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TWISTED PROPERTIES OF BANACH SPACES
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Abstract

If P , Q are two linear topological properties, say that a Banach space X has the property P-by-
Q (or is a P-by-Q space) if X has a subspace Y with property P such that the corresponding
quotient X/Y has property Q. The choices P,Q ∈ {separable, reflexive} lead naturally to some
new results and new proofs of old results concerning weakly compactly generated Banach spaces.
For example, every extension of a subspace of L1(0, 1) by a WCG space is WCG. They also give
a simple new example of a Banach space property which is not a 3-space property but whose dual
is a 3-space property.

1. Introduction

Throughout, Y will be a closed subspace of a Banach space X and Z will be
the corresponding quotient X/Y . Denote by i and q the inclusion and quotient
mappings. In general, Y need not be complemented in X, i.e. there need not
be any continuous linear projection from X onto Y .

By Banach space property we mean simply a property which is invariant
under isomorphisms; it need not pass to subspaces or quotients, or even be
possessed by finite-dimensional spaces. Say that P is a three-space property
if whenever Y and Z have P then X also has P . For instance, separability is
easily checked to be a 3-space property. This notion becomes interesting when
one realises that being isomorphic to a Hilbert space is not a 3-space property
[17]. Given a property P we say, following [29], that X has P∗ if X∗ has P .
We prefer to write the star as a subscript to emphasize the fact that such an X

is the predual of a space with P . Similarly we say that X has Pco if X∗∗/X
has P . It is straightforward to prove that if P is a 3-space property then P∗ is
also a 3-space property. For Pco the same assertion follows from Lemma 2.1
below. Jarchow [29, §3, Remark 5(b)], asked whether the reverse implication
for P∗ is true; we shall see in §4 that it is not. It is not known to us if P must
be a 3-space property whenever Pco is a 3-space property.

Since reflexivity is simply the property 0-dimensionalco, this observation
also establishes the well known fact that reflexivity is a 3-space property.
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A groupG is called a P-by-Q group if it contains a normal subgroupN such
that N has property P and G/N has Q. As far as we know, this terminology
first slipped into the literature in [23, p. 424]. It has been standard in group
theory ever since [20] and we will use it here. Thus, given two Banach space
properties P and Q, we say that a Banach spaceX has the property P-by-Q if
it admits a closed subspaceY with property P such thatX/Y has Q. It is an old
idea that a complicated Banach space might “factor” through a nice subspace
with a nice quotient. Our point is that the nice properties of the subspace and
the quotient need not be the same. By analogy with twisted sums of Banach
spaces [34] we will refer to such properties as twisted properties. Many of
our results, e.g. Proposition 2.4, would be cumbersome to prove without this
shorthand.

Remark 1.1. Given this convention, P is a 3-space property if and only if
P-by-P implies P . It is very easy to check that “-by-” is an associative opera-
tion on the collection of all Banach space properties. That is, (P1-by-P2)-by-
P3 is exactly the same property as P1-by-(P2-by-P3) and the parentheses
can be omitted.

However “-by-” is not an associative operation for groups. If Pn is the
property “cyclic of order n”, then the alternating group A4 is (P2-by-P2)-by-
P3, but not P2-by-(P2-by-P3).

In §2, we present a number of elementary results. Since WCG (weakly
compactly generated) spaces form a natural class which includes all separable
and reflexive spaces, we exhibit some basic results about them in §3. Johnson
and Lindenstrauss [32] showed that every WCG-by-separable space is WCG.
We show in §3 that this result is best possible in the sense that separability
cannot be replaced by any other property. They also showed that reflexive-by-
WCG implies WCG. We give a new elementary proof of this, and then recall
their example of a separable-by-reflexive space which is not WCG.

This leads directly, in §4, to the counterexample mentioned in the abstract;
the property reflexive-by-separable is not a 3-space property, but the dual
property is.

Section 5 consists mainly of known results, relating to projections on WCG
spaces, which are needed later, some of them with new proofs. The main part
of this paper is probably §6 and §7, where we present a new family of stability
results (all of which depend on the fact that (reflexive-by-separable)∗ is a 3-
space property) and some open problems. For conciseness, let us say that Y
has the property E P if Y -by-P implies P , i.e. wheneverX is a Banach space
containing Y and the quotient space X/Y has property P , then X also has P .
The observation that E P is always a 3-space property (even when P is not)
simplifies several arguments. We show that many non-reflexive spaces have
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E WCG, in particular all subspaces of L1(0, 1) or the James Tree space. In §8
the related class of separably distinguished spaces is briefly discussed.

2. Basic results

The following result, which appeared first in [9], is a basic tool. It seems
worthwhile to give a succinct proof. Recall that Y is a closed subspace of the
Banach space X.

Lemma 2.1.
(i) The subspace X + Y⊥⊥ is always closed in X∗∗,

(ii) there is a natural isomorphism

(X/Y )∗∗

X/Y
∼= X∗∗

X + Y⊥⊥ ,

(iii) and another isomorphism Y ∗∗/Y ∼= (X + Y⊥⊥)/X.

Proof. Let H : (X/Y )∗∗ → (X/Y )∗∗/(X/Y ) be the obvious natural map-
ping. Then

ker(Hq∗∗) = (q∗∗)−1(ker H) = (q∗∗)−1(q∗∗X) = X + ker q∗∗ = X + Y⊥⊥.

This proves (i). Since the range of Hq∗∗ is the Banach space (X/Y )∗∗/(X/Y ),
(ii) follows easily. Finally, considering the bitranspose of the inclusion Y ⊂ X,
one has

Y ∗∗/Y ∼= Y⊥⊥/(X ∩ Y⊥⊥) ∼= (Y⊥⊥ + X)/X,

so (iii) is also established.

Lemma 2.2. For any two Banach space properties P and Q, P∗-by-Q∗
implies (Q-by-P)∗ and Pco-by-Qco implies (P-by-Q)co.

Given two properties P and Q, say that a Banach space X has the property
P ⊕ Q if it can be decomposed as X = Y ⊕ Z where Y has property P and
Z has property Q. The next result is also easy to prove.

Proposition2.3. LetP andQ be two 3-space properties which are enjoyed
by the trivial space {0}. Then P ⊕ Q is a 3-space property if and only if P-
by-Q, Q-by-P and P ⊕ Q are all equivalent.

The usefulness of the next result far exceeds the difficulty of its proof.

Proposition 2.4. Let P and Q be any 3-space properties. If Q-by-P
implies P-by-Q, then P-by-Q is a 3-space property. Conversely, if P-by-Q
is a 3-space property and P and Q are enjoyed by the trivial space {0}, then
Q-by-P implies P-by-Q.
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Proof. Necessity is trivial. Sufficiency follows immediately from associ-
ativity:

P-by-Q-by-P-by-Q ⇒ P-by-P-by-Q-by-Q ⇒ P-by-Q.

Call a property P liftable if it satisfies the condition: whenever X/Y has
P , then there is some subspace M of X having P such that M + Y = X.

Proposition 2.5. Let P and Q be 3-space properties. Assume that Q
passes to quotients and that P is liftable. Then P-by-Q is a 3-space property.

Proof. It clearly suffices to show that Q-by-P implies P-by-Q, so sup-
pose that Y has Q and X/Y has P . By hypothesis, there is a subspace M of
X having property P such that X = Y + M . To finish the proof it is only
necessary to verify that X/M has Q. Since Q passes to quotients, this is a
consequence of the isomorphism X/M = (M + Y )/M ∼= Y/(Y ∩ M).

