
DVORETZKY’S THEOREM BY GAUSSIAN METHOD

IVAN MATSAK AND ANATOLIJ PLICHKO

Abstract. A complete proof of the Dvoretzky theorem, accessible to graduate
students, is given.

In this note is given a complete proof of the well known Dvoretzky theorem on the
almost spherical (or rather ellipsoidal) sections of convex bodies. Our proof follows
Pisier [18],[19]. It is accessible to graduate students. In the references we list papers
containing other proofs of Dvoretzky’s theorem.

1. Gaussian random variables.

Let ξ be a real valued random variable (r.v.) on a probability space (Ω,B,P). Put
Eξ :=

∫
Ω

ξ(ω)dP. If ξ ≥ 0, then Eξ =
∫∞
0

P{ξ ≥ t}dt =
∫∞
0

(1 − P{ξ < t})dt [6],
15.6.
Definition 1. An r.v. g with a distribution function

P{g < t} =
1√
2π

∫ t

−∞
exp(−u2

2
)du , t ∈ R ,

is called to be a standard Gaussian r.v. Its characteristic function is (see f.e. [3],
17.2)

φ(t) := E exp(itg) = exp(− t2

2
) .

Proposition 1. Let (gj)n
1 be independent standard Gaussian r.v. and

∑n
1 a2

j = 1.

Then
∑n

1 ajgj is a standard Gaussian r.v. as well.

Proof. Let us find the characteristic function of r.v.
∑n

1 ajgj . As is known
([3], 15.12), the characteristic function of a sum of independent r.v. equals to the
product of the characteristic functions of summands. So

E exp(it
n∑
1

ajgj) =
n∏

j=1

E exp(itajgj) =

n∏
1

exp(−a2
j t

2

2
) = exp(− t2

2

n∑
1

a2
j ) = exp(− t2

2
)

i.e we obtain the characteristic function of standard Gaussian r.v. However, the
distribution of an r.v. is uniquely determined by its characteristic function [3], 10.3.
Hence,

∑n
1 ajgj is a standard Gaussian r.v. ¤

Proposition 2. There exists a constant c > 0 such that for any independent stan-
dard Gaussian r.v. (gj)n

1

Emax
j≤n

|gj | ≥ c(lnn)1/2.

1
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Proof. By definition,

Emax
j≤n

|gj | =
∫ ∞

0

[1−P{max
j≤n

|gj | < t}]dt =
∫ ∞

0

[1−P{|g1| < t, . . . , |gn| < t}]dt =

(since gj are independent and identically distributed) =
∫ ∞

0

[1− (P{|g| < t})n]dt =
∫ ∞

0

[1− (1−P{|g| > t})n]dt ≥ (for any a > 0) ≥
∫ a

0

[1− (1−P{|g| > t})n]dt ≥ a[1− (1−P{|g| > a})n].

Now

P{|g| > a} =

√
2
π

∫ ∞

a

exp(− t2

2
)dt ≥

√
2
π

∫ a+1

a

exp(− t2

2
)dt ≥

√
2
π

exp(− (a + 1)2

2
) .

Take a = (ln n)1/2. Then for sufficiently large n

P{|g| > a} >

√
2
π

exp(− ((ln n)1/2 + 1)2√
2 · √2

) ≥
√

2
π

exp(− ln n√
2

) ≥ 1
n

.

Hence, for some c > 0

Emax
j≤n

|gj | > (lnn)1/2[1− (1− 1
n

)n] ≥ (lnn)1/2 · (1− 1
e
) ≥ c · (lnn)1/2

for sufficiently large n . ¤

2. Standard Gaussian random vectors and Gaussian measures.

A random vector −→g = (gj)n
1 with independent standard Gaussian components gj

we call a standard Gaussian random vector.

Theorem 1. Let −→g be a standard Gaussian random vector and let U be an orthog-
onal matrix in Rn. Then U−→g is a standard Gaussian random vector as well.

