note, that not every p-absolutely summing operator is compact.
An operator T from Lp(0, 1) to a space Y is narrow if for each measurable sub-

set A ⊂ (0, 1) and each ε > 1 there is x ∈ Lp such that x2 = χA and ‖Tx‖ < ε.
For properties of narrow operators see [19]. In particular, every compact operator
is narrow. There is a narrow operator which is not strictly singular.
Question. Let 1 < p < ∞. Is every SSS operator T : Lp → Y narrow, for any
space Y ?

4 Connection between SSS of an operator and its
duals

Let us consider first the connection between STS of an operator and its dual.
A simple example such as embedding L∞ ↪→ L2 shows that an operator can be
SSS1 even if its dual is not strictly singular. So, as in the case of strictly singular

1A simple proof of SSS of this embedding is contained, in fact, in ([20], Theorem 5.2).
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operators, for guarantee of connection between SSS of operator and its dual , we
have to impose some additional conditions. It is found, that for SSS operators
such conditions are more natural than those for strictly singular one.

Probably, the following corollary of the principle of local reflexivity is well
known.

Lemma 5. Let X be a locally π-Euclidean space. Then X∗ is “locally π∗-
Euclidean"; more exactly, there is a d∗ ≥ 1 so that for all n and ε there is an N
such that every N -dimensional subspace of X∗ contains an n-dimensional (1+ε)-
Euclidean and d-complemented in X∗ subspace , moreover this complement is
weakly* closed.

Proof. Since X it locally π-Euclidean it is B-convex [17]; hence X∗ is B-
convex (This is well known and is easy to prove). So X∗ is locally π-Euclidean.

Let given N -dimensional subspace of X∗, En be a subspace of X∗ , dim En =
n, the existence of which guarantee Definition 4. Let F n be a d-complement of
En. Then the annihilator in the dual space (F n)⊥ ⊂ X∗∗ has dimension n. Let
ε > 0. By the principle of local reflexivity there exists a (1 + ε)-isometry T
from (F n)⊥ onto some subspace Xn ⊂ X such that 〈Tϕ, e〉 = 〈e, ϕ〉 for every
ϕ ∈ (F n)⊥ and e ∈ En. Hence, we can take X⊥

n ⊂ X∗ as the desired weakly*
closed complement for En . ¤

Theorem 3. Let T be an SSS operator from a B-convex space X into arbitrary
space Y . Then T ∗ is SSS.

Proof. Suppose T ∗ is not SSS. By Lemma 5, X∗ is locally π∗-Euclidean.
Hence there are subspaces En ⊂ Y ∗ such that dim En →∞, for some c > 0

‖T ∗f‖ ≥ c‖f‖ ∀f ∈ ∪nEn

and subspaces Fn = T ∗En are uniformly complemented in X∗, moreover these
complements Gn are weakly* closed. Put Xn = (Gn)> ⊂ X , where > denotes
an annihilator in the predual space. Then dim Xn = n and for x ∈ S(Xn)

‖Tx‖ = sup
f∈S(Y ∗)

〈Tx, f〉 = sup
f∈S(Y ∗)

〈x, T ∗f〉 ≥ sup
f∈S(En)

〈x, T ∗f〉 ≥ c sup
g∈S(Fn)

〈x, g〉 ≥ c

d
‖x‖ . ¤

Remark 10. Let us recall that a space is called c-convex if it does not contain
uniformly ln∞. There exists an SSS operator T from a c-convex space X into a
Hilbert space H such that T ∗ is not even strictly singular. As an example, we
can take a quotient map l1 → l1/Z ' H . The SSS of this quotient follows from
Proposition 6. Theorem 3 is false for strictly singular operators ([5], p.47).
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The following definition was introduced in [12]: A closed subspace E of a
space X is said to we partially complemented if there exists an infinite dimen-
sional closed subspace F ⊂ X , E ∩ F = 0, for which E + F = E + F . In [12]
is stated
Theorem M. If every closed subspace E ⊂ X , codimE = ∞, is partially
complemented, then the strict singularity of T implies the strict singularity of T ∗.

