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In this paper we study a large class of nonlinear mappings satisfying the Baire
mapping and Borel graph theorems, which are well known to hold for linear op-
erators in Banach spaces. In particular, this class includes polynomial operators
on abelian groups and convex operators on Banach lattices. We also consider the
automatic continuity of analytic operators.

1. Introduction

In the paper [16] we introduced the notion of isotropic mapping and studied some
its properties. In particular, we showed that for isotropic mappings the theorems on
Baire mapping and Borel graph are valid. The main examples of isotropic mappings
were polynomial operators on Banach spaces. In this paper we consider a somewhat
weaker notion of a pointwise isotropic mapping and investigate its properties. Main
examples of pointwise isotropic mapping will be convex mappings of Banach lattices
and polynomial operators on metric abelian groups, in particular, on linear metric
spaces. Since we do not know the isotropy of analytic mappings in complex Banach
spaces, the automatic continuity (more precisely, the fulfillment of Baire mapping
theorem and Borel graph theorem) of such mappings we will investigated separately.

Let us indicate some papers on this topic. Polynomial operators on abelian
groups were studied by Van der Lijn [18], [19]. A generalization of the Banach
theorem on Baire mapping to analytic mappings was given by Zorn [21]. We will
use essentially Zorn’s results [21], [22] for study of analytic operators. The Closed
Graph theorem for polynomial and even for analytic functionals in Fréchet spaces
was proved by Drużkowski [4]. We will show that for Banach spaces this theorem
can easily be deduced from the above mentioned Zorn’s result on Baire mapping.
Automatic continuity of homomorphisms of abelian groups and convex and poly-
nomial operators in linear metric spaces in term of Christensen measurability was
investigated by Fischer and SÃlodkowski [8] and Gajda [9]. We refer to [3] for basic
results on analytic operators on Banach spaces.

2. Pointwise isotropic mappings

Definition 1. Let X be a metric group (not necessarily abelian) with a shift
invariant metric and a group operation “+” and let Y be a metric space. We call
a mapping F from an open subset D ⊂ X into Y isotropic on D if either it is
continuous on D or there exists a sequence xi ∈ X, xi → 0 such that for some
number c > 0

(2.1) lim
i

dist(F (x + xi), F (x)) ≥ c

for each x ∈ D, where lim is taken over all i such that x+xi ∈ D and dist denotes
the distance in Y .
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We call the maximal number c for which (2.1) is true, where the maximum is
taken over all sequences xi → 0, the isotropy constant of F on D; it can be equal
to ∞ also.

If D = X, we call the mapping F simply isotropic [16].
We assume the isotropy constant of a continuous on D mapping to equal zero.

Conversely, when we speak about isotropic mappings with zero isotropy constant
we mean everywhere continuous on D mappings.

Definition 2. One say that a group of homeomorphisms G of metric space X
acts transitively if for any elements x, y ∈ X there exists a homeomorphism g ∈ G
such that g(x) = y.

Definition 3. Let X,Y be metric spaces and a group of homeomorphisms G
acts transitively on X. We call a mapping F from an open subset D ⊂ X into Y
pointwise isotropic on D with respect to the group G if either it is continuous on
D or there is a sequence xi ∈ X, xi → x0, such that

lim
i

dist(F (g(xi)), F (g(x0))) > 0

for every g ∈ G such that g(x0) ∈ D.
We gave the general definition, but in this paper we will only consider metric

groups X. Then we will consider G to be the group of left shifts (we could also take
the right shifts). Namely we give

Definition 3′. Let X be a metric group and Y be a metric space. We call a
mapping F from an open subset D ⊂ X to Y pointwise isotropic on D if either it
is continuous on D or there is a sequence xi ∈ X, xi → 0, such that

lim
i

dist(F (x + xi), F (x)) > 0

for every x ∈ D.
If D = X, we call the mapping F simply pointwise isotropic .
A linear space is considered as a group with respect to addition. We use, as in

[1], the symbol ”+“ for the group operation in X, since we will use this definition
to linear metric spaces. We consider a subset D, since nonlinear mappings are often
not defined on the whole space.