Proof. Let φ(
−→
t ) := E exp(i〈−→t ,−→g 〉) = exp(− 1

2

∑n
j=1 t2j ) be the characteristic

function of −→g . Let us find the characteristic function φU (
−→
t ) of U−→g

φU (
−→
t ) = E exp(i〈−→t , U−→g 〉) = E exp(i〈U∗−→t ,−→g 〉) =

= φ(U∗−→t ) = exp(−1
2
〈U∗−→t , U∗−→t 〉) = exp(−1

2
〈UU∗−→t ,

−→
t 〉) .

However, U is an orthogonal matrix, so UU∗ = I. Hence,

φU (
−→
t ) = φ(

−→
t ) = exp(−1

2

n∑

j=1

t2j ) .

But the distribution of a random vector is uniquely determined by its characteristic
function ([3], 10.6). Therefore, U(−→g ) is a standard Gaussian random vector. ¤

Definition 2. A measure γ(A) := P{g ∈ A} (A ⊂ R is Borel) is called a Gaussian
measure (generated by a standard Gaussian r.v. g).

Of course, different standard Gaussian r.v. generate the same Gaussian measure
γ.
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A Gaussian random vector −→g generates a Gaussian measure γn(A) = P{−→g ∈ A}
in Rn. The fundamental property of Gaussian measure is its invariance under
rotations. More exactly, Theorem 1 implies

Corollary. Let a Gaussian random vector −→g generate a Gaussian measure γn and
let U be an orthogonal matrix in Rn . Then U−→g generates the same measure γn.

Lemma 1.
∫
R exp(at)dγ(t) = exp a2

2 .

Proof.
∫

R
exp(at)dγ(t) =

∫

R
exp(at)

1√
2π

exp(− t2

2
)dt =

1√
2π

∫

R
exp(

a2 − (t− a)2

2
)dt =

exp(
a2

2
)

1√
2π

∫

R
exp(− t2

2
)dt = exp

a2

2
. ¤

Proposition 3. Let
−→
f = (f1, . . . , fn) ∈ Rn. Then
∫

Rn

exp〈−→f ,
−→
t 〉dγn(

−→
t ) = exp(

1
2
‖−→f ‖22) .

Proof. Let
−→
t = (t1, . . . , tn). Then

∫

Rn

exp〈−→f ,
−→
t 〉dγn(

−→
t ) =

∫

Rn

exp(
n∑
1

fiti)dγn(
−→
t ) = (by the Fubini theorem) =

=
n∏
1

∫

R
exp(fiti)dγ(ti) = (by Lemma 1) =

n∏
1

exp(
1
2
f2

i ) = exp(
1
2
‖−→f ‖22) . ¤

3. Some mathematical analysis.

Definition 3. A vector function x(θ) = (x1(θ), . . . , xn(θ)) from R to Rn is said to
be differentiable in a point θ if there are usual derivatives x′1(θ), . . . , x

′
n(θ). A vector

function x′(θ) = (x′1(θ), . . . , x
′
n(θ)) is called a derivative of x(θ). A mapping F (x)

from Rn to R is called differentiable in a point x if there exist a linear functional
(denote it by F ′(x) and its using to y ∈ Rn by 〈F ′(x), y〉) such that

F (y)− F (x) = 〈F ′(x), y − x〉+ o(‖y − x‖)
if ‖y − x‖ → 0.

Proposition 4. Let a vector function x(θ) be differentiable in a point θ and let
a map F : Rn → R be differentiable in x(θ). Then the usual function F (x(θ)) is
differentiable in θ, moreover

[F (x(θ))]′ = 〈F ′(x(θ)), x′(θ)〉 .

Proof. Indeed,

F (x(ϑ))− F (x(θ)) = 〈F ′(x(θ)), x(ϑ)− x(θ)〉+ o(‖x(ϑ)− x(θ)‖)
Now, divide by ϑ− θ and pass to limit. ¤
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Proposition 5. Let Φ(t) be a convex measurable scalar function and let f(x) be
an integrable function on a measurable space (A, Σ, µ). Then

Φ[
∫

A

f(x)dµ] ≤ 1
µ(A)

∫

A

Φ[µ(A) · f(x)]dµ .