Prof. Milman informs us that the proof of Theorem M contains a gap and that
his proof works only if X∗ is norm separable. So, the following question is nat-
ural; Let X be separable and suppose that every infinite codimensional subspace
of X is partially complemented. Must X∗ be separable? Consider the James tree
JT .

Let us now consider the connection between the SSS of operator and its second
dual. The following (probably, well known) fact plays there a decisive role.
Corollary of the principle of local reflexivity. Let Φ be a finite dimensional
subspace of X∗∗ and suppose that for some c > 0

‖T ∗∗ϕ‖ > c‖ϕ‖ ∀ϕ ∈ Φ .

Then there exists a subspace E ⊂ X , dim E = dim Φ, such that

‖Tx‖ > c‖x‖ ∀x ∈ E. (6)

Proof. Let F be a finite dimensional subspace of Y ∗ which (1 − ε)-norms T ∗∗Φ,
i.e. ∀ϕ ∈ T ∗∗Φ there is f ∈ S(F ), for which (1 − ε)‖ϕ‖ ≤ 〈f, ϕ〉. By the
principle of local reflexivity, there exists a subspace E ⊂ X and (1 + ε)-isometry
U : E → Φ such that

〈x, g〉 = 〈g, Ux〉 ∀x ∈ E , g ∈ T ∗F.

Then for arbitrary x ∈ E and f ∈ F

〈Tx, f〉 = 〈x, T ∗f〉 = 〈Ux, T ∗f〉 = 〈T ∗∗Ux, f〉 .

Therefore, for any x ∈ E there is an element f ∈ S(F ) such that

‖Tx‖ ≥ |〈Tx, f〉| = |〈T ∗∗Ux, f〉| ≥ (1−ε)‖T ∗∗Ux‖ > (1−ε)c‖Ux‖ >
(1− ε)

(1 + ε)
c‖x‖ .

So, (6) is satisfied for sufficiently small ε . ¤
Corollary. If T is SSS then T ∗∗ is SSS too.
Remark 11. The strict singularity of T does not imply the strict singularity of
T ∗∗. We shall give examples in the next section.
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5 Superstrictly cosingular operators
Definition 5 [15]. An operator T : X → Y is called strictly cosingular if

for every closed subspace E ⊂ Y of infinite codimension, the map QT (where
Q : Y → Y/E is a quotient map) has non-closed range.

It is easy to see ([15]) that if T ∗ is strictly singular, then T is strictly cosingular
and if T ∗ is strictly cosingular then T is strictly singular.

The following quantitative characteristic of an operator T was introduced in
[14] :

an(T ) = sup
En

inf{‖T̂ x‖Y/En : x ∈ X , ‖x̂‖X/T−1En = 1} ,

where supremum is taken over all closed subspaces En ⊂ Y of codimension n
and caps denote the corresponding quotient classes.
Remark 12. More exactly, in [14]

an(T ) = sup
En

inf
‖x‖=1

‖Tx‖Y/En .

Note that with this definition an(T ) = 0 for every operator with infinite dimen-
sional kernel.
Definition 6. We call an operator T superstrictly cosingular (SSCS for short), if
an(T ) → 0 as n →∞.

Evidently, every SSCS operator is strictly cosingular.
We do not know any papers expect [14] where the numbers an(T ) are con-

sidered. We do not know also, how the numbers an(T ) are connected with other
widths. The principle of local reflexivity gives the complete duality between SSS
and SSCS operators. Namely, the following is true

Theorem 4. An operator T is SSS (SSCS) if and only if T ∗ is SSCS (respectively
SSS).

Proof. 1. T ∗ is SSS ⇒ T is SSCS. Let En be a closed subspace of Y of
codimension n and Fn = (En)⊥. Then dim Fn = n. Let f0 ∈ S(Fn) be an
element such that

‖T ∗f0‖ = inf
f∈S(Fn)

‖T ∗f‖ .

Put Ên = X/T−1En. Then (Ên)∗ = T ∗Fn. Let x̂ ∈ S(Ên) be an element such
that

〈x̂, T ∗f0〉 = sup
f∈S(Fn)

〈x̂, T ∗f〉 .