We showed in [16] that every polynomial operator in a Banach space is isotropic
with isotropy constant equal to 0 or ∞. We also showed that for every c > 0
there exists an isotropic mapping with isotropy constant equal to c. Let us give an
example of pointwise isotropic but not isotropic mapping.

Example. Let X be a normed space considered as a group over addition and
Sn = {x ∈ X : n − 1 ≤ ||x|| < n}, n = 1, 2, . . . . Let us introduce a new metric on
X by

d(x, y) =
{

max( 1
n : x or y belongs to Sn) if x 6= y,

0 if x = y.

It is easy to see that d is a discrete metric on X (but not shift invariant). Denote by
F the identical mapping from (X, || ||) onto (X, d). Then for any sequence xi ∈ X,
||xi|| → 0, xi 6= 0 and x ∈ Sn

1
n
≤ d(x + xi, x) ≤ 1

n− 1
for sufficiently large i.

Proposition 1. Let F : D → Y be an isotropic (pointwise isotropic) mapping.
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a) If X is a metric group and x0 ∈ X, then F (x + x0) is isotropic (pointwise
isotropic) on D − x0.

b) If, moreover, Y is a metric group with a shift invariant metric and y0 ∈ Y
then F (x) + y0 is isotropic (pointwise isotropic) on D.

c) If Y is a linear metric space with a shift invariant metric and a ∈ R (or
C), then aF (x) is isotropic (pointwise isotropic) on D.

The proof is simple.
Now we give main properties of pointwise isotropic mappings connected with

continuity (some similar properties for isotropic mappings are given in [16]).
A subset M of linear space X is called M -O-set if the space is not the union

∪∞1 Mn of a sequence of sets Mn = anM + xn, where xn ∈ X and (an) are scalars.
This notion was used by Mazur and Orlicz [13] and Zorn [21] for study of polynomial
and analytic operators in Banach spaces. By analogy with the notion of M -O-set
in a linear space we introduce the following

Definition 4. Let D be a subset of a group X. We define a subset M ⊂ X to
be a Z-set with respect to D if for every sequence xi ∈ X

∞⋃

i=1

(M + xi) 6⊃ D.

If D = X, we will say M to be a Z-set.
A subset of Z-set is a Z-set, but nothing is maintained about finite or countable

unions of Z-sets. Of course, every M -O-set of a linear space is a Z-set. The opposite
statement is not true. For example, the unit ball of a nonseparable Banach space is
a Z-set but is not an M -O-set. One can give a nonconstructive example of a Z-set
M which is not an M -O-set in an infinite dimensional separable Banach space too.
It is sufficient to consider a normed Hamel basis and take as M its convex hull.
Question 1. Is there a separable Banach space and a Borel Z-set which is not a
M -O-set? In particular, is such a set in R?

Theorem 1. Let F be a pointwise isotropic mapping from an open subset D of a
metric group X into a metric space Y and M be a Z-set with respect to D. If F is
continuous on D\M, then it is continuous on D.

Proof. Suppose that F is discontinuous on D. Let (xi) be a sequence from Defini-
tion 3′. Then for M̃ = X\M the set

N = M̃ ∩
( ∞⋂

i=1

(M̃ − xi)
)

intersects D. Let x0 ∈ N ∩D. Then x0 ∈ M̃ ∩D and x0 ∈ M̃ −xi i.e. x0 +xi ∈ M̃ .
Since xi → 0 and D is open, x0 + xi ∈ M̃ ∩D beginning with some index i0. Since
F is pointwise isotropic on D,

F (x0 + xi) 6→ F (x0).

Thus F is discontinuous on M̃ ∩D = D\M . ¤

Theorem 1′. Let F be an isotropic mapping from an open subset D of metric
group X into a metric space Y . If the isotropy constant of F equals to infinity and
M is a Z-set with respect to D then the restriction of F |D\M is unbounded at some
point from D\M .
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Proof. The proof is similar to the proof of Theorem 1. Let xi be a sequence from
Definition 1. Then for M̃ = X\M the set N = M̃

⋂
(∩∞i=1(M̃ − xi)) intersects D.