Proof. Let, first, f be a simple function taking values ti on sets Ai. Then

Φ[
∫

A

f(x)dµ] = Φ[
∑ µ(Ai)

µ(A)
µ(A)ti] ≤

∑ µ(Ai)
µ(A)

Φ[µ(A)ti] =
1

µ(A)

∫

A

Φ[µ(A)·f(x)]dµ .

To finish the proof one can use a passage to limit. ¤
Recall also the Markov (or Chebyshev) inequality

∫
A

f(x)dµ ≥ t ·µ{x : f(x) > t}
which (in the case of strictly increasing function Phi) we can write in the form

µ{x : f(x) > t} = µ{x : Φ(f(x)) > Φ(t)} ≤
∫

A
Φ(f(x))dµ

Φ(t)
.(1)

4. Sobolev inequality.

Theorem 2. (“Sobolev inequality”). Let F : Rn → R be a differentiable map and
let Φ be a convex measurable function in R. Then∫

Rn

Φ[F (x)−
∫

Rn

F (y)dγn(y)]dγn(x) ≤
∫

Rn

∫

Rn

Φ[
π

2
〈F ′(x), y〉]dγn(y)dγn(x) .

Proof. For fixed elements x, y ∈ Rn and θ ∈ [0, π
2 ] put x(θ) = x · sin θ + y · cos θ

. Then, by Proposition 4,

F (x)− F (y) = F (x(
π

2
))− F (x(0)) =

∫ π
2

0

[F (x(θ))]′dθ =
∫ π

2

0

〈F ′(x(θ)), x′(θ)〉dθ .

This equality and Proposition 5 give

Φ[F (x)− F (y)] = Φ[
∫ π

2

0

〈F ′(x(θ)), x′(θ)〉dθ] ≤ 2
π

∫ π
2

0

Φ[
π

2
〈F ′(x(θ)), x′(θ)〉]dθ .

Integrating the last inequality over x and y we obtain∫

Rn

∫

Rn

Φ[F (x)− F (y)]dγn(y)dγn(x) ≤(2)

∫

Rn

∫

Rn

2
π

∫ π
2

0

Φ[
π

2
〈F ′(x(θ)), x′(θ)〉]dθdγn(y)dγn(x) .

Now observe that x′(θ) = x cos θ − y sin θ , that for every fixed θ the map
(x, y) → (x(θ), x′(θ)) is a rotation in Rn × Rn an that (this is the crucial point)
γn × γn is invariant with respect to this map. Thus the right-hand side of (2) is
equal to

(3)
∫

Rn

∫

Rn

Φ[
π

2
〈F ′(x), y〉]dγn(y)dγn(x) .

By Proposition 5,

(4)
∫

Rn

Φ[F (x)−
∫

Rn

F (y)dγn(y)]dγn(x) ≤
∫

Rn

∫

Rn

Φ[F (x)−F (y)]dγn(y)dγn(x) .

¿From (4),(2) and (3) we get the theorem. ¤
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5. Gaussian random elements in normed spaces. Second weak moment.

Definition 4. We say that X is a standard Gaussian random element (r.e.) in a
normed space E if there are linearly independent elements (ei)n

1 in E and indepen-
dent scalar standard Gaussian r.v. (gi)n

1 such that X =
∑n

1 giei .
Definition 4 is connected with the definition of standard Gaussian random vector

(Section 2) in the following way. Consider a map T : Rn → E :

(5) T (a1, . . . , an) =
n∑
1

aiei .

This map generates a standard random vector T−1X(ω) = (g1(ω), . . . , gn(ω)) in
Rn.

Proposition 6. Let (Xk)m
1 be independent identically distributed standard Gauss-

ian r.e. in a normed space E and let
∑m

1 a2
k = 1. Then

∑m
1 akXk is a standard

Gaussian r.e. with the same distribution as Xk.

Proof. Let Xk =
∑n

i=1 gkiei. Then
m∑
1

akXk =
m∑

k=1

ak

n∑

i=1

gkiei =
n∑

i=1

(
m∑

k=1

akgki)ei .