13



Then for every representative x ∈ x̂

‖T̂ x‖ = sup
f∈S(Fn)

〈T̂ x, f〉 = sup
f∈S(Fn)

〈Tx, f〉 =

sup
f∈S(Fn)

〈x, T ∗f〉 = 〈x, T ∗f0〉 ≤ ‖x‖‖T ∗f0‖ .

Hence, ‖T̂ x‖ 6 ‖T ∗f0‖ and implication 1 is proved.
2. T is SSS⇒ T ∗ is SSCS. By the Corollary of the principle of local reflexivity,

T ∗∗ is SSS. The T ∗ is SSCS by item 1.
3. T is SSCS ⇒ T ∗ is SSS. Let Fn be an n-dimensional subspace of Y ∗. We

can suppose, by (2′), that the restriction T ∗|Fn is injective. Put Ên = X/(T ∗Fn)>.
Then dimÊn = n. Take an element x̂0 ∈ S(Ên) such that (the norm ‖T̂ x‖ is
taken in the quotient space Y/F>

n )

‖T̂ x0‖ = inf
‖x̂‖=1

‖T̂ x‖.

Take an element f ∈ S(Fn) such that

〈Tx0, f〉 = sup
‖x̂‖=1

〈T̂ x, f〉 .

Then

‖T ∗f‖ = sup
‖x̂‖=1

〈x̂, T ∗f〉 = sup
x∈x̂ , ‖x̂‖=1

〈x, T ∗f〉 = sup
x∈x̂ , ‖x̂‖=1

〈Tx, f〉 =

sup
‖x̂‖=1

〈Tx, f〉 = 〈T̂ x0, f〉 ≤ ‖T̂ x0‖ .

4. T ∗ is SSCS ⇒ T is SSS. By item 3, T ∗∗ is SSS and hence T is also. ¤
Theorem 4 allows to carry results, known for SSS operators, onto SSCS oper-

ators. Let us present some of them.
Corollary 1. SSCS operators form a closed ideal.

Proof. See Corollary 3 of Theorem 1 and Proposition 1.
Corollary 2. If an operator T is SSCS then there exists a sequence of closed
subspaces En ⊂ Y of codimension n such that X/T−1En are (1 + 1

n
)-Euclidean

and

inf{‖T̂ x‖Y/En : ‖x̂‖X/T−1En = 1} → 0 as s →∞ .

Proof. See Corollary 2 of Theorem 1.
Corollary 3. The natural embedding lp ↪→ lq, where 1 < p < q < ∞, is SSCS.

14



Proof. See Corollary 1 of Proposition 5.
Corollary 4. Let X be B-convex and suppose that Y does not contain uniformly
complemented almost Euclidean subspaces. Then every operator T from X into
Y is SSCS.

Proof. See Proposition 6.
Corollary 5. Let T be an SSCS operator from an arbitrary space X into a B-
convex space Y . Then T ∗ is SSCS too.

Proof. See Theorem 6.
Theorem 4 allows us also to prove non SSS or non SSCS of some particular

operators. Let us present examples.
Corollary 6. An operator T : L1(0, 2π) → c0 which put into correspondence to
a function from L1 sequence of its Fourier coefficients, is neither SSS nor SSCS,
although it is strictly singular.

Proof. As is known ([22]) this operator is strictly singular but its adjoint is
neither strictly singular nor strictly cosingular. It remains to use Theorem 2. ¤
Corollary 7. The quotient map from l1 onto l1/Z ' lp , 1 < p < ∞ , is SSS, by
Proposition 6. The quotient map Q from l1 onto l1/Y ' c0 is strictly singular but
the adjoint map Q∗ is not strictly cosingular ([15]; Example 1). So, Q is not SSS.

6 SSS and uniformly strictly singular operators
In [13] the notion of uniformly strictly singular operator was introduced and it

was shown that in well known Gowers-Maurey space every operator is a sum of
scalar and uniformly strictly singular operators. After some small correction, the
definition of [13] reads as follows.
Definition 3. Let X be a space with a basis (ek) and Y be an arbitrary space.
An element in X is called a block if it has finite support, that is , if it is a finite
linear combination of elements of the basis. The blocks v and w are said to be
consecutive if the support of v (the set of elements of the basis that form v as a
linear combination) ends before the support of w begins. One says that an operator
T : X → Y is uniformly strictly singular with respect to the basis (ek) if for every
ε > 0 there exists a number N such that for arbitrary consecutive blocks (xn)N

1

there exists an element x ∈ S(lin(xn)N
1 ) such that ‖Tx‖ < ε.

