
Ukrainian Mathematical Journal, Vol. 53, No. 1, 2001

LIMIT THEOREMS FOR RANDOM ELEMENTS IN IDEALS 
OF ORDER-BOUNDED ELEMENTS OF FUNCTIONAL BANACH LATTICES

I. K. Matsak1  and  A. M. Plichko2 UDC 519.21

For a sequence of independent random elements belonging to an ideal of order-bounded elements of a
Banach lattice, we investigate the asymptotic relative stability of extremal values, the law of large num-
bers for the  p th powers, and the central limit theorem. 

Assume that  E  is a Banach lattice with norm  || ⋅ ||  and modulus  | ⋅ |  and  X  is a random element with values

in  E.  For arbitrary elements  x 1 , … , x n ∈ E,  the expressions  sup1 ≤ ≤k n kx   and  
1

1n
k

p p
x∑( ) /

,  1 ≤ p < ∞,  are

meaningful (see [1]).  Therefore, for a sequence  ( X n )  of independent copies of  X,  it is natural to introduce and in-
vestigate the quantities 
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kX       and      Zn
p( )  =  

1

1n

k
p

p

X∑





/

.

In a separable Banach lattice, these values are Borel random elements [2]. 
In the present work, we establish conditions under which the following asymptotic relations hold almost surely

as  n → ∞: 
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  a.s.→   � X, (1)
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/1   a.s.→   � p X (2)

where  a.s.→   means the almost-sure convergence in the norm of the space  E,  �  X   and  � p X  are certain nonzero

elements in  E,  and  bn  is a numerical sequence. 
By analogy with the one-dimensional case, relation (1) is called the almost-sure relative stability of the se-

quence  Zn ,  and relation (2) is called the law of large numbers for the  p th powers.  Parallel with relations (1) and
(2), we also investigate conditions under which the central limit theorem is true, namely, 

S

n
n

1 2/     
D →   G (3)

as  n →  ∞  ;  here,  D →   denotes the weak convergence of distributions of random elements,  G  is a Gaussian

random element in  E,  and  S n = 
1

n
kX∑ . 
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The problem of generalization of one-dimensional results for the scheme of sums  S n  to Banach spaces has
been extensively studied in the last 25 years [3, 4]; however, we know a few works devoted to the investigation of
conditions of validity of relations (1) and (2) in the infinite-dimensional case [2, 5, 6].  The asymptotic behavior of
extremal values and the law of large numbers for random variables on the real straight line are well studied (see [7,
8] and the bibliography therein). 

In what follows, we denote by  E +  the set of positive elements of the Banach lattice  E  and by  E  ( u )  the ideal

generated by the element  u ∈ E +,  i.e.,  E ( u )  = { x ∈ E :  ∃ λ > 0,  | x | ≤ λ  u }.  Then 

|| x || u  =  inf { λ > 0 :  | x | ≤ λ  u }

is a norm in  E ( u ) . 