Since (gki)k,i all are independent and (by Proposition 1) for every i ,
∑m

k=1 akgki

is a standard Gaussian r.v., hence
∑m

k=1 akXk is a standard Gaussian r.e. with the
same distribution as Xk. ¤
Definition 5. The second weak moment of r.e. X in a normed space E is, by
definition,

σ = σ(X) := sup
‖f‖=1,f∈E∗

(Ef2(X))1/2 .

Proposition 7. Let X =
∑n

1 giei be a standard Gaussian r.e. in a normed space
E and let T be defined by (5). Then σ = ‖T‖ .

Proof. Obviously, without restriction of generality, one can suppose lin(ei)n
1 =

E. Let (fi) be the biorthogonal to (ei) functionals. Then for f ∈ E∗ we have
f =

∑n
1 cifi and

σ = sup
‖f‖=1

(E〈
n∑
1

giei,

n∑
1

cifi〉2)1/2 = sup
‖f‖=1

(E(
n∑
1

gici)2)1/2 = sup
‖f‖=1

(
n∑
1

c2
i Eg2

i )1/2 =

sup
‖f‖=1

(
n∑
1

c2
i )

1/2 = sup
‖f‖=1

‖T ∗f‖ = ‖T ∗‖ = ‖T‖ . ¤

6. Tail behavior (the concentration of measure phenomenon).

Theorem 3. (Maurey-Pisier; [19], Theorem 4.7). Let X =
∑n

1 giei be a standard
Gaussian r.e. in a normed space E. Then for any t > 0

(6) P{|‖X‖ −E‖X‖| > t} ≤ 2 exp(− 2t2

π2σ2
) .
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Proof. Let T be the operator of Section 5. Then (6) is equivalent to

(7) γn{x ∈ Rn : |‖Tx‖ −
∫

Rn

‖Tx‖dγn| > t} ≤ 2 exp(− 2t2

π2σ2
) .

Put F (x) = ‖Tx‖ and suppose temporary that ‖ · ‖ is differentiable. Since for
any x, y ∈ Rn

|F (x)− F (y)| ≤ ‖T (x− y)‖ ≤ ‖T‖‖x− y‖2 ,

‖F ′(x)‖2 ≤ σ for every x ∈ Rn (recall, σ = ‖T‖ !). Thus, by Proposition 3, for any
λ ∈ R
(8)

∫

Rn

exp[
λπ

2
〈F ′(x), y〉]dγn(y) = exp[

1
2
(
λπ

2
)2‖F ′(x)‖22] ≤ exp[

1
2
(
λπ

2
)2σ2] .

Taking in Theorem 2 Φ(t) = exp(λt), we get∫

Rn

exp[λ{F (x)−
∫

Rn

F (y)dγn(y)}]dγn(x) ≤
∫

Rn

∫

Rn

exp[λ
π

2
〈F ′(x), y〉]dγn(y)dγn(x) ≤(9)

(by (8)) ≤
∫

Rn

exp[
1
2
(
λπσ

2
)2]dγn(x) =

exp[
1
2
(
λπσ

2
)2] .

Using the Markov inequality (1), taking there Φ(t) = exp(λt) , f(x) = F (x) −∫
Rn F (y)dγn(y) and µ = γn(x), we get from (9)

γn{x : F (x)−
∫

F (y)dγn(y) > t} ≤ exp[
1
2
(
λπσ

2
)2 − λt] .

Putting λ = 4t
(πσ)2 we obtain

γn{x : F (x)−
∫

Rn

F (y)dγn(y) > t} ≤ exp[− 2t2

(πσ)2
] .

Clearly, the same inequality holds for −F , so we finally obtain (7), and hence (6),
for differentiable norms.

To finish the proof, observe that in the finite dimensional space lin(ei)n
1 one can

approximate any norm by differentiable one as exact as need. ¤
Remark. The estimation (6) is an important result in theory of Banach valued
Gaussian r.e. It demonstrates that the distribution of ‖X‖ is concentrated near
E‖X‖ as dense as the distribution of Gaussian r.v. σ · g near 0. In a somewhat
different form:

(10) P{|‖X‖ −m‖X‖| > t} ≤ 2(1− Φ(
t

σ
)) ,

(where m‖X‖ is the median of ‖X‖ and Φ(t) is the distribution function of g), the
concentration phenomenon is presented in books Ledoux-Talagrand ([14], 3.1) and
Lifshits ([15], Chapt.12).

In fact, the concentration phenomenon in the form (10) was contained as far as
in Borell [2] and Sudakov-Tsirelson [21].

In connection with Theorem 3, note also papers Fernique [7], Landau-Shepp [13]
and Skorokhod [20], where for the first time were established exponential integra-
bility of the norm for Gaussian r.e., and Yurinskii [24], where for the first time was
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proposed the martingale approach to estimations of probabilities of large deviations
for the norm of sums of independent r.e. in Banach spaces.

7. Lévy’s inequality.

Recall that an r.e. X in a normed space E is called symmetric if P{X ∈ A} =
P{X ∈ −A} for any Borel set A ⊂ E.

Theorem 4. (Lévy’s inequality; [11], II.3). Let (Xi)n
1 be symmetric independent

r.e. in a normed space E and S =
∑n

1 Xi . Then for every t > 0

2P{‖S‖ > t} ≥ P{max
i≤n

‖Xi‖ > t} .

Proof. Put τ = τ(ω) = min{i : ‖Xi‖ > t}. Then

(11) P{‖S‖ > t} ≥
n∑

i=1

P{‖S‖ > t , τ = i} .

Now since (X1, . . . , Xn) and (−X1, . . . ,−Xi−1, Xi,−Xi+1, . . . ,−Xn) are identically
distributed and τ depends on {‖Xi‖}n

1 only, we have

P{‖S‖ > t , τ = i} = P{‖Xi −Ri‖ > t , τ = i} ,

where Ri = S −Xi. This equality and (11) imply

(12) 2P{‖S‖ > t} ≥
n∑

i=1

P{‖S‖ > t , τ = i}+ P{‖Xi −Ri‖ > t , τ = i} .

By triangle inequality

2‖Xi‖ ≤ ‖Xi + Ri‖+ ‖Xi −Ri‖ = ‖S‖+ ‖Xi −Ri‖ .

Hence
P{‖S‖ > t , τ = i}+ P{‖Xi −Ri‖ > t , τ = i} ≥
P{‖S‖ > t

∨ ‖Xi −Ri‖ > t , τ = i} ≥ P{‖S‖+ ‖Xi −Ri‖ > 2t , τ = i} ≥
P{2‖Xi‖ > 2t , τ = i} = P{‖Xi‖ > t , τ = i} = P{τ = i} .

This inequality and (12) imply

2P{‖S‖ > t} ≥
n∑

i=1

P{τ = i} = P{max
i≤n

‖Xi‖ > t} . ¤

Corollary. There exists c > 0 such that for any normed space E and any standard
Gaussian r.e. X =

∑n
1 giei in E

E‖X‖ ≥ c ·min
i≤n

‖ei‖ · (lnn)1/2 .

Proof. Evidently, standard Gaussian r.e. are symmetric. Hence one can use
Lévy’s inequality taking S = X and Xi = giei. We have for any t

2P{‖X‖ > t} ≥ P{max
i≤n

‖giei‖ > t} .

Integrating over t we receive

E‖X‖ ≥ 1
2
Emax

i≤n
‖giei‖ ≥ 1

2
min
i≤n

‖ei‖ ·Emax
i≤n

|gi| ≥

(Proposition 2) ≥ c ·min
i≤n

‖ei‖ · (lnn)1/2 . ¤
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8. Dvoretzky-Rogers theorem.

Theorem 5. (Dvoretzky-Rogers, [5]). Let ‖ · ‖ be a norm on RN and let D be the
ellipsoid of maximal volume inscribed in the unit ‖·‖-ball B. Then there exists a ba-
sis (ei)N

1 , orthonormal with respect to D, such that 1 ≥ ‖ei‖ ≥ 2−(N−1)/(N−i) , i =
1, . . . , N − 1 .

Proof. We choose the basis (ei) inductively in the following way.
Let e1 be a vector in D with maximal norm (clearly ‖e1‖ = 1).
Given e1, . . . , ei, choose ei+1 in D ∩ (e1, . . . , ei)⊥ with maximal possible norm

(⊥ is the orthogonal complement with respect to D).
Then for any x ∈ lin(ei, . . . , eN ) ∩D

(13) ‖x‖ ≤ ‖ei‖ .

Now consider the ellipsoid

U = {
N∑

j=1

ajej :

∑i−1
1 a2

j

a2
+

∑N
i a2

j

b2
≤ 1} .

Of course, this ellipsoid depends on i and scalars a and b which we shall choose late
on.

If
∑N

j=1 ajej ∈ U then
∑i−1

1 ajej ∈ aD and thus ‖∑i−1
1 ajej‖ ≤ a. In the same

way, ‖∑N
j=i ajej‖ ≤ b and thus, by (13), ‖∑N

i ajej‖ ≤ b‖ei‖.
Choosing a = 1/2 , b = 1/(2‖ei‖), we get that U ⊂ B. On the other hand

volU =
1

2i−1
· 1
(2‖ei‖)N−i

volD

so necessarily
1

2i−1
· 1
(2‖ei‖)N−i

≤ 1

or ‖ei‖ ≥ 2−(N−1)/(N−i). ¤
Corollary 1. Let E be an N -dimensional normed space and N = [N

2 ]. Then there
exist (ei)N

1 ⊂ E such that ‖ei‖ ≥ 1
2 and for any (ai)N

1 ⊂ R

(14) ‖
N∑
1

aiei‖ ≤ (
N∑
1

a2
i )

1/2 .

Corollary 2. For every N -dimensional normed space E there exists a subspace E ⊂
E of dimension N = [N

2 ] and E-valued standard Gaussian r.e. X with E‖X‖ = 1
and σ2(X) ≤ c/ ln N , where c > 0 is an absolute constant.

Proof. Let X =
∑N

1 giei where (gi) are independent Gaussian r.v. and (ei) are
from Corollary 1. Then, by (14),

σ(X) := sup
‖f‖=1

(Ef2(X))1/2 = sup
‖f‖=1

(
N∑

i=1

f2(ei))1/2 = sup
‖a‖2=1

‖
N∑

i=1

aiei‖1/2 ≤ 1 .

On the other hand, by Corollary of Theorem 4

E‖X‖ ≥ c1(ln N)1/2 ≥ c2(lnN)1/2 .

Now put X = X/E‖X‖ . ¤

9. Two geometric lemmas.
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Lemma 2. Let ‖ · ‖ be any norm on Rn with unit ball B and unit sphere S. Let
δ > 0. There is a δ-net A ⊂ S with cardinality

(15) cardA ≤ (1 +
2
δ
)n .

Proof. Let A be a maximal subset of S such that ‖a − b‖ ≥ δ for all a, b ∈
A , a 6= b. Clearly, by maximality, A is a δ-net of S. To majorize cardA we note
that balls a + δ

2B , a ∈ A are disjoint and included into (1 + δ
2 )B. Therefore

∑

a∈A

vol(a +
δ

2
B) ≤ vol((1 +

δ

2
)B) = (1 +

δ

2
)nvolB ;

hence

cardA · (δ

2
)nvolB ≤ (1 +

δ

2
)nvolB .

This inequality implies (15). ¤

Lemma 3. For each ε > 0 there is a δ = δ(ε) , 0 < δ < 1, with the following
property. Let ‖ · ‖ be an arbitrary norm on Rn with the unit sphere S. Let A be
a δ-net in S and let x1, . . . , xn be elements of a normed space E . If for every
a = (a1, . . . , an) ∈ A

1− δ ≤ ‖
n∑
1

akxk‖ ≤ 1 + δ ,

then for every a ∈ S

(1 + ε)−1 ≤ ‖
n∑
1

akxk‖ ≤ 1 + ε; .

Proof. There is a0 in A such that ‖a−a0‖ ≤ δ hence a = a0 +λ1a
′ with |λ1| ≤ δ

and a′ ∈ S. Continuing this process we obtain a = a0 + λ1a
1 + λ2a

2 + · · · with
aj ∈ A and |λj | ≤ δj . It follows that

‖
n∑
1

akxk‖ ≤
∑

j≥0

δj‖
n∑

k=1

aj
kxk‖ ≤ 1 + δ

1− δ
.

Similarly

‖
n∑
1

akxk‖ ≥ ‖
n∑
1

a0
kxk‖ − δ(1 + δ)

1− δ
≥ 1− δ − δ(1 + δ)

1− δ
=

1− 3δ

1− δ
.

Hence, if δ > 0 is chosen small enough so that

1− 3δ

1− δ
≥ 1

1 + ε
and

1 + δ

1− δ
≤ 1 + ε ,

we obtain the announced result. Note that one can find a suitable δ depending only
on ε (and independent on n). ¤

10. Dvoretzky’s theorem.

Theorem 6. (Dvoretzky). For each ε > 0, there is a number η = η(ε) > 0 with
the following property. Every normed space E of dimension N contains a subspace
of dimension n = [η ln N ] which is (1 + ε)2−isomorphic to ln2 .
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Let us present first the idea of proof. We take independent copies X1, . . . , Xn

of r.e. X from Corollary 2 of Dvoretzky-Rogers theorem, n ≈ ln N , which is
determined on a probability space (Ω,B,P). Let Ω(n, ε) be the set of all ω in Ω
such that for every a = (a1, . . . , an) in the unit sphere S of Euclidean space Rn

(1 + ε)−1 ≤ ‖
n∑
1

akXi(ω)‖ ≤ 1 + ε .

We will show that P{Ω(n, ε)} > 0 provided that n is not too large and precisely
provided n ≤ η/σ2. This clearly yields Theorem 6.

Now the
Proof. Let E be the subspace and X be an r.e. from Corollary 2 of Theorem 5.

Let X1, . . . , Xn be independent copies of X (n we choose late on). Then for any
a = (a1, . . . , an) in S the r.e.

∑n
1 akXk has the same distribution as X (Proposition

6).
Thus we have E‖∑n

1 akXk‖ = 1. Therefore, by Theorem 3, for any δ > 0

P{|‖
n∑
1

akXk‖ − 1| > δ} ≤ 2 exp(− 2δ2

π2σ2
) < 2 exp(− δ2

σ2
) .

Let A be as in Lemmas 2 and 3 with ‖a‖ = ‖a‖2. Then preceding inequality implies

P{∃a ∈ A : |‖
n∑
1

akXk‖ − 1| > δ} ≤ 2(cardA) exp(− δ2

σ2
) ≤

(by Lemma 2) ≤ 2(1 +
2
δ
)n exp(− δ2

σ2
) ≤(16)

2 exp(
2n

δ
) exp(− δ2

σ2
) = 2 exp(

2n

δ
− δ2

σ2
) .

Now let δ = δ(ε) be the function of ε, given by Lemma 3. Let we choose n so that

2n

δ
≤ δ2

2σ2
.(17)

Then the probability (16) is not greater than 2 exp(− δ2

2σ2 ). Clearly, we can always
assume that σ is small enough (say σ < δ/2), otherwise there is nothing to prove.
Hence we can assume that the right side of (16) < 1. We than obtain that with
positive probability, for every a ∈ A

|‖
∑

akXk(ω)‖ − 1| < δ

i.e.

1− δ ≤ ‖
n∑
1

akXk(ω)‖ ≤ 1 + δ .

By Lemma 3 (recall, we choose δ = δ(ε)!), we conclude that with positive probability
for all a ∈ S

(1 + ε)−1 ≤ ‖
n∑
1

akXk(ω)‖ ≤ 1 + ε .

Therefore, there exists ω0 ∈ Ω such that for xk = Xk(ω0) and for every a ∈ S

(1 + ε)−1 ≤ ‖
n∑
1

akxk‖ ≤ 1 + ε .
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By homogenity of the norm it means that lin(xk)n
1 is (1 + ε)2-isomorphic to ln2 .

To satisfy (17) put

n = [
δ3

4σ2
] = η ln N

(recall, σ2 ≤ c/ ln N , by Corollary 2 of Theorem 5). ¤
Acknowledgement. The first version of this note was written when the second

author visited Politecnico di Milano. He express his thanks to P.Terenzi for hospi-
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