Let us recall that a sequence (xn, fn) , xn ∈ X , fn ∈ X∗, is called an M -
basis if fn(xm) = δnm , [xn]∞1 = X and for any x ∈ X\{0} there is n such that
fn(x) 6= 0. The M -basis is called 1-norming if

‖x‖ = sup{|f(x)| : f ∈ lin(fn)∞1 , ‖f‖ = 1}
for every x ∈ X . Of course we can carry Definition 6 to M -basis. Evidently,
every SSS operator is uniformly strictly singular with respect to any basis (and
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with respect to any M -basis).

Proposition 8. Suppose that an operator T : X → Y , where X is separable, is
not SSS. Then T is not uniformly strictly singular with respect to some 1-norming
M -basis.

Proof. Let (xn, fn) be a 1-norming M -basis of X . Then for some c > 0 there
is a sequence nk ↑ ∞ such that the subspaces Ek = lin(xn : nk ≤ n < nk+1)
contain subspaces Fk so that inf{‖Tx‖ : x ∈ S(Fk)} > c and dim Fk → ∞.
Hence, we can construct in every Ek a basis enk+1, . . . , enk+1

so that Fk is a span
of some of the first elements of this basis and the biorthogonal functionals span
lin(fn : nk < n ≤ nk+1). Obviously, T is not uniformly strictly singular with
respect to (en) . ¤
Question. Whether there exists a non SSS operator which is uniformly strictly
singular with respect to each basis ?

Proposition 9. Every operator T from lp into a space Y of type q , 1 ≤ p < q ≤ 2
is uniformly strictly singular with respect to the standard basis of lp.

Proof. Since Y has type q, there exists a constant M such that for an arbitrary
collection (yn)N

1 in Y there are signs (θn) for which

‖
N∑
1

θnyn‖ ≤ M(
N∑
1

‖yn‖q)1/q .

Let yn = Txn where (xn)N
1 ⊂ S(lp) are consecutive blocks. Then

‖T (
∑

θnxn)‖ ≤ M(
∑

‖Txn‖q)1/q ≤ M‖T‖N1/q .

Since ‖∑N
n=1 θnxn‖ = N1/p, this proves Proposition 9. ¤

Let us give an
Example of an operator which is uniformly strictly singular with respect to one
basis but is not uniformly strictly singular with respect to another basis, and hence
is non SSS.

Let T : lp → lq be the operator from Example 1, where 1 < p < q ≤ 2.
By Proposition 9, this operator is uniformly strictly singular with respect to the
standard basis. Obviously, it is not uniformly strictly singular with respect to basis
consisting of blocks wn

i : 1 ≤ i ≤ 2n , n = 1, 2, . . . of Walsh systems.
Remark 13. Prof. R.Wagner informs us, that from results of [1] it follows the
existence of strictly singular operator which is not uniformly strictly singular with
respect to any basis.

His arguments are following: In [1] was constructed a strictly singular operator
T from a space X with a basis ek → 0 weakly to a space Y with the property:
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Whenever (eki
) are elements of the basis with n < k1 < · · · < kn then T |lin(eki

)n
1

is isometry.
Now take any other basis (xk) in X . Fix an n and let k1 = n+1. Approximate

ek1 by a finite combination of xk. Let xm1 be the last vector used to approximate
ek1 .

There exists a number k2 such that none of x1, . . . , xm1 has a significant role
in the expression of ek2 as a combination of vectors xk (because ek → 0 weakly).
Approximate ek2 by a finite combination of xk, k > m1 . Let xm2 be the last
vector used to approximate en2 .

Continue until n is reached. The sequence ek1 , . . . , ekn is almost a block se-
quence of (xk). It is also satisfies n < k1 < · · · < kn so T is an isometry on
lin(eki

)n
1 . Hence T is not uniformly strictly singular with respect to (xk).

Obviously, we can take in this argumentation an M -basis instead of basis xk.
Acknowledgement. The author wishes to express his thanks to prof. A.Pietsch
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