One candidate for a property dual to liftability is the following: say that a
property Q is extendable if it satisfies the condition: whenever Y ⊂ X and Y

has Q, then X contains a closed subspace M such that M ∩Y = {0}, M +Y is
closed (which of course implies that Y is isomorphic to a subspace of X/M)
and X/M has Q. We leave the following result as an exercise.

Proposition 2. 5*., Let P and Q be 3-space properties. Assume that P
passes to subspaces and that Q is extendable. Then P-by-Q is a 3-space
property.

It is clear that finite-dimensionality is both liftable and extendable. However
separability is not extendable, as the following argument shows. If it were, �∞
would contain a closed subspace M with c0 ∩ M = {0}, c0 + M closed,
and �∞/M separable. Obviously c0 could then be identified with a subspace
of �∞/M , which by Sobczyk’s Theorem (e.g. [28]) must be complemented.
Composing this projection with the quotient map �∞ → �∞/M would then
give us a projection �∞ → c0, a well known impossibility. We note in passing
the old problem: does every infinite-dimensional Banach space have an infinite-
dimensional separable quotient space?

The next result says that separability is a liftable property. This appears
implicitly in [52, Corollary 6], and explicitly in [54, Lemma 2].

Lemma 2.6. Let X be any Banach space, Y a closed subspace.

(i) If X/Y is separable, then X = M + Y for some separable subspace M
of X.

(ii) If S0 is any separable subspace of X, one can find a separable subspace
S containing S0, for which Y + S is closed.
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Proof. (i) Let ϕ : X → X/Y be the quotient map, and choose a countable
set C in the open unit ball of X so that ϕ(C) is dense in the open unit ball of
X/Y . LetM be the closed linear span ofC, andU the open unit ball ofM . Then
ϕ(U) is a dense subset of the unit ball. Furthermore ϕ(U) is closed under the
formation of infinite convex combinations, because U has the same property.
This implies that ϕ(U) contains the interior of its closure. (In the language of
[28, §22], CS-compact sets are semi-closed. This is the basic technical fact
which leads to the open mapping and closed graph theorems.) Thus ϕ(U)

must contain the open unit ball of X/Y . It follows that ϕ(M) = X/Y , i.e. that
Y + M = X. Of course M is a separable subpace of X.

(ii) ClearlyY + S0/Y is separable, so (i) allows us to choose some separable
subspace S of X such that Y + S = Y + S0. One may assume that S contains
S0, replacing S by S + S0 if necessary.

With the same proof, Lemma 2.6 remains valid for arbitrary density char-
acters. An easy corollary is [57, Theorem 2]: if X/Y is separable, then X is
isomorphic to a quotient of Y ⊕ M , for some separable space M .

Thus if Q is any 3-space property which passes to quotients, then being
separable-by-Q is a 3-space property. In particular, separable-by-Asplund,
separable-by-(not containing �1), separable-by-(Banach-Saks) and separable-
by-(B-convex) are 3-space properties. Even more is true.

Theorem 2.7. Let Q be any 3-space property which passes to quotients.
Then being separable-by-Q is a 3-space property which passes to quotients.
If in addition Q passes to subspaces, then separable-by-Q also passes to
subspaces.

Proof. It is abundantly clear by now that being separable-by-Q is a 3-space
property. For the other two parts, let X be a separable-by-Q Banach space, Y
an arbitrary subspace. Then X has a separable subspace S0 so that X/S0 has
Q. Let S be given by Lemma 2.6(ii). Since Y + S is closed, one has

X/Y

(Y + S)/Y
∼= X

Y + S
∼= X/S0

(Y + S)/S0

which obviously has Q. Since (Y + S)/Y is separable, the quotient X/Y is
separable-by-Q.

Now suppose that Q passes to subspaces. Since X/S is a quotient of X/S0,
any subspace of X/S has Q. In particular Y/(S ∩ Y ) ∼= (Y + S)/S ⊂ X/S

has Q. Since S ∩ Y is separable, it follows that Y has separable-by-Q.

In particular, being separable-by-reflexive is a 3-space property which
passes to subspaces and quotients. We single out this property because it will be
of considerable interest to us. It will be shown later that reflexive-by-separable
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implies separable⊕reflexive. However reflexivity is not a liftable property, as
shown at the end of the next section. Nevertheless, there are other liftable
properties.

For a second application, recall that �1 has the so-called lifting property, i.e.
whenever it is isomorphic to a quotient space X/Y then Y is complemented
and so X is isomorphic to �1 ⊕ Y . Thus, being isomorphic to �1 is a liftable
property. Similarly, being isomorphic to �∞ is an extendable property, as is
being injective (i.e. being complemented in every superspace).

Proposition 2.8. Let P be a 3-space property. Then �1-by-P is a 3-space
property.

Of course �1 can be replaced by �1(�) for any� in this result. It is natural to
ask if �1 can also be replaced by L1 or by an L1 space. One has the following
partial result.

For conciseness, let us say that a Banach space has the property C B if it is
complemented in its own bidual.

Proposition 2.9. Let P be a 3-space property which implies C B. Then
L1-by-P is a 3-space property.

Proof. It suffices to show that P-by-L1 implies L1 ⊕P and this follows
from the well known result of Lindenstrauss [36, Lemma 1], that if Y has C B
and Z is an L1 space, then Y is complemented in X.

In particular L1-by-injective, L1-by-quasireflexive etc. are 3-space prop-
erties. Now fix a non-degenerate measure µ and let L be the property “iso-
morphic to L1(µ)”. Since L1(µ) is isomorphic to its square, the preceding
argument shows that, under the same hypotheses, L -by-P is a 3-space prop-
erty.

If C B were known to be a 3-space property, the previous result would have
a simpler formulation. A counterexample to this problem has recently been
found [5, Theorem 1], so the following partial result may be of interest. It can
also be proved by diagram chasing.

Proposition 2.10. Every C B-by-reflexive space is C B.

Proof. If Z is reflexive, then X∗∗ = X + Y⊥⊥ by Lemma 2.1. If Y is
complemented in its bidual, one can write Y⊥⊥ = Y ⊕ M for some closed
subspace M . Then X + M = X + Y + M = X + Y⊥⊥ = X∗∗ and X ∩ M =
X ∩ Y⊥⊥ ∩ M = Y ∩ M = {0}. Thus X∗∗ = X ⊕ M .
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3. Weakly compactly generated spaces for beginners

Consider now the following generalization of separability and reflexivity: a
Banach spaceX is said to be weakly compactly generated (WCG) if it contains
a weakly compact subset having dense span. Apart from separable and reflexive
spaces, other popular examples are c0(�), for any set � ({eγ : γ ∈ �} ∪ {0} is
weakly compact),L1(µ) for any σ -finite measureµ (ifµ is finite, the inclusion
mapping L2(µ) → L1(µ) is continuous and has dense range) and the spaces
C(K) when K is a weakly compact subset of a Banach space ([1, p. 36], or
[60, p. 189]).

It is clear that any quotient (in particular, any complemented subspace) of
a WCG space is WCG. It is hard to find subspaces of WCG spaces which are
not WCG, but both Rosenthal [49] and Argyros, [2] or [18, §1.6], succeeded
in doing so. In this section we concentrate on the question: what can be said
about P-by-Q spaces when P,Q ∈ {separable, reflexive, WCG}? Of course
all three properties pass to (finite) direct sums. As various examples show,
being WCG is not a 3-space property.

This section begins with two results which can be proved in an elementary
manner. They are due to Johnson and Lindenstrauss [32]. The original proof of
the first required detailed knowledge of projections in WCG spaces. We give
a new proof, using only the elementary lifting argument from [19].

Proposition 3.1. Every reflexive-by-WCG space is WCG.

Proof. Let Y be a reflexive subspace of X and let K be a weakly compact
set in X/Y spanning a dense subspace. Take a bounded subset A in X such
that q(A) = K , and denote by B the weak* closure of a set B in X∗∗. Clearly
q∗∗|X = q and q∗∗ is weak* continuous, and so q∗∗(A) ⊆ q∗∗(A) = q(A) =
K ⊂ X/Y = q∗∗(X). Since Y is reflexive, one has Y⊥⊥ = Y ⊂ X and so
A ⊆ X+ ker q∗∗ = X+Y⊥⊥ = X. Thus A is relatively weakly compact, and
the relatively weakly compact set A ∪ ball(Y ) spans a dense subspace of X.

Observe that the lifting of weakly compact sets is not always possible:
denoting by JL the space from Example 3.6, weakly compact sets in JL are
separable while JL/c0 admits nonseparable weakly compact sets (e.g. its unit
ball!), and these cannot be lifted.

As mentioned in the introduction, the hypothesis of reflexivity in Proposi-
tion 3.1 can be weakened considerably. This is the subject of §6 and §7.

Proposition 3.2. Every WCG-by-separable space is WCG.

Proof. Suppose that Y is WCG and X/Y is separable. By Lemma 2.6 (i),
X = Y + M , where M is separable. Obviously the union of a norm compact
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set which generates M and a weakly compact set which generates Y will do
the trick.

Johnson and Lindenstrauss also proved a useful converse to Proposition
3.2. Namely, if X is WCG and X/Y is separable, then Y is WCG. This result
lies a little deeper, and will be proved in §5.

Theorem 3.4 below shows that if P is any property for which WCG-by-P
implies WCG, then P implies separability. Thus Proposition 3.2 is “best pos-
sible”. To prove that, we need the following well known result, exact attribution
of which is a little difficult. It is an obvious consequence of [40, Theorem 6].
The earliest explicit statement which we could find was [48, p. 19, footnote].

Example 3.3. If � is a set of cardinality equal to the continuum, then there
is a subspace A of �∞ containing c0 so that A/c0

∼= c0(�).

Since every weakly compact subset of �∞ is separable, it is clear that A
is not WCG. In particular, c0 is uncomplemented in A. (The existence of a
non-trivial extension of c0 by c0(�), for any uncountable set �, follows easily
from this.) Thus one has a counterexample to the 3-space problem for WCG
spaces. Although this is the simplest counterexample, it was not the first to be
discovered. For a brief discussion of some others see [60, p. 191].

Theorem 3.4. Let Z be any non-separable Banach space. Then there is a
non-WCG extension of c0 by Z.

Proof. We assume that Z is WCG, since the result is trivial otherwise.
According to Reif [47, pp. 336–7], Z admits a Markuševič basis (xγ , fγ )γ∈� ,
i.e. a biorthogonal system in Z × Z∗ for which (xγ )γ∈� separates the points
of Z∗ and (fγ )γ∈� separates the points of Z. One may assume without loss
of generality that (fγ ) is bounded. Then the map T : Z → c0(�) defined by
T x = (fγ (x)) is easily checked to be a bounded linear operator with dense
range. Let A be the space defined in Example 3.3 and let Q : A → c0(�) be
the quotient mapping.

Set B = {x ∈ A : ‖x‖ ≤ 1,Qx ∈ T (ballZ)}, and let X be the linear span
of B, equipped with the norm whose unit ball is B. It is routine to check that X
is a Banach space, and that B ∩ c0 = ball(c0). So X contains c0 as a subspace
and it is easily verified that X/c0

∼= Z. However the identity mapping X → A

is continuous and has dense range, so X cannot be WCG. In particular, this
copy of c0 cannot be complemented.

The idea of the preceding proof can be found in [32, Example 1], [60,
Lemma] and [57, Theorem 1]. The same argument appears again in 6.2. In
categorical language, X is simply the pullback of T and Q. For more applic-
ations of this sort of argument, see [5] and [6].
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Theorem 3.4 lies rather deep, because Reif’s result depends on results about
projections in WCG spaces. (These are discussed briefly in §5.) Not surpris-
ingly, special cases have easier proofs. We mention just two.

Example 3.5. There is an extension of c0 by a WCG L1 space which is
not WCG.

Proof. Denote by 2 the two point measure space {−1, 1}, with each point
having measure 1

2 . Let µ be the product measure on S = 2� , and denote by
pγ : S → 2 the projection onto the γ th coordinate. Define T : L1(µ) →
c0(�) by (Tf )(γ ) = ∫

S
fpγ dµ. (This is well defined since the characteristic

function of any elementary measurable set gets mapped to a finitely supported
function.) Then T is a bounded linear operator with dense range and one
proceeds as before.

The literature does not seem to contain many examples of non-trivial twisted
sums of a L∞ and a L1 space. For further discussion of this, see [6]. We have
recently found a separable example, details of which will appear elsewhere.

Since the inclusion mapping �p(�) → c0(�) is continuous and has dense
range, one may conclude that there is a non-trivial twisted sum of c0 and �p(�)
for 1 < p < ∞. In particular, Johnson and Lindenstrauss [32, Example 1]
first found the following.

Example 3.6. There is an extension of c0 by a Hilbert space, denoted in
the rest of this paper by JL, which is not WCG.

In particular, JL is not reflexive⊕separable, and c0 is an uncomplemented
subspace. It is worth noting that the natural mapping JL → A is injective. Here
A is again the space from Example 3.3. It follows that every weakly compact
subset of JL embeds in A and so is separable. Thus every reflexive subspace of
JL is separable. Similarly JL∗ is weak* separable. The reader can find further
properties of JL in the original paper [32, Example 1], or in the survey [60,
Example 3].

The lifting property of �1 implies that the dual space JL∗ is isomorphic to
the direct sum of �1 and a Hilbert space, and thus JL∗ is weakly compactly
generated. This was the first example to show that WCG∗ does not imply WCG.

Theorem 3.4 shows that any property, which implies WCG but does not
imply separability, is not liftable. Amongst such properties are reflexivity,
being isomorphic to c0(�) and admitting a non-separable weakly compact
subset.
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4. Asplund spaces and the duality counterexample

Jarchow [29, §3, Remark 5(b)] asked whether a Banach space property P has
to be a 3-space property whenever P∗ is a 3-space property. The answer to
this question is already known (although not very well). It is implicit in [7]
and explicit in [8, § 6.6] that the hereditary Dunford-Pettis property provides a
counterexample. In [12, Example III-10(3)], it is shown that (WCG &Asplund)
furnishes another counterexample. Whether the property WCG itself provides
a counterexample is still open; see §5 and §7 for some discussion of this
problem. We give here a much simpler counterexample. Specifically, we will
show that reflexive-by-separable is not a 3-space property, but that (reflexive-
by-separable)∗ is a 3-space property. Another counterexample, having Čech
complete unit ball, is discussed briefly in §8.

Let us say that X has the property Psep whenever every separable subspace
of X has P . A property is said to be separably determined if P and Psep are
the same. For example, reflexivity is separably determined. Also, Theorem 4.1
tells us that if P is a 3-space property which passes to subspaces, then Psep

is also a 3-space property.
Another useful notion is that of Asplund space. We will call a Banach space

an Asplund space if every separable subspace has separable dual. Symbolic-
ally, being Asplund is the property (separable∗)sep. See [43, §2] or [59] for
some equivalent formulations in terms of automatic differentiability of convex
functions, or the dual formulation in the next paragraph.