Let x0 ∈ N ∩D. Then x0 ∈ M̃ ∩D and x0 ∈ M̃ − xi, i.e. x0 + xi ∈ M̃ . Beginning
with some index i0, x + xi ∈ D. By the assumption of the theorem

lim
i

dist(F (x0 + xi), F (x0)) = ∞,

which proves the theorem. ¤

A simple example of a Z-set is a meager subset of complete metric group, i.e., a
countable union of nowhere dense sets. Since the union of countable many meager
sets in a complete metric space is a meager set, any meager set in a complete metric
group is a Z-set with respect to every open set D.

Definition 5 [21]. A mapping F from a metric space X into a metric space Y
is called B-continuous if there exists a meager subset M ⊂ X such that F |X\M is
continuous.

The following theorem is classical.
Theorem B [1, I.§3]. An additive B-continuous operator from a complete metric

group X into a metric group Y is continuous.
Evidently, an additive operator is isotropic. So Theorem 1 is a generalization of

Theorem B.
Let us note a connection between B-continuity and other similar notions. A

mapping F has the Baire property (in the broad sense) if for every open subset
U ⊂ Y

F−1(U) = (A\B) ∪ C,

where A is open and B, C are meager sets ([11], §32.I). Evidently, every B-continuous
mapping has the Baire property. For separable spaces Y , the B-continuous map-
pings coincide with mappings which have the Baire property in the broad sense
([11], §32.II). A subset M of metric space X is called perfect if it is closed and con-
tains no isolated points. A mapping F from a metric space X into a metric space
Y satisfies the condition of Baire in the restricted sense (satisfies the condition of
Baire in terms of [1]) if for each nonempty perfect set M ⊂ X there is a meager in
M subset N ⊂ M such that the restriction F |M\N is continuous ([11, §32.IV], [1],
Introduction, §9). Finally, the mapping F is called Baire mapping (measurable in
the terminology of [1]) if it belongs to the smallest class of mappings that includes
continuous mappings and is closed under pointwise limits. Every Baire mapping
satisfies the Baire condition in the restricted sense and thus is B-continuous ([1],
Introduction, §9). Simple examples show that the inverse statement is not true.

Let us mention some simple properties of B-continuous mappings [21]. The
pointwise limit of a sequence of continuous mappings is B-continuous. If the space
Y is separable, then any Borel mapping F : X → Y is B-continuous. If X, Y are
metric groups and F,G : X → Y are B-continuous and x0 ∈ X, then F (x) + G(x)
and F (x + x0) are B-continuous. If X, Y are linear metric spaces and a is scalar,
then F (ax) and aF (x) are B-continuous too.

Corollary 1. Let M be a meager subset of a complete metric group X and suppose
that a pointwise isotropic mapping F from an open subset D of X into a metric
space Y is continuous on D\M . Then it is continuous on D.

Corollary 1′. If a pointwise isotropic mapping F from an open subset D of
complete metric group X into a metric space Y is B-continuous on D, then it is
continuous on D.
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Proof. Let N ⊂ D be a meager subset in D. Then N is meager in X, hence a
Z-set. By Theorem 1, F is continuous on D. ¤

Corollary 2. (A generalization of Theorem B).A Baire pointwise isotropic map-
ping from an open subset D of a complete metric group X into a metric space Y is
continuous.

Proof. Since the limit of B-continuous mapping is B-continuous [21], any Baire
mapping is B-continuous. ¤

Corollary 3 (A nonlinear inverse operator theorem). Let F be a continuous
bijective mapping from a Polish (i.e. complete separable metric) space X onto
a complete metric group Y such that F−1 is pointwise isotropic. Then F−1 is
continuous.

Proof. Since in our condition F−1 is Baire (this follows from [11], Chap. 3 §39.4
and Chap. 2, §31.9), it is sufficient to apply Corollary 2. ¤

Theorem 2. A pointwise isotropic mapping F from an open subset D of an
arbitrary metric group X into a Polish space Y that has Borel graph is continuous.

Proof. First we suppose that the group X is separable. Let Γ = {(x, F (x)) : x ∈ D}
be the graph of F . We let F∗(x) = (x, F (x)), x ∈ D. It is clear that F∗ is a bijective
mapping from X onto Γ and F−1

∗ is a Borel mapping ([11, §39.5]) so F∗ is a Baire
mapping [11, §31.9]. If F is discontinuous at some point of D then, according to
Definition 3, there exists a sequence xi → 0 as i →∞ such that

lim
i

dist(F (x + xi), F (x)) > 0

for each x ∈ D. So

lim
i

dist((x + xi, F (x + xi)), (x, F (x))) > 0.

Therefore F∗ is pointwise isotropic. But according to Corollary 2 this mapping is
necessarily continuous on D. So, the mapping F is continuous too.

Now let X be an arbitrary complete metric group. If F is discontinuous at some
point x0 ∈ D, then there is a closed separable subgroup X0 ⊂ X such that F , which
is defined on the open subset D0 = D∩X0 of the group X0, is discontinuous at x0.
The graph of mapping F : D0 → Y is the intersection of Borel set Γ and a closed
subset X0 × Y ⊂ X × Y . So from the first part of this proof it follows that F |D0 is
a continuous mapping. This contradiction proves the theorem. ¤

As is well known, a weakly continuous linear operator in a Banach space is norm
continuous. The following corollary generalizes this result to pointwise isotropic
mappings.

Corollary 4. Let F be a pointwise isotropic mapping from an open subset D of
a Banach space X into a Banach space Y and let F be norm to weak continuous.
Then F is norm to norm continuous.

Proof. Suppose that F is not norm to norm continuous. Then F is not norm to
norm continuous on some open subset D0 of a separable subspace X0 ⊂ X. So
we can suppose that X is separable. Then F (D0) is weakly separable, hence norm
separable.
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As is well known (see, for example, [14]), on a separable Banach space the Borel
σ-algebras generated by norm and by weak topology coincide. So F is norm to
norm Borel mapping. So it is norm to norm Baire mapping ([11], Chap. 2, Sect.
31.9) and hence F is continuous (Corollary 2). ¤

Remark. Since in Corollary 4 we do not use any separability assumption, this
corollary do not follows immediately from Theorem 2. A suggestion to prove this
corollary was given by J. Orihuela.

Let us give another example of a Z-set. Let X be a metric abelian group with a
nonzero Borel quasi-invariant measure µ (i.e. µ(M) = 0 ⇒ ∀x ∈ X, µ(M +x) = 0).
For example, we can take as X a locally compact metric abelian group with the
Haar measure. Of course, in this group any Borel set M with µ(M) = 0 is the
Z-set.

Corollary 5. If a pointwise isotropic mapping F from an open subset D of abelian
group X with a nonzero quasi-invariant measure µ into a metric space Y is con-
tinuous on a set D\M , where µ(M) = 0, then it is continuous on D.

Similarly to Definition 5 we introduce
Definition 5′. A mapping F from a metric space X with a Borel measure µ to a

metric space Y is called to be H-continuous, if there exists a set M ⊂ X, µ(M) = 0,
such that F |X\M is continuous.

Corollary 6. If a pointwise isotropic mapping F from an open subset D of a
metric abelian group X with a nonzero quasi-invariant measure µ into a metric
space Y is H-continuous then it is continuous.

Definition 6. A mapping F from a metric space X with a Borel measure µ into
a metric space Y is called µ-measurable if the preimage F−1(U) of any open set
U ⊂ Y is µ-measurable in X.

Remark. It seems that the characterization function of a Cantor set of nonzero
Lebesgue measure on [0, 1] gives an example of µ-measurable but not H-continuous
mapping.

Let us consider one more example of a Z-set.
Definition 7. Let X be a Polish abelian group. A set M ⊂ X is called universally

measurable if it belongs to the completion of Borel σ-algebra with respect to any
probability Borel measure. A universally measurable set is called a Haar zero set
if there exists a probability Borel measure µ such that µ(M + x) = 0 for every
x ∈ X. M is called a Christensen zero set if there exists a Haar zero set N such
that M ⊂ N . Finally, sets of the form M ∪N , where M is universally measurable
and B is a Christensen zero set, are called Christensen measurable.

These sets have the following properties which we formulate in the form of
Lemma 1 ([8], Proposition 1 and Corollary 1). Christensen measurable sets form

a shift invariant σ-algebra. Every Christensen zero set is a Z-set.
Corollary 7. If a pointwise isotropic mapping F from an open subset D of Polish

abelian group X into a metric space Y is continuous on some set D\M , where M
is a Christensen zero set, then it is continuous on D.

Similarly to Definition 5 we introduce
Definition ′′. A mapping F from an open subset D of a Polish abelian group X

into a metric space Y is called Ch-continuous if there is a Christensen zero subset
M ⊂ D such that F |D\M is continuous.
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Corollary 8. If a pointwise isotropic mapping F from an open subset D of a
Polish abelian group X into a metric space Y is Ch-continuous on D, then it is
continuous on D.

Definition 8 [8]. A mapping F from an open subset of a Polish abelian group X
into a separable metric space Y is called Christensen measurable if for every open
set U ⊂ Y the set F−1(U) is Christensen measurable in X.

Proposition 2.
a) If Fn, n = 1, 2, ..., are Christensen measurable and Fn(x) → F (x) for every

x ∈ D, then F is Christensen measurable too.
b) If Y is a Polish group and F, G : D → Y are Christensen measurable, then

F (x) + G(x) is Christensen measurable too.
c) If Y is a separable linear metric space, a ∈ R (or C) and F is Christensen

measurable, then aF is Christensen measurable too.

Proof. The proof follows from Lemma 1. To prove a) it is sufficient to use the
classical formula F−1(U) = ∩∞n=1 ∪∞m=n F−1

n (U). To prove b) it is sufficient to use
the existence for separable Y the sequence Vn ×Wn ⊂ Y × Y such that ∪kVnk

×
Wnk

= U for every open U ⊂ Y × Y . ¤

Let us give an example of isotropic mapping. Here we suppose X to be a linear
metric space with shift invariant metric and Y to be a linear normed space.

Definition 9. A mapping F from a convex open subset D ⊂ X to Y is called
norm convex if φ(x) := ||F (x)|| is a convex functional, i.e. for any x, y ∈ D

||F
(

x + y

2

)
|| ≤ ||F (x)||+ ||F (y)||

2
.

Theorem 3. A norm convex mapping F from a convex open subset D ⊂ X into
Y is isotropic with the isotropy constant equal to 0 or ∞.

Proof. Let F be discontinuous on D. We can suppose, by Proposition 1, that 0 ∈ D,
F (0) = 0 and ||F (xi)|| ≥ c for some sequence xi → 0 as i →∞ and for some c > 0.

Evidently, for every x ∈ D such that 2x ∈ D

||F (x)|| = ||F
(

2x + 0
2

)
|| ≤ ||F (2x)||+ ||F (0)||

2
=
||F (2x)||

2
.

So for every k such that 2kx ∈ D

(2.2) 2k||F (x)|| ≤ ||F (2kx)||.
Choose a subsequence (xik

) ⊂ (xi) such that uk := 2kxik
→ 0 as k → ∞. Such

a subsequence exists by [17, p.4]. Of course we can suppose uk ∈ D. Then by (2.2)
for any n

(2.3) ||F
(uk

2n

)
|| = ||F

(
2kxik

2n

)
|| ≥ 2k−n||F (xik

)|| ≥ 2k−nc →∞ as k →∞.

Take any open ball B ⊂ D with center at the origin. For any x ∈ B we have
that −x ∈ D and starting with some index n, uk/2n + x ∈ D. Hence

(2.4) ||F
( uk

2n+1

)
|| = ||F

( uk

2n + x− x

2

)
|| ≤ ||F (uk

2n + x)||+ ||F (−x)||
2

.
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So

(2.5) ||F
(uk

2n
+ x

)
|| → ∞ as k →∞ for any n.

Now if (2.5) is satisfied for y ∈ D, B ⊂ D is some ball with center at y such that
B − y ⊂ D, and x ∈ B, then as in (2.4)

||F
( uk

2n+1
+ y

)
|| = ||F

( uk

2n + x + y − x

2

)
|| ≤ ||F (

uk

2n + x
) ||+ ||F (y − x)||

2

i.e. for this x (2.5) is satisfied.
Thus, the convexity and openness of D imply that (2.5) is satisfied for every

x ∈ D. In particular, (2.5) is satisfied for n = 1. This means that F is isotropic
with isotropy constant equal to ∞. ¤

Definition 9′. A mapping F from a convex open subset D of linear metric space
X into a Banach lattice Y is called Jensen convex if for any x, y ∈ D

F

(
x + y

2

)
≤ F (x) + F (y)

2
.

It is called Jensen concave if the converse inequality is satisfied above.
Corollary 9. Convex and concave mappings, which are defined on a convex open

subset of a linear metric space X are isotropic with the isotropy constant equal to
0 or ∞.

Proof. Indeed, if F is convex then it is norm convex and we can apply Theorem 3.
If F is concave then −F is convex and we can apply Theorem 3 and Proposition
1. ¤

Corollary 10 (compare with Theorem 2 of [8]). Let F be a convex (or concave)
Baire mapping from a complete linear metric space X to a Banach lattice Y . Then
it is continuous.

Proof is a combination of Corollary 8 and Corollary 2.
Question 2. Is an n-convex mapping (see the definition in [9]) pointwise isotropic?

3. Polynomial and analytic mappings

As we already noted, polynomial operators on abelian groups were studied in
[18, 19].

Let X, Y be abelian groups. An operator T : X → Y is called additive if
T (x + y) = T (x) + T (y) and T (−x) = −T (x). Let Xn = X × · · · ×X be the n-th
Cartesian product of a group X. A mapping Bn(x1, . . . , xn) from Xn into Y is
called symmetric if for any permutation σ of indices {1, . . . , n}

Bn(xσ(1), . . . xσ(n)) = Bn(x1, . . . , xn)

and n-additive if it is additive in each of its arguments.
Throughout this section we will consider a group Y which contains no elements

of finite order (i.e. ky = 0, k ∈ N, y ∈ Y implies y = 0).
A mapping Pn : X → Y is called a homogeneous polynomial operator of degree n

if Pn is not identically zero and there is a number kn ∈ N and an n-additive mapping
Bn such that knPn(x) := Bn(x, . . . , x). A constant operator will be denoted by
P0(x). An operator P : X → Y of the form P (x) = P0(x) + P1(x) + · · · + Pn(x)
will be called a polynomial operator of degree n, provided that Pn is not identically
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zero. It is easy to see that for a linear space this definition coincides with the usual
definition of polynomial operators (see e.g. [3]).

In [19] it is shown that for each homogeneous polynomial operator Pn of degree
n there is a unique (up to a positive integer factor) symmetric n-additive operator
Bn such that knP (x) = Bn(x, . . . , x) for some integer kn. Let us put

Bn−k,k(z, x) = Bn(
n−k︷ ︸︸ ︷

z, . . . , z,

k︷ ︸︸ ︷
x, . . . , x);

in particular

(3.1) Bn,0(z, x) = knPn(z).

It is easy to see [19] that Bn−k,k(z, x) is homogeneous polynomial operator of
degree k in x and n− k in z and for every integer m, Pn(mx) = mnPn(x). So the
proof of the following proposition is evident.

Proposition 3 [19]. If P is a polynomial operator of degree n and x0 ∈ X, then
Px0(x) := P (x + x0) is a polynomial operator of degree n.

Let us recall that a topological group is called uniformly dissipative if there is
neighborhood U of zero such that for every neighborhood V of zero there is an
positive integer number m such that nx ∈ U for some n > m implies x ∈ V. For
more detail information on uniformly dissipative groups see [5]. Note that if a
metric group Y is uniformly dissipative then byj → 0 as j → ∞ for some positive
integer number b and yj ∈ Y implies yj → 0 as j →∞.

The Open Mapping Principle for Polish groups (see Exercise T to Chapter 6 of
[10]) implies that any Polish divisible groups G without elements of finite order (as
well as any subgroup of G) is uniformly dissipative. We recall that a group G is
divisible if for every a ∈ G and n ∈ N there is x ∈ G with nx = a. It should be
mentioned that each abelian group (without elements of finite order) is a subgroup
of a divisible abelian group (without elements of finite order) [7, §24] and every
divisible abelian group without elements of finite order has the structure of a linear
space over the field Q of rational numbers, see [7, 23.1] or [20].

Theorem 4. Let X, Y be metric abelian groups such that Y is uniformly dissipa-
tive and has no elements of finite order. Then every polynomial operator from X
into Y is pointwise isotropic.

For the proof of this theorem we need the following
Lemma 2. There exists a matrix (akj)n

k,j=0, akj ∈ Z, and an integer number
b 6= 0 such that for any collection y0, . . . , yn of elements of an abelian group Y
which contains no elements of finite order we have

byk =
n∑

j=0

akjq(j), j = 0, . . . , n

where q(j) :=
∑n

k=0 jkyk, j = 0, . . . , n.

Proof. The determinant of the matrix (jk)n
j,k=0 is the Vandermonde determinant,

which is different from zero since j = 0, . . . , n are distinct numbers. Hence, this
matrix has a (unique) inverse (ckj). It is clear that ckj are rational. Let b denote
the common denominator of ckj . Put akj = bckj . Then

b

n∑

l,k=0

ckjj
lyl =

n∑

j=0

akjq(j),
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thus

byk =
n∑

j=0

akjq(j), k = 0, . . . , n.

¤

Corollary 11. Let P : X → Y be a polynomial operator of degree n. Then its
homogeneous components Pk, k = 0, . . . , n are determined by

bPk(x) =
n∑

j=0

akjP (jx),

where akj and b 6= 0 are integers dependent on the degree n only.

Proof. Applying Lemma 2 to yk = Pk(x) and using that Pk(jx) = jkPk(x) for
every x ∈ X and j, k = 0, . . . , n, we obtain the existence of numbers (akj) and b
which satisfies the condition of Corollary 11. ¤

Remark. For polynomial operators in linear spaces these Lemma and Corollary
are well known results [12].

Proof of Theorem 4. Thus, let P (x) =
∑n

k=0 Pk(x), where Pk is a homogeneous
polynomial operator of degree k. Suppose that P is discontinuous. By Proposition
1, we can suppose that P is discontinuous at zero. Then we can suppose that Pn is
discontinuous at zero too. Indeed, in opposite case we can consider the polynomial
operator P̄ = P − Pn. So, there exists a sequence xi ∈ X, xi → 0 such that

lim
i

dist(Pn(xi), Pn(0)) > 0.

Fixing x ∈ X put Px(z) = P (z +x). It is clear that the homogeneous component
of highest degree of Px(z) is equal to Pn(z).

Applying Corollary 11 to Px(z) we get integers anj , j = 0, 1, . . . , n and b 6= 0
such that

bPn(z) =
n∑

j=0

anjPx(jz) =
n∑

j=0

anjP (jz + x),

in particular

(3.2) bPn(xi) =
n∑

j=0

anjP (jxi + x), i = 1, 2 . . .

Putting in (3.2) z = 0 we have

(3.3)
n∑

j=0

anjP (x) = 0

for every x ∈ X.
We show that the sequence (x′i)

∞
i=1 of points (jxi, j = 0, . . . , n, i = 1, . . . ,∞),

which is enumerated somehow, satisfies Definition 3′. Suppose to the contrary that
for some x ∈ X and each 0 ≤ j ≤ n

P (jxi + x) → P (x)

as i →∞. Then
n∑

j=0

anj [P (jxi + x)− P (x)] → 0
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as i →∞.
Taking into account (3.3), from here we obtain

∑n
j=0 anjP (jxi + x) → 0 as

i → ∞. From (3.2) it follows that bPn(xi) → 0 as i → ∞. Since Y is a uniformly
dissipative group, Pn(xi) → 0 as i →∞ and this contradicts the choice of (xi).

Thus, for any x ∈ X

lim
i

dist(P (x′i + x), P (x)) > 0

i.e. P is pointwise isotropic.
Corollary 12. A Baire polynomial mapping from a complete metric abelian group

X into a uniformly dissipative abelian metric group Y which contains no elements
of finite order, is continuous.

Corollary 13. Let X be a metric abelian group and Y be a uniformly dissipative
Polish abelian group containing no elements of finite order. If a polynomial operator
from X into Y has a Borel graph then it is continuous.

Corollary 13′. Let X be a complete linear metric space and Y be a Polish linear
metric space. If a polynomial operator from X into Y has the Borel graph then it
is continuous.

Now we consider analytic mappings.
Definition 11. Let a mapping F is defined on an open subset D of a complex

Banach space X and takes value in a complex Banach space Y . It is called Gâteaux
differentiable on D if

lim
t→0, t∈C

F (x + th)− F (x)
t

=: F ′h(x)

exists for every x ∈ D and h ∈ X.
We recall some known results from the theory of Gâteaux differentiable mappings

(see [21, 22]): For fixed h the mapping F ′h(x) is Gâteaux differentiable on D. That
is why the Gâteaux differentiable mappings in complex Banach spaces are called
Gâteaux analytic (G-analytic in short); late on we shall use this term. The main
result of [22] is

Theorem Z. If a mapping F : X → Y , defined on an open subset D ⊂ X is
G-analytic and B-continuous on D, then it is continuous on D.

Corollary 3.′ (A generalization of Theorem B.) A Baire G-analytic mapping from
an open subset D of Banach space X into a Banach space Y is continuous.

Corollary 4′ (see e.g. [15, p.65]). A norm-to-weak continuous G-analytic mapping
from an open subset D of Banach space X into a Banach space Y is norm to norm
continuous.

Proof. The proof repeat verbatim the proof of Corollary 4. ¤

Theorem 2′. A G-analytic mapping F from an open subset D of arbitrary Banach
space X into a separable Banach space Y , which has a Borel graph, is continuous.

Proof. The proof of this theorem is a simple modification of the proof of Theorem
2. We shall describe this modification. Let F∗ be the mapping from the proof of
Theorem 2. Let us show that it is G-analytic on D. Indeed,

lim
t→0

F∗(x + th)− F∗(x)
t

= lim
t→0

(x + ht, F (x + th))− (x, F (x))
t

=
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lim
t→0

(th, F (x + th)− F (x))
t

= (h, F ′h(x)).

So F∗ is G-analytic. Since it is Baire (see the proof of Theorem 2), F∗ is continuous
on D by Corollary 3′. Then the proof of Theorem 2 is repeated literally. ¤

Corollary 3′′. A Christensen measurable G-analytic mapping F from an open
subset D of separable Banach space X into a Banach space Y , is continuous.

Proof. By [22, 2.4] for every x0 ∈ D there exists a ball B with center in x0 such
that the mapping F is developed in a series:

(3.4) F (x0 + x) =
∞∑

n=0

Pn(x0, x)

where x0 + x ∈ B and

Pn(x0, x) =
1
n!

dnF (x0 + tx)
dtn

is a polynomial operator of degree n.
Since the difference, the quotient of division by a scalar and limit of Christensen

measurable functions are Christensen measurable (by Proposition 2), then Pn(x0, x)
is Christensen measurable, hence continuous [9] in B. This and (3.4) imply that F
is Baire in B, hence is continuous in B, by Corollary 3′, in particular F is continuous
at x0. The arbitrariness of x0 ∈ X proves the corollary. ¤

Now we show how Gajda’s result can be proved using the Fischer and SÃlodkowski
theorem.

Theorem G [9]. Let P be a polynomial operator from a complete separable metric
linear space X into a separable metric space Y . If P = P0 + P1 + · · · + Pn is
Christensen measurable then P is continuous.

Proof. If we fix h ∈ X then P ′h(x) is also Christensen measurable. It is easy to
see that P

(n−1)
h1...hn−1

= (n − 1)!Bn(h1 . . . hn−1, x), where Bn is an n-linear operator
corresponding to Pn. So Bn(h1 . . . hn−1, x), by [8] is continuous. So Bn(x1, . . . xn)
and Pn are continuous [3]. Taking P −Pn instead of P we obtain that Pn−1 is also
continuous. The induction in n finishes the proof. ¤

Acknowledgment. The authors express their sincere gratitude to J. Orihuela,
I. Guran and T. Banakh for valuable and stimulating discussions on the subject of
the paper.
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