DVORETZKY’S THEOREM BY GAUSSIAN METHOD

IVAN MATSAK AND ANATOLIJ PLICHKO

ABSTRACT. A complete proof of the Dvoretzky theorem, accessible to graduate
students, is given.

In this note is given a complete proof of the well known Dvoretzky theorem on the
almost spherical (or rather ellipsoidal) sections of convex bodies. Our proof follows
Pisier [18],[19]. It is accessible to graduate students. In the references we list papers
containing other proofs of Dvoretzky’s theorem.

1. Gaussian random variables.

Let £ be a real valued random variable (r.v.) on a probability space (2, B,P). Put
B¢ = [, €(w)dP. I € > 0, then BE = [ P{¢ > t}dt = [(1 — P{¢ < t})dt [6],
15.6.
Definition 1. An r.v. g with a distribution function

2

1 t
P{g<t}=E/ exp(—%)du , teR,
—o0

is called to be a standard Gaussian r.v. Its characteristic function is (see f.e. [3],
17.2)
2

9(t) := Eexp(itg) = exp(—7) -

Proposition 1. Let (g;)} be independent standard Gaussian r.v. and Y a? =1
Then Y 1 ajg; is a standard Gaussian r.v. as well.

Proof. Let us find the characteristic function of r.v. > [ a;g;. As is known
([3], 15.12), the characteristic function of a sum of independent r.v. equals to the
product of the characteristic functions of summands. So

n
E exp thang = HEeXp ita;g;) =

j=1
n 2,2 n
H ast ﬁ t2
exp(———) = exp(— a =exp(——)
| 2 2 T 2

i.e we obtain the characteristic function of standard Gaussian r.v. However, the
distribution of an r.v. is uniquely determined by its characteristic function [3], 10.3.
Hence, Y} a;g; is a standard Gaussian r.v. OJ

Proposition 2. There exists a constant ¢ > 0 such that for any independent stan-
dard Gaussian r.v. (g;)7
Emax |g;| > ¢(Inn)*/2.
Jj<n

1



2 IVAN MATSAK AND ANATOLIJ PLICHKO

Proof. By definition,

o0

Bmaxlgs| = [ (1= Plmax|gs| < e}t = [ (1= Plloa] <t g < 1}]dt =
Jj<n 0 Jj<n 0
(since g; are independent and identically distributed) = / [1— (P{lg| < t})"]dt =
0
/ 1= (1—Pilg| > t})")dt > (for any a > 0) >
0

/ L (=Pl > ))")dt > a1 — (1~ P{lg| > a})"].

Now

P{lg| > a} = \/z/aoo exp(fg)dt > \/E/aa+1 exp(fg)dt > \/Zexp((azl)z) .

Take a = (Inn)'/2. Then for sufficiently large n

nn)l/2 2 nn
P{lg| > a} > \Eexp<—w> > \/fexm—l\@) -1

Hence, for some ¢ > 0

E max|g;| > (Inn)'/2[1— (1 - %m > ()2 (1 1) > e (lnn)/?
for sufficiently large n . [
2. Standard Gaussian random vectors and Gaussian measures.

A random vector ¢ = (9j)7 with independent standard Gaussian components g;
we call a standard Gaussian random vector.

Theorem 1. Let ¢ be a standard Gaussian random vector and let U be an orthog-
onal matriz in R™. Then Uq is a standard Gaussian random vector as well.

Proof. Let ¢(7) := Eexp(i(?,?ﬂ = exp(—%zg;l t%) be the characteristic

function of g . Let us find the characteristic function (bU(?) of Uq
ou(T) = Bexp(i(T,UG)) = Bexp(i(U" T, 7)) =
= ¢(U" ) = exp(—5 (U T, U"T)) = exp(

1 1 — —
—— —=({UUu*t, t)).
5 5 ¢ )

However, U is an orthogonal matrix, so UU* = I. Hence,

)= (1) = expl=3 D).

—
t

du(

But the distribution of a random vector is uniquely determined by its characteristic
function ([3], 10.6). Therefore, U(g’) is a standard Gaussian random vector. [J

Definition 2. A measure v(A) := P{g € A} (A C R is Borel) is called a Gaussian
measure (generated by a standard Gaussian r.v. g).
Of course, different standard Gaussian r.v. generate the same Gaussian measure

Y-
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A Gaussian random vector g generates a Gaussian measure v,(A) = P{g € A}
in R™. The fundamental property of Gaussian measure is its invariance under
rotations. More exactly, Theorem 1 implies

Corollary. Let a Gaussian random vector g generate a Gaussian measure vy, and
let U be an orthogonal matriz in R™ . Then Ug generates the same measure Yy, .

2

Lemma 1. [, exp(at)dy(t) = exp %
Proof.

= Le _— ex tia)Q =
[ explatyan(t) = [ explat = espl(=) / p( = g

exp% / pr—dt—exp? O

Proposition 3. Let 7 = (f1,..., fn) ER™. Then
- — — 1 —
[ exo(F. Thaa(F) = exn(51 T IR)

Proof. Let T = (t1,...,t,). Then

/n exp(?, 7)d’yn(?) = /n exp(z fiti)d’yn(?) = (by the Fubini theorem) =

1

=TI [ exptfitartes) = by Lemma 1) = T[exp(5.2) = exp(5 I FIE) . O
1 1

3. Some mathematical analysis.

Definition 3. A vector function z(6) = (z1(0),...,z,(0)) from R to R™ is said to
be differentiable in a point 0 if there are usual derivatives 4 (), ...,z (0). A vector

rrn

function 2’(0) = («}(9), ...,z (9)) is called a derivative of x(0). A mapping F(z)

rn

from R™ to R is called differentiable in a point x if there exist a linear functional
(denote it by F'(x) and its using to y € R™ by (F’(x),y)) such that

F(y) = F(z) = (F'(z),y — ) + o([ly — z[))
if ||y — zf| — 0.

Proposition 4. Let a vector function x(0) be differentiable in a point 6 and let
a map F : R" — R be differentiable in x(0). Then the usual function F(x(0)) is
differentiable in 6, moreover

[F(x(0))) = (F'(2(0)),2'(0)) -
Proof. Indeed,
F(x(9)) = F(x(9)) = (F'(2(0)),2(9) — 2(0)) + o(||=(9) — =(0)]])

Now, divide by ¥ — 8 and pass to limit. [J
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Proposition 5. Let ®(t) be a convexr measurable scalar function and let f(x) be
an integrable function on a measurable space (A, %, ). Then

1
of [ f@du) < o [ alu(a) -l

Proof. Let, first, f be a simple function taking values ¢; on sets A;. Then

e AAD B A) 1 e
o[ sy = o3 Lo ) < ¥ M e = s [ alu(a)- s

To finish the proof one can use a passage to limit. [
Recall also the Markov (or Chebyshev) inequality [, f(x)dp > t-p{x : f(x) > t}
which (in the case of strictly increasing function Phi) we can write in the form

) e f@)> 1} = e (@) > s} < 222U <I>(t) 7

4. Sobolev inequality.

Theorem 2. (“Sobolev inequality”). Let F' : R™ — R be a differentiable map and
let ® be a convexr measurable function in R. Then

[ or@ - [ Fodnwlane < [ [ alFE @ ginmdne .

Proof. For fixed elements 2,y € R™ and 0 € [0, 5] put 2(f) = z-sinf +y-cosf
. Then, by Proposition 4,

F(o) = Fy) = Fa(})) - Pla(©) = [ ")/ = [ (F(2(6)),2'0))as .

0 0
This equality and Proposition 5 give

O[F(z) — F(y)] = ¢[/0§<F'(x(9))7w’(9)>d9] <

Integrating the last inequality over z and y we obtain

@ Il / i Fy))da(y)da(z) <
/ . / . / i 0)),x'(0))]d0d, (y)dyn(z) -

Now observe that z/(f) = xcosf — ysinf , that for every fixed # the map
(z,y) — ((0),2'(0)) is a rotation in R™ x R™ an that (this is the crucial point)
Yn X Yn is invariant with respect to this map. Thus the right-hand side of (2) is
equal to

Q [ | G F @ )

By Proposition 5,

(4) /n (I)[F(J?)_/Rn F(y)d’)/n d’)/n /n /n )]d'}/n( )d’Yn(l’) )
(From (4),(2) and (3) we get the theorem. O

2 7 alG# won. ' @))as

™ Jo
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5. Gaussian random elements in normed spaces. Second weak moment.

Definition 4. We say that X is a standard Gaussian random element (r.e.) in a
normed space E if there are linearly independent elements (e;)} in E and indepen-
dent scalar standard Gaussian r.v. (g;)7 such that X = >7 gie; .

Definition 4 is connected with the definition of standard Gaussian random vector
(Section 2) in the following way. Consider a map T : R" — E :

(5) T(ala"'aan) = Zaiei .

1
This map generates a standard random vector T~'X (w) = (g1(w),...,gn(w)) in
R™.

Proposition 6. Let (Xy)" be independent identically distributed standard Gauss-
ian r.e. in a normed space E and let > " ai = 1. Then Y |" ax Xy, is a standard
Gaussian r.e. with the same distribution as Xj,.

Proof. Let Xi, = Y7, grie;. Then

m m n n m
DoaXe = ary griei = > (O argri)ei -
1 k=1 =1 i=1 k=1

Since (gki)k,; all are independent and (by Proposition 1) for every i , Y ;" | argri
is a standard Gaussian r.v., hence 221:1 ap Xy is a standard Gaussian r.e. with the
same distribution as Xj. [
Definition 5. The second weak moment of r.e. X in a normed space F is, by
definition,
c=0(X):= sup (Bf(X))Y2.
Ifll=1,feE"

Proposition 7. Let X = Y | gie; be a standard Gaussian r.e. in a normed space
E and let T be defined by (5). Then o = ||T| .

Proof. Obviously, without restriction of generality, one can suppose lin(e;)} =
E. Let (f;) be the biorthogonal to (e;) functionals. Then for f € E* we have

f=>Y"cfi and
0 = sup (E<Zgi€i,zcifi>2)1/2 = sup (E(Zgici)2)1/2 = sup (Z C?ng)lm =

llflI=1 1 1 llflI=1 1 llFll=1

sup (Y é)'? = sup |T*f|| = |T*[| = |7 . O
1I=1 5 1£1=1

6. Tail behavior (the concentration of measure phenomenon).

Theorem 3. (Maurey-Pisier; [19], Theorem 4.7). Let X = > g;e; be a standard
Gaussian r.e. in a normed space E. Then for any t > 0

2t?
(6) P{[[X]| - B X[ > t} < 2exp(———) -

20
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Proof. Let T be the operator of Section 5. Then (6) is equivalent to

212
(7) iz €R™: || Te] - / | Teldyal > £} < 2exp(~——) -

Put F(z) = ||Tz| and suppose temporary that || - || is differentiable. Since for
any x,y € R”
IF(@) = Fy)| < IT( — )l < [Tz -yl
|F'(x)]|2 < o for every x € R™ (recall, o = ||T|| !). Thus, by Proposition 3, for any
AeR
AT 1, Am 4 1, Am
©) [ epl P @)l ) = eply FIF @3] < ewly (o).

Taking in Theorem 2 ®(t) = exp(\t), we get
| ewir{p) - / Fy)dya(y) () <
o) Il / AT (F (2), ) () (2) <

y (8) < / exp[;@g% Jin ) =
exply P57V

Using the Markov inequality (1), taking there ®(¢) = exp(At) , f(x) = F(z) —
fRn y)dyn(y) and p = v, (x), we get from (9)
o

ule: @) = [ F@)dw(w) > 1) < expl (P37 - M.

Putting A = To)? )2 we obtain

2
Yoz : F(z) — / Fy)dym(y) >t} < exp[—ﬁ] '

Clearly, the same inequality holds for —F', so we finally obtain (7), and hence (6),
for differentiable norms.

To finish the proof, observe that in the finite dimensional space lin(e;)} one can
approximate any norm by differentiable one as exact as need. [J
Remark. The estimation (6) is an important result in theory of Banach valued
Gaussian r.e. It demonstrates that the distribution of || X|| is concentrated near
E||X|| as dense as the distribution of Gaussian r.v. ¢ - g near 0. In a somewhat
different form:
(10) P - mi| X[ > 1} <20~ ®(1)
(where m|| X|| is the median of || X || and ®(¢) is the distribution function of g), the
concentration phenomenon is presented in books Ledoux-Talagrand ([14], 3.1) and
Lifshits ([15], Chapt.12).

In fact, the concentration phenomenon in the form (10) was contained as far as
in Borell [2] and Sudakov-Tsirelson [21].

In connection with Theorem 3, note also papers Fernique [7], Landau-Shepp [13]
and Skorokhod [20], where for the first time were established exponential integra-
bility of the norm for Gaussian r.e., and Yurinskii [24], where for the first time was
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proposed the martingale approach to estimations of probabilities of large deviations
for the norm of sums of independent r.e. in Banach spaces.

7. Lévy’s inequality.

Recall that an r.e. X in a normed space E is called symmetric if P{X € A} =
P{X € —A} for any Borel set A C E.

Theorem 4. (Lévy’s inequality; [11], I1.3). Let (X;)} be symmetric independent
r.e. in a normed space E and S =" X, . Then for every t >0
2P{[IS] > t} = P{max [X;| >t} .

Proof. Put 7 = 7(w) = min{i : || X;|| > ¢t}. Then

n
(11) P{|S| >t} > Y P{|S||>t, 7=1i}.
i=1
Now since (X1, ..., Xp) and (—=X1,...,—X;-1, X;, — X411, ..., —X,) are identically
distributed and 7 depends on {|| X;||}} only, we have
P{S||>t, 7 =i} = P{|X; - Ril| >t, 7=},
where R; = S — X;. This equality and (11) imply

(1) 2P{IS| >t} = SOP{ISI > ¢, 7 =i} + P{IX, — Rl > ¢, 7 =i} .
i=1
By triangle inequality
201X < 1X + Rall + 1K = Rall = [[SI] + 1 X — Rifl -
Hence
P{|S|>t, r=i} + P{|X; = Ri|| > t, 7 =i} >
P{|IS|[>¢ VIIXi = Ril| > ¢, 7 =i} 2 P{||S|| + | Xi — Ril| > 2t , 7 =i} >
P{2|X;|| >2t, r=i} =P{||Xi|| >t, T=i} =P{r =i} .

This inequality and (12) imply
2P{|[S|| > t} > Y P{r =i} = P{max | X[ >t} .0
i=1 -

Corollary. There exists ¢ > 0 such that for any normed space E and any standard
Gaussian r.e. X = ] gie; in E

EJX]| > ¢ mine;] - (lnm)"/?

Proof. Evidently, standard Gaussian r.e. are symmetric. Hence one can use
Lévy’s inequality taking S = X and X; = g;e;. We have for any ¢

2P{]1 X > t} > P{max lgiei]| > ¢}
Integrating over ¢ we receive
1 1
> el > —mi | . | >
E[|X]| > gEmax|gie;|| 2 5 min le;]| - Emax|g;| >

(Proposition 2) > ¢- rrgn les]] - (In n)1/2 .O
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8. Dvoretzky-Rogers theorem.

Theorem 5. (Dvoretzky-Rogers, [5]). Let || - || be a norm on RN and let D be the
ellipsoid of mazimal volume inscribed in the unit ||-||-ball B. Then there exists a ba-
sis (&)Y, orthonormal with respect to D, such that 1 > ||e;|| > 2~ (N=D/(N=9) 4 —
1,...,N—1.

Proof. We choose the basis (e;) inductively in the following way.

Let e; be a vector in D with maximal norm (clearly |le;| = 1).

Given eq,...,e;, choose ;41 in DN (eq,...,e;)" with maximal possible norm
(L is the orthogonal complement with respect to D).

Then for any « € lin(e;,...,ex) N D
(13) =l < lleall -

Now consider the ellipsoid

N i—1 92 N 9
as . a“
U:{Eajej: 1a2J+ZZ jgl}
j=1

b2

Of course, this ellipsoid depends on ¢ and scalars a and b which we shall choose late
on.
If Z;\Ll aje; € U then Y27 " aje; € aD and thus || 32 " aje;|| < a. In the same
way, || 3270 aje;|| < b and thus, by (13), || 32 ase | < blles]

Choosing a =1/2, b=1/(2]le;||), we get that U C B. On the other hand

1 1
volU = — - -volD
2T )V

so necessarily
L L <1
270 @flesl)Nr
or |leg]| > 2-WN-D/(N=9) O
Corollary 1. Let E be an N -dimensional normed space and N = [%] Then there

exist (e;)N C E such that e > % and for any (a)N CcR

N N
(14) 1D e < (O ai)?.
1 1

Corollary 2. For every N-dimensional normed space E there exists a subspace EcC
E of dimension N = [4] and E-valued standard Gaussian r.e. X with E|X| =1
and 0*(X) < ¢/In N, where ¢ > 0 is an absolute constant.

Proof. Let X = Zf, gie; where (g;) are independent Gaussian r.v. and (e;) are
from Corollary 1. Then, by (14),

N N
o(X) = sup (Ef*(X))/? = sup (O f2(e:)/? = sup || asei|/? <1,
lfll=1 lfll=1 ;= lallz=1 5

On the other hand, by Corollary of Theorem 4
E|| X[ > c;(InN)Y2 > ¢y (In N)V/2 .
Now put X = X/E|X| .0

9. Two geometric lemmas.
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Lemma 2. Let || - || be any norm on R™ with unit ball B and unit sphere S. Let
0 > 0. There is a §-net A C S with cardinality

(15) cardA < (1 + %)”

Proof. Let A be a maximal subset of S such that ||a — b|| > ¢ for all a,b €
A, a # b. Clearly, by maximality, A is a §-net of S. To majorize cardA we note
that balls a + $B , a € A are disjoint and included into (1 + £)B. Therefore

1) 1) 0
> vol(a + 5B) <vol((1+5)B) = (1+ 3)"volB ;
a€A
hence
cardA - (g)”volB <1+ g)”volB .
This inequality implies (15). O
Lemma 3. For each € > 0 there is a § = 0(e) , 0 < 0 < 1, with the following
property. Let || - || be an arbitrary norm on R™ with the unit sphere S. Let A be

a 0-net in S and let x1,...,x, be elements of a normed space E . If for every
a=(ay,...,ap) €A

1=6<||> apel| <144,
1

then for every a € S

L4 <D apa]| <1+e:.
1

Proof. There is a’ in A such that ||a —a®|| < § hence a = a® + \1a’ with |A\;| <&
and o’ € S. Continuing this process we obtain a = a° + Aja' + A\oa? + --- with
a’ € A and |\j| < 7. It follows that

(5
Hzakxku<zaf||zakxku i

7>0
Similarly
d(1+9) 0(14+6) 1-30
> —7>1—5— = .
HZakxku ||Z wl-=—5" = =5 ~1=s
Hence, if § > 0 is chosen small enough so that
1-36 1 1+6
——>—— and —— <1
-0 ~1te ™Mi15='"%

we obtain the announced result. Note that one can find a suitable § depending only
on ¢ (and independent on n). O

10. Dvoretzky’s theorem.

Theorem 6. (Dvoretzky). For each € > 0, there is a number n = n(c) > 0 with
the following property. Every normed space E of dimension N contains a subspace
of dimension n = [nln N] which is (1 + ¢)?—isomorphic to 13.
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Let us present first the idea of proof. We take independent copies Xi,..., X,
of re. X from Corollary 2 of Dvoretzky-Rogers theorem, n = In N, which is
determined on a probability space (2, 8,P). Let Q(n,e) be the set of all w in
such that for every a = (ay,...,a,) in the unit sphere S of Euclidean space R"

1+ <D aXiw)| <1+e¢.
1

We will show that P{Q(n,e)} > 0 provided that n is not too large and precisely
provided n < n/0?. This clearly yields Theorem 6.

Now the

Proof. Let E be the subspace and X be an r.e. from Corollary 2 of Theorem 5.
Let Xi,...,X, be independent copies of X (n we choose late on). Then for any

a=(ai,...,a,)in S ther.e. > ] ax Xy has the same distribution as X (Proposition
6).
Thus we have E|| >"} a; Xy | = 1. Therefore, by Theorem 3, for any § > 0
n 252 2
P 0 Xell — 1] > 6} < 2exp(~35) < 2exp(~ )
1
Let A be as in Lemmas 2 and 3 with ||a|| = ||a||2. Then preceding inequality implies
P{Hac A: || Y apXyl — 1| > 6} < 2(cardA) exp(——3) <
1
2., 52
(16) (by Lemma 2) < 2(1 + 5) exp(——) <
o
2 52 2 52
2exp(5) exp(——) = 2exp( 5 — 7).
Now let § = §(¢) be the function of ¢, given by Lemma 3. Let we choose n so that
2n 52
1 — < —.
(17) J ~ 202

Then the probability (16) is not greater than Qexp(f%). Clearly, we can always
assume that o is small enough (say o < §/2), otherwise there is nothing to prove.
Hence we can assume that the right side of (16) < 1. We than obtain that with
positive probability, for every a € A

1Y axX()| =1 <
i.e.

1-6 <Y arnXi(w)| <144
1

By Lemma 3 (recall, we choose § = §(¢)!), we conclude that with positive probability
foralla e S

L+ <) aXp(w)| <1+e.
1
Therefore, there exists wy € Q such that for z; = Xy (wp) and for every a € S

L+ <D aranl| <1+e.
1
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By homogenity of the norm it means that lin(z)7 is (1 + €)2-isomorphic to I% .
To satisfy (17) put

&3

"=l

(recall, 0? < ¢/In N, by Corollary 2 of Theorem 5). [J
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