Although it is not essential at this stage, recall that a Banach space is said to
have the Radon-Nikodým property (RNP) if every bounded subset admits a slice
(i.e. a non-empty intersection with a half-space) of arbitrarily small diameter.
There are many other equivalent formulations: the reader may refer to [52] or
[15] for further enlightenment. Amongst other things, Asplund spaces coincide
with spaces whose duals have RNP. In particular, separable dual spaces have
the Radon-Nikodým Property.

Since the RNP is a 3-space property ([15, p. 211] or [8, Chapter 6]), the
same occurs with the RNP∗. We prefer a direct proof.

Theorem 4.1. Let P , Q be two properties such that P-by-Q passes to
subspaces. Then Psep-by-Qsep implies (P-by-Q)sep.

Proof. Let X be a Banach space, Y a subspace with Psep so that X/Y
has Qsep. Let S0 be any separable subspace of X. By Lemma 2.6(ii), there is
a separable subspace S of X such that Y + S is closed and that S contains S0.
Then one has S/(S ∩ Y ) ∼= (Y + S)/Y ⊂ X/Y which yields that S/(S ∩ Y )

has Q. Since S ∩ Y ⊂ Y has P it is clear that S has P-by-Q. Thus S0 also
has P-by-Q.
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Corollary 4.2. Being an Asplund space is a 3-space property.

Proof. Having separable dual is a 3-space property which passes to sub-
spaces.

Theorem 4.3. The following three properties are equivalent:

(i) separable∗-by-reflexive,

(ii) separable-by-reflexive and Asplund,

(iii) (reflexive-by-separable)∗.

Proof. (i) ⇒ (ii) This is obvious from Corollary 4.2.
(ii) ⇒ (iii) Suppose that Y is separable and Z reflexive. If X is Asplund,

then X∗/Y⊥ ∼= Y ∗ is separable. Clearly Y⊥ ∼= Z∗ and so X∗ is reflexive-by-
separable.

(iii) ⇒ (i) If X has (reflexive-by-separable)∗ then there is a reflexive (hence
weak* closed) subspace R of X∗ with X∗/R separable. Clearly X/R⊥ is re-
flexive since R∗ is reflexive; and (R⊥)∗ ∼= X∗/R is separable.

In [8, p. 115], a Banach space was said to have the Plichko-Valdivia prop-
erty (PV ) if it could be expressed as the direct sum of a reflexive subspace
and a separable subspace. We prefer a different definition: we will say that a
Banach space X has PV if it contains a reflexive subspace R and a separable
subspace S so that X = R + S. It is shown in §5 that these two definitions
are equivalent. Liftability of separability implies that PV is equivalent to
reflexive-by-separable.

Now we can give the promised counterexample to the duality problem.

Theorem 4.4. The property PV∗ is a 3-space property, although PV itself
is not a 3-space property.

Proof. The first assertion follows from the facts that being Asplund and
being separable-by-reflexive are both 3-space properties, whose combination
is equivalent to PV∗. For the second, recall the Johnson-Lindenstrauss space
JL from Example 3.6. It is obvious that c0 and JL/c0 have PV . Since JL is
not WCG, it cannot have PV .

We have just seen that every space with PV∗ is Asplund. The following
well-known generalization [43, Theorem 2.43] of this result will be needed
several times in §6 and §7. Its proof is short enough to bear repeating.

Proposition 4.5. All WCG∗ spaces are Asplund spaces. Equivalently,
WCG dual spaces have the Radon-Nikodým Property.

Proof. Since the dual of a subspace is a quotient of the dual space, it
suffices to establish this in the separable case. If K ⊂ X∗ is weakly compact,
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then the weak and weak* topologies coincide on K . If X is separable, then K

is weak* metrizable, hence weakly metrizable, hence weakly separable. If K
generates X∗, then X∗ is separable.

5. Projections on WCG spaces and applications

One of the most interesting properties of WCG spaces is the so-called separable
complementation property. We recall this result and some applications in this
section. Except for Theorems 7.1 and 7.2, all later results in the paper depend
on this section.

Weakly compactly generated spaces have many other interesting properties,
for which the reader may refer to [13] or [37]. For the most part, we will only
need the following result about them. (Admittedly, a somewhat stronger result
was used in the proof of Theorem 3.4.) This was originally proved in [1,
Lemma 4]. Various simpler proofs are now available; possibly the one in [55]
is the shortest and most accessible. Another very short proof appears in [44].

Theorem 5.1. Let A0 be a countable subset of a WCG space X, and let B0

be a countable subset of X∗. Then there is a norm one projection P on X with
separable range, such that A0 ⊂ PX and B0 ⊂ P ∗X∗.

As well as alternative proofs, a number of extensions of this result exist in
the literature [13], [21], [26], [30], [42], [53]. Here we will mention only two
of them. One is the following: if X, A0, B0 are as above, and Y is an arbitrary
closed subspace ofX, then there is a projection P as above, with the additional
property that PY ⊂ Y . This was proved by different methods in [30] and [26],
neither of them elementary. We mention this because although several results
below were originally proved using this version, it is worth pointing out that
every result which we know which was originally proved using PY ⊂ Y can
now be proved without this additional conclusion.

However we learnt from a recent conversation with M. Fabian and J. Ori-
huela that this version can also be established by elementary methods. The
basic idea is that any countable amount of information can be smuggled into
the conclusion of Theorem 5.1. In particular, a simple modification of the proof
shows that P can be chosen to have norm one with respect to each of a count-
able family of equivalent norms on X. If ‖ · ‖n denotes the gauge functional
of (1/n) ball(X)+ ball(Y ), and ‖P ‖n ≤ 1 for all n, a short calculation shows
that PY ⊂ Y . This argument appears in [18, p. 109], where it is used to prove
a similar sort of result.

The other generalization is the following result from [51], applicable in
arbitrary Banach spaces, which was motivated by earlier work in [25]. It will
be needed towards the end of §7. The technical ideas are much the same as in
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[1], with weak* compactness of the dual ball replacing weak compactness of
a generating set. For a proof see [51, Proposition 2] or [24, Lemma III.4.3].

Proposition 5.2. Let N be a separable subspace of X and F a separable
subspace of X∗. Then X has a separable subspace M containing N , which
admits a linear extension operator T : M∗ → X∗ with T (M∗) ⊃ F . In
particular, M∗ is isometric to a complemented subspace of X∗.

If N∗ is separable, can one choose M∗ to be separable as well? This is
obviously possible if X is an Asplund space, but in general it is not: take
X = L1(0, 1) and letN be the closed linear span of the Rademacher functions.
A completely different proof that M can be so chosen, under the stronger
assumptions that X/N is reflexive and F = {0}, appears as the Banach space
case of [56, Theorem 5].

One useful corollary was promised in the last section. Again, our proof is
simpler than the original, requiring no knowledge of injections into c0(�).

Corollary 5.3. [32]. Let X be a WCG space, Y a subspace with X/Y

separable. Then Y is also WCG.

Proof. Since Y⊥ ∼= (X/Y )∗ is weak* separable, one may choose a count-
able set B in X∗ which is weak* dense in Y⊥. Theorem 5.1 then gives us a pro-
jection P on X with separable range, and so that Y⊥ ⊆ P ∗(X∗) = (ker P)⊥.
Obviously ker P is WCG, ker P ⊆ Y and Y/ ker P ⊆ X/ ker P is separable.
By Proposition 3.2, Y is WCG.

Now we show that a Banach space X is separable⊕reflexive (if and) only
if it has PV . Thus our definition of PV is consistent with that given in [8,
p. 115].

Proposition 5.4. For any Banach space, the following properties are equi-
valent:

(i) the Plichko-Valdivia property,

(ii) reflexive⊕separable,

(iii) weakly compactly generated & separable-by-reflexive.

Proof. It is trivial that (ii) implies (i), and (i) implies (iii) is clear from §3
and §2. To show that (iii) implies (ii), supposeX contains a separable subspace
S0 with X/S0 reflexive. By Theorem 5.1, S0 is contained in a complemented
separable subspace S. The complement of S is isomorphic to X/S which is
isomorphic to a quotient of X/S0 which is reflexive. Thus X/S is reflexive and
X has PV .

Although PV is not a 3-space property, it does pass to subspaces and
quotients [45]. Now we give a new proof of this, avoiding the result used in the
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original proof that the projection in the Theorem 5.1 can be chosen to leave a
given subspace invariant.

Theorem 5.5. Let X be a Banach space with PV and Y a subspace of X.
Then Y and X/Y also have PV .

Proof. That X/Y has PV is clear from Theorem 2.7 and Proposition 5.4.
For subspaces, one needs to work a bit harder.

Write X = R⊕S where R is reflexive and S is separable. It is obvious that
any subspace containing S has PV . In particular, X0 = Y + S has PV , and
thus is WCG. Since X0/Y is separable, Corollary 5.3 tells us that Y is also
WCG. But Y is separable-by-reflexive by Theorem 2.7. By Proposition 5.4, Y
has PV .

Call a Banach space hereditarily WCG, or HWCG, if every closed subspace
is WCG. Obviously every PV space is HWCG. With almost no changes, the
preceding proof gives us the following. We are indebted to M. Fabian for posing
the question which led to this result.

Theorem5.6. Every (hereditarily WCG)-by-separable space is hereditarily
WCG.

It has long been known that WCG Asplund spaces are HWCG ([31], [13,
Corollary VI.4.4] or [18, §8.3]). In particular c0(�) is a HWCG space without
PV . Example 3.3 shows that HWCG is not a 3-space property; we do not
know whether HWCG passes to direct sums. Recalling Jarchow’s problem, it
would be interesting to know whether HWCG∗ is a 3-space property.

Proposition 5.7. A dual space has PV (if and) only if it is the direct sum
of a reflexive space and a separable dual space. Thus every PV dual space
has a predual with PV .

Proof. Suppose that X∗ has PV . Then X∗ = R⊕S, where R is reflexive
and S is separable. Since R is weak* closed, one has R = M⊥ for some
subspace M of X. But then S ∼= X∗/M⊥ ∼= M∗, so S is isomorphic to a dual
space. (Of course, S need not be weak* closed.)

The Johnson-Lindenstrauss space shows that a PV dual space may have a
predual without PV . We conjecture that every WCG dual space has a WCG
predual.
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6. More stability results and twisted properties

It has already been shown that WCG and PV are not 3-space properties.
The main result of this section is that PV∗∗ implies E WCG. This means that
PV∗∗-by-WCG implies WCG, which includes a number of interesting special
cases. First, a partial result.

Proposition 6.1. Every PV∗∗-by-PV space has PV .

Proof. Since PV∗∗ is a 3-space property, every PV∗∗-by-reflexive space
has the property PV∗∗, hence PV . Given our previous results, it follows that

PV∗∗-by-PV ⇒ PV∗∗-by-reflexive-by-separable

⇒ PV -by-separable

⇒ PV .

With essentially one exception, we have now completely answered the
question: what can be said about P-by-Q spaces when P,Q ∈ {separable,
separable∗∗, reflexive, WCG, PV , PV∗∗}? We now plug this gap by show-
ing that PV∗∗-by-WCG implies WCG. (The old problem from [32, p. 229],
whether WCG∗∗ implies WCG, still appears to be open. If this problem has
a positive solution, it will be interesting to know whether WCG∗∗-by-WCG
implies WCG. A very easy partial result, using Lemma 2.2, is that WCG∗∗-by-
reflexive implies WCGco. However the dual of the James Tree space, described
in Example 6.5, shows that WCGco does not imply WCG.)

The following result is so important to us that it will often be applied without
mention.

Proposition 6.2. Let P be any Banach space property for which P-by-
reflexive implies WCG. Then P implies E WCG.

Proof. Suppose that the subspace Y has P and that X/Y is WCG. Ac-
cording to Davis et al. ([10] or [18, Theorem 1.2.3]) there is a reflexive space
R and a continuous linear operator T : R → Z with dense range. Now we put
B = {x ∈ X : ‖x‖ ≤ 1, x + Y ∈ T (ballR)} and argue as in the proof of The-
orem 3.4. Let XB denote the linear span of B equipped with the norm whose
unit ball is B. Then XB/Y is isomorphic to R and thus reflexive. Since Y has
P , XB must be WCG. Since B is bounded, the inclusion mapping XB → X

is continuous and has dense range. Thus X is WCG.

Of course, this gives another proof of Proposition 3.1.

Corollary 6.3. Every PV∗∗ space has E WCG.
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Following [41, p. 31], we call a Banach space X coseparable if it has the
property separableco, i.e. if X∗∗/X is separable. This is obviously a 3-space
property, shared by all reflexive and all separable∗∗ spaces. The main part of
the next result, namely the equivalence of (i) and (iv), shows that there are
essentially no other coseparable spaces. This appeared first in [54], although
the proof there seems to be incomplete. Specifically, the claim on [54, p. 13]
that F can be chosen so that its weak* closure contains E⊥ is not clear to us.
The proof below is a specialisation of that given in [58]. Note that results about
such spaces are far from vacuous: Davis et al. [10] showed that every WCG
space is isomorphic to X∗∗/X for some Banach space X.

Theorem 6.4. The following Banach space properties are equivalent:

(i) separableco,

(ii) separable∗∗-by-reflexive,

(iii) PV∗∗ and Asplund,

(iv) reflexive ⊕ separable∗∗.

In particular, every coseparable space has PV , and hence is WCG.

Proof. (i) ⇒ (ii). Suppose that X∗∗/X is separable, and consider the fol-
lowing subspace of X∗∗ containing X:

G =
⋃{

M⊥⊥ : M ⊂ X,M separable
}
.

A moment’s reflection shows that G is closed. Since G/X is separable,
there is a sequence (xn) of elements of G whose union with X is dense in G.
For each integer n, select a separable subspace Mn of X such that xn ∈ M⊥⊥

n .
Denote by N the separable subspace of X spanned by the union of all Mn.

By Lemma 2.1, X + N⊥⊥ is closed in X∗∗. Thus, X + N⊥⊥ = G.
Now consider a bounded sequence (xn + N) in X/N . Clearly one may

suppose that (xn) is a bounded sequence in X. Let F ∈ X∗∗ be an arbitrary
weak* limit point of (xn). Since (xn) is contained in a separable subspace
M ⊂ X, we must have F ∈ M⊥⊥ ⊂ G. Thus we can write F = x + g

where x ∈ X and g ∈ N⊥⊥. Now let f be any functional in N⊥. Then
f (x) = (x + g)(f ) = F(f ) is a limit point of the scalar sequence f (xn) =
f (xn + N). Identifying N⊥ with (X/N)∗ one sees that (xn + N) has a weak
limit point, namely x + N . The Eberlein-Šmulian Theorem then implies that
X/N is reflexive.

By Lemma 2.1, N∗∗/N is isomorphic to a subspace of X∗∗/X, and so must
be separable. Thus N∗∗ is also separable.

(ii) ⇒ (iii) We have remarked that PV∗∗ and Asplundity are both 3-space
properties; obviously both are implied by separable∗∗ and by reflexivity.
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(iii) ⇒ (iv) Suppose that X has PV∗∗. By Theorem 5.5, X also has PV ,
so one may write X = R ⊕ S where S is separable and R is reflexive. By Pro-
position 4.5, X∗ is Asplund. If X is also Asplund, it is easy to check that every
complemented separable subspace of X has separable bidual. In particular, S
is separable∗∗.

(iv) ⇒ (i) is trivial.

For quasireflexive spaces, i.e. spaces with X∗∗/X finite dimensional, there
is a shorter proof of the conclusion of Theorem 6.4(iv). Civin and Yood [9,
Theorem 4.6] prove more or less by induction on dimX∗∗/X that such spaces
are reflexive-by-separable. Hence they have PV and Proposition 5.4 can be
applied.

Since coseparability implies PV∗∗, we see that coseparable-by-WCG im-
plies WCG [57, Theorem 1] and that quasireflexive-by-WCG implies WCG.

Since

separable∗∗ �⇒ separable
⇓ ⇓

reflexive ⇒ coseparable ⇒ PV∗∗ ⇒ PV ⇒ WCG,

we can summarize all the preceding results by saying that if P and Q are
chosen amongst these seven properties, then either P-by-Q ⇒ min{P,Q}
or JL has P-by-Q. Of course the minimum is taken with respect to the lattice
ordering induced by the preceding diagram.

The space JL∗ is an example of a space with PV whose predual JL does not
have PV . The lifting property of �1 is not essential to prove that JL has PV∗;
the important point, as Proposition 5.7 shows, is that c∗

0 is separable. Theorem
6.4 shows that the Johnson-Lindenstrauss example is “sharp”. Amongst other
things, it shows that ifX is separable∗∗-by-reflexive thenX∗∗ has PV , whence
X, X∗ and X∗∗ are all WCG.

This leads us to ask whether PV∗∗ can be replaced by WCG∗∗ in Theorem
6.4(iii). It cannot; a simple counterexample is the �2 direct sum of uncountably
many copies of James’s quasireflexive space.

The following example, the James Tree space, shows that PV∗∗ is a strictly
weaker property than coseparability. Thus the words “and Asplund” cannot be
deleted from part (iii) of Theorem 6.4. In connection with this part of the proof,
note that the property (separable∗∗)sep is equivalent to the property (Asplund &
Asplund∗). Since we don’t need this result, which depends on Proposition 5.2,
we omit the proof.

Example 6.5. There is a separable dual space, denoted JT , such that
JT ∗∗/JT is a non-separable Hilbert space.
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Description. This space was first constructed in [27], then studied further
in [38]. The essential properties [38] are that it is a separable dual space, and
that JT ∗∗/JT is a non-separable Hilbert space. (Note that the existence of
a separable dual space Y , such that Y ∗∗/Y is non-separable and reflexive, is
also proved in [10, pp. 324–325].) It seems to be common practice to denote
its predual JT∗ by B. Clearly (B∗∗/B)∗ ∼= JT ∗∗/JT is also a non-separable
Hilbert space, and so B∗∗ is not separable. Thus B∗ is not an Asplund space
(even though it does not contain �1), and Proposition 4.5 implies thatB∗∗ is not
WCG. This gives another counterexample to the 3-space problem for WCG
spaces. In particular, B is not complemented in B∗∗, and so B is not a dual
space.

Since PV∗∗ passes to subspaces, we see that any extension of a subspace
of JT by a WCG space is WCG. More generally, any separable coreflexive
space which is complemented in its bidual has PV∗∗, and thus E WCG.

It is natural to ask what conclusion can be drawn when some higher dual
of X has PV . Obviously {n : the nth dual of X has PV } is closed under
subtraction by 2, but nothing more can be said. For B this set is precisely the
union of 0 and the odd integers; for JT it is precisely the even integers. Direct
summing with other examples then shows that any set which is closed under
subtraction by 2 can be realised as {n : the nth dual of X has PV }, for some
Banach space X.

Since PV kindly provided us with an example of a non-3-space property
whose dual is a 3-space property, it is natural to ask if it provides a counter-
example for the (still open) problem: if Pco is a 3-space property, must P be
a 3-space property? It does not, as the James Tree now helps us see.

Example 6.6. The properties PV co and WCGco are not 3-space properties.

Proof. Let B = JT∗ be the predual of the James Tree space. Applying
[10] one finds a Banach space X with X∗∗/X ∼= B. Since X∗∗/X ∼= B is
separable, one sees that X has PV co. Since B∗∗/B is a Hilbert space, X∗∗/X
also has PV co. However X∗∗∗∗/X∗∗ ∼= (X∗∗/X)∗∗ ∼= B∗∗ is not WCG, and
thus X∗∗ does not have PV co.

Note that PV co does not imply PV . In fact the space JT ∗ shows that
reflexiveco does not even imply WCG.

7. Duality and new stability results

The main result of the last section was that PV∗∗, which is a 3-space property,
implies E WCG. In this section we present several other properties which also
imply E WCG, in particular the combination (WCG&Asplund&dual), and be-
ing a subspace of a space with (PV &C B). These are probably not 3-space
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properties; nevertheless any finite twisted sum of Banach spaces, in which
each of the components has one of these properties, also has E WCG.

Call a Banach space a dual space if it is isomorphic to the dual of another
Banach space. A little care is needed here, since any non-reflexive space can be
renormed so as to be not isometric to the dual of any space [11]. It has recently
been shown [5, Theorem 1 or 5] that being a dual space is not a 3-space propery.
The following partial result is quite sufficient for us. It is needed for all the
results in this section, and we present a new proof.

Theorem 7.1. [14]. Every extension of a dual space by a reflexive space is
a dual space, and the dual subspace is weak* closed.

Proof. Let Y be a dual space with X/Y reflexive. Let R : X∗ → Y ∗ be
the restriction map, and set W = R−1(Y∗), where Y∗ is an isomorphic predual
of Y . We claim that X ∼= W ∗; it suffices to show that every bounded net in X

has a σ(X,W) convergent subnet. So let (xα) be any bounded net in X. Using
Lemma 2.1(ii) and the reflexivity ofX/Y we may suppose (passing to a subnet
if necessary) that there is an x ∈ X and an F ∈ Y⊥⊥ so that xα → x + F

weak*. Of course there is a bounded net in Y which converges weak* to F .
The standard trick of expanding the index sets permits us to assume that this
net is defined on the same index set as (xα). Thus we may write yα → F

weak*. It clearly follows that xα − yα → x weakly. Since Y is a dual space,
we may (passing to a subnet if necessary) assume that yα → y for the topology
σ(Y, Y∗) and some y ∈ Y . Then for any f ∈ W we have f (xα − yα) → f (x)

and f (yα) → f (y). This implies that xα → x + y with respect to σ(X,W),
as required.

Trivially Y⊥ ⊂ W , and so the σ(X,W) closure of Y is contained in the
σ(X, Y⊥) closure of Y . But the latter is simply Y , which is thus σ(X,W)

closed.

The hypothesis of reflexivity can be weakened considerably. According
to [5, Proposition 3], it suffices to assume (in the notation of the preceding
proof) that X/Y ∼= W ∗ for some Banach space W with the properties that W
is complemented in its bidual, and W ∗∗/W is injective. In particular, every
dual-by-quasireflexive space is a dual space.

Theorem 7.2. Every (dual & PV ) space enjoys E WCG. In particular, �1

enjoys E WCG.

Proof. Thanks to Proposition 6.2, it suffices to prove that every (dual PV )-
by-reflexive space is WCG. Consider a PV dual space Y with Z reflexive. By
Theorem 7.1 X is a dual space; in the predual X∗, note that the subspace Z∗
and the quotient Y∗ ∼= X∗/Z∗ enjoy the 3-space property PV∗. Hence X has
PV .
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Note that Theorem 7.2 does not depend on Theorem 5.1, since we used
only the trivial implication PV ⇒ reflexive-by-separable. Note also that the
second part of this result is not trivial, since there are non-trivial twisted sums
of �1 and �p(�), for 1 < p < ∞. This follows from [35, §4] when � is
countably infinite, and the general case then follows by forming a direct sum
with �p(�).

As a quick application, we give a simple proof of a result from [4]. The action
takes place in JH ∗, the dual of the James-Hagler space [22], and concerns the
subspace F of JH ∗ generated by the evaluation functionals. According to [4,
Lemma 5],F fails the Radon-Nikodým Property, and so cannot be a dual space.
We prove the latter fact directly. Clearly F is separable, and it can be shown
that JH ∗/F ∼= c0(�). Since JH is separable but JH ∗ is not, Proposition 4.5
shows that JH ∗ cannot be WCG. Thus we have another counterexample to the
3-space problem for WCG spaces. By Theorem 7.2, F cannot be a dual space.
We note also that every infinite-dimensional subspace of JH ∗, in particular of
F , contains �1 [22, Theorem 1(e), p. 304]. So it is not true that (separable &
�1-saturated)-by-WCG implies WCG.

A short argument, using Corollary 5.3, now shows that every subspace of
a PV dual space enjoys E WCG. This obviously includes Corollary 6.3. We
will not prove this now, as a much stronger result appears later.

First, let us consider some questions which arise naturally from Theorem
7.2.

QuestionA. , In Theorem 7.2, can “PV ” be replaced by “WCG”? Equival-
ently, is WCG∗ a 3-space property? Does reflexive-by-WCG∗ imply WCG∗?
Does (WCG dual)-by-reflexive imply WCG?

Question B. , If so, can “dual” then be replaced by “RNP”? Equivalently,
is (WCG & RNP) a 3-space property?

Question C. , In Theorem 7.2, can “dual” be replaced by “C B”?

Question D. , In Theorem 7.2, can �1 be replaced by L1(µ), for a σ -finite
measure µ?

Question E. , Does E WCG pass to subspaces?

We can give partial answers to some of these questions. Let us discuss them
in turn before proving anything.

A. Corollary 7.7 asserts that “PV ” can be replaced by “WCG & Asplund”.
This includes the case of an �2 product of uncountably many copies of James’s
space, which does not enjoy PV . Of course manyWCG dual spaces, including
JL∗, JT and all of its even duals, �1 and all reflexive spaces do have PV .
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A positive answer to Question A would give another response to Jarchow’s
request for a non-3-space property whose dual is a 3-space property. An ex-
ample is given in [5, Theorem 5] of an extension of a separable Hilbert space
by a separable dual space which is not a dual space. This shows that neither
(separable & dual) nor (WCG & dual) is a 3-space property, and thus the most
obvious method for resolving this problem is not available.

B. We have no idea about this question, which obviously arises from Pro-
position 4.5. Note that WCG∗ and (WCG&RNP)∗ are the same property. A
negative answer to Question A would imply the existence of an example with
Y a WCG dual space, Z = R reflexive and yet X not WCG. We emphasize
that, by the previous results, neither Y∗ nor R could be separable. We will
see shortly that Y could not even be a subspace of a PV dual space. In each
counterexample to the 3-space property for WCG spaces known to us the sub-
space is separable and contains either c0 or B = JT∗ or F (the subspace of
JH ∗ discussed earlier), none of which has the Radon-Nikodým Property.

Recall that a Banach space is said to have the point of continuity property
(PCP) if every non-empty closed bounded subset admits a point where the
identity mapping is weak-to-norm continuous. Clearly this is implied by the
RNP; the two are equivalent in subspaces of L1 spaces [4]. We note that, by
[16, p. 346] and [4] respectively, the spacesB andF have PCP. Thinking about
JT ∗ and JH ∗ again, we see that (separable & PCP)-by-WCG does not imply
WCG.

Not every separable space with the Radon-Nikodým Property embeds into
a separable dual space ([3], [39], [33]), so it may be of interest to know that
every extension of a subspace of a PV dual space by a WCG space is WCG.At
first sight, it appears to be a mild generalization of Theorem 7.2, but it actually
lies somewhat deeper, since it depends on Theorem 5.1. We will not prove this
now, as a stronger statement appears in Theorem 7.6. The techniques needed
are the same as those needed for the coming partial solution of questions C
and D.

C. Actually Theorem 7.6 gives a complete positive answer to this question.
D. Corollary 7.4 shows that this question has a positive answer for separable

L1 spaces. The general question is obviously equivalent to: if µ is a σ -finite
measure, does L1(µ)-by-reflexive imply WCG? This is interesting, because
both reflexive spaces and such L1(µ) spaces are strongly WCG in the sense
of [50]. It seems to be unknown whether being strongly WCG is a 3-space
property.

E. The sufficient condition defined in Theorem 7.6 obviously passes to
subspaces; we do not know whether this is true for that of Corollary 7.7. Thanks
to Rosenthal’s counterexample to the heredity problem for WCG spaces [49],
questions D and E cannot both have positive solutions.
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Now for some proofs. Just for this section, let C DS denote the property
“complemented in the dual of a separable space”.

Proposition 7.3. Let Y be a separable space which is also C DS . Then
every extension of Y by a reflexive space is (separable&C DS )⊕reflexive.
Thus Y enjoys EWCG.

Proof. If Y is C DS , then there is a separable space S and another Banach
space C with S∗ = Y ⊕ C. Let X contain Y with X/Y reflexive. Put X1 =
X ⊕ C. Clearly X1 is an extension of S∗ by a reflexive space and so Theorem
7.1 gives us a reflexive-by-S space V with V ∗ = X1. More precisely, let
R1 = (S∗)⊥ be the polar of S∗ calculated in V ; then R1 is a reflexive subspace
of V with V/R1

∼= S and S∗ is weak* closed in V ∗.
We claim that there is a separable subspaceW in V and a reflexive subspace

R ⊆ R1 such that V = W ⊕ R. Since S∗ is a weak* separable subspace of
V ∗, Theorem 5.1 gives us a projection P on V with separable range so that
P ∗(V ∗) ⊇ S∗. Put W = P(V ) and R = ker P . Then R⊥ = P ∗(V ∗) ⊇ S∗ =
R⊥

1 , and so R ⊆ R1 as required.
Then X1 = W⊥ ⊕ R⊥ and W ∗ ∼= R⊥ ⊇ S∗. Since S∗ is weak* closed,

we see that R⊥/S∗ is isomorphic to the dual of some necessarily separable
subspace of W (namely R1 ∩ W ). But R⊥/S∗ ⊆ X1/S

∗ is also reflexive and
so must itself be separable.

Recall that Y ⊕ C = S∗ ⊆ R⊥ ⊆ X1. Since C is complemented in X1, it
is certainly complemented in R⊥. So we may write R⊥ = U ⊕ C for some
subspaceU containingY . Separability ofR⊥/S∗ ∼= U/Y and ofY then implies
thatU is separable. Of courseU is complemented inR⊥ ∼= W ∗. Finally we see
that X ∼= X1/C ∼= W⊥ ⊕R⊥/C ∼= R∗ ⊕U is reflexive⊕(separable&C DS ).

The final conclusion follows from Proposition 6.2.

The attentive reader may note that every (WCG&C DS )-by-reflexive space
is actually (WCG&C DS )⊕reflexive, but this tells us nothing new. For if Y
embeds in the dual of a separable space, then Y ∗ will be weak* separable, and
every weakly compact subset of Y will be separable.

Corollary 7.4. L1(0, 1)-by-WCG implies WCG.

Proof. Recall that L1(0, 1) is (isometric to) a complemented subspace of
C[0, 1]∗.

Proposition 7.3 shows that if Y is (separable&C DS ), then it has E WCG.
This rather weak result does not even include Proposition 3.1. Now we remedy
this deficiency by weakening further the conditions placed on Y , thus general-
izing both Corollary 6.3 and Proposition 7.3. More precisely, we will replace
“C DS ” by “C B”, we will replace “separable” by “PV ” and we will replace
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“Let Y be a” with “Let Y be a subspace of a”. It will soon be evident that these
three substitutions must be performed in this order.

It is a well known easy exercise that any Banach space which is comple-
mented in some dual space must have C B. Thus C DS implies C B; our next
result establishes the converse to this, for separable spaces.

Lemma 7.5.
(i) Every separable Banach space with C B is complemented in the dual of

a separable space.

(ii) Every (PV &C B)-by-reflexive space has PV .

Proof. (i) Suppose that F is separable and complemented in some dual
spaceX∗. (We could suppose thatX = F ∗, but this is not necessary.) Applying
Proposition 5.2 with N = {0} gives us a separable subspace M ⊂ X and a
linear extension operator T : M∗ → X∗ such that T (M∗) ⊃ F . Since F is
complemented in X∗, it is undoubtedly complemented in T (M∗), which is
isomorphic to the dual of a separable space.

(ii) It is easily seen that any space with (PV &C B) must be the direct
sum of a reflexive space and a separable space with C B. The conclusion then
follows from part (i) and Proposition 7.3.

Now we can present our main generalization of Theorem 7.2.

Theorem 7.6. Let Y be a subspace of a space with PV and C B. Then Y

enjoys E WCG.

Proof. It suffices to show that Y -by-reflexive implies PV .
LetR⊕S be a (PV & C B) space containingY . It follows from the notation

thatR is reflexive and that S is separable with C B. Put Y1 = Y + S; then Y1/Y

is separable. Clearly S is complemented in Y1, with reflexive complement, so
Y1 is a (PV & C B) space.

Now letX be any extension of Y by a reflexive space. LetX1 be the pushout
(X ⊕ Y1)/2, where 2 = {(y, y) : y ∈ Y }. Then X1/Y1

∼= X/Y is reflexive,
so Lemma 7.5 (ii) tells us that X1 has PV . According to Theorem 5.5, X also
has PV .

Note that there are Banach spaces Y satisfying the hypotheses of The-
orem 7.6 which are not C B. For example, consider the kernel of a quotient
mapping from �1 onto L1(0, 1): according to [36] this space is not C B.

For another sufficient condition for E WCG, recall that Deville and Gode-
froy [12, p. 192] proved that (Asplund & WCG)∗ is a 3-space property, thus
unwittingly answering Jarchow’s question. (The existence of JL shows that
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(Asplund & WCG) is not a 3-space property.) Combining this with Proposi-
tion 6.2 and Theorem 7.1 immediately gives the promised partial solution to
Question A.

Corollary 7.7. Every WCG Asplund dual space enjoys E WCG.

We finish this section by asking: doesL2(µ, �1) enjoy E WCG? This Banach
space is certainly WCG but (if L2(µ) is not separable) it does not satisfy any
of the preceding properties.

8. Separably distinguished spaces and related properties

We have seen that the properties reflexive⊕separable and reflexive⊕separ-
able∗∗ are interesting. It seems natural to investigate the property reflexive⊕
separable∗. This has already been done by Edgar and Wheeler [16], who called
such spaces separably distinguished. Actually their definition of separably
distinguished [16, p. 321] was that X∗ should contain a separable subspace S
for which S⊥ ⊆ X. This can only occur if S⊥ is reflexive, so that definition is
equivalent to reflexive-by-separable∗. Several of the equivalences in the next
result come from [16, Theorem 4.3].

Theorem 8.1. The following Banach space properties are equivalent:

(i) reflexive⊕separable∗,

(ii) reflexive-by-separable∗, i.e. separably distinguished,

(iii) reflexive-by-separable and Asplund,

(iv) PV and Asplund,

(v) PV and PV∗.

Proof. The equivalence of the two definitions of PV ensures that (iv)⇒(i).
The implications (i) ⇒ (v) and (iv) ⇒ (ii) are trivial.

Theorem 4.3 shows that (v) ⇒ (iv). Since Asplundity is a 3-space property,
we see that (ii) ⇒ (iii). Of course Proposition 5.4 ensures that (iii) ⇒ (iv).

We note that neither PV , nor PV∗ nor Asplund alone imply that a space
is separably distinguished. Suitable counterexamples are �1, JL and c0(�)

respectively. The Johnson-Lindenstrauss space also shows that being separably
distinguished is not a 3-space property.

Recall that separable∗-by-reflexive is equivalent to PV∗. Thus we have
now considered all twisted properties formed from the collection {reflexive,
separable, separable∗, separable∗∗}. We finish by considering a couple more
properties which are stronger than being separably distinguished.
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Recall that a topological space is Polish if it is homeomorphic to a complete
separable metric space. We will call a Banach space Polish if its unit ball is
Polish in the weak topology.

There are various forgettable definitions of Čech complete topological spa-
ces. The unit ball of a Banach space is Čech complete in the weak topology if
and only if it is a weak* Gδ subset of the unit ball of the bidual [16, Proposi-
tion 2.3]; in this case we will call the Banach space Čech. We summarize the
main results about these properties in the following result.

Theorem 8.2.
(i) [16, Theorem A] Being Polish is equivalent to being separable, Asplund

and having the point-of-continuity property.

(ii) [8, Chapter 4] Having PCP is a 3-space property, and thus being Polish
is a 3-space property.

(iii) [16, Theorem B] The properties Čech, reflexive-by-Polish and reflexive⊕
Polish are all equivalent. In particular, Polish and Čech spaces are sep-
arably distinguished.

(iv) [16, p. 327] Thanks to the James Tree space, being Čech is not a 3-space
property.

(v) [16, Theorem 4.5] The property Čech∗ is equivalent to coseparability
and is thus a 3-space property.

(vi) [16, Example 4.8] The properties Polish and Čech do not pass to quotient
spaces.

(vii) [16, Proposition 4.2] If Y is a reflexive subspace of X, then X is Čech if
and only if X/Y is Čech.

Obviously (iv) and (v) imply that being Čech provides yet another counter-
example for Jarchow’s problem. Example 6.6 also shows that Cechco is not a
3-space property.

In connection with a variant of Question C from the previous section, JT ∗
shows us that Polish-by-reflexive does not imply WCG. However being Polish-
by-reflexive is a 3-space property, according to Proposition 2.4 and Theorem
8.2(iii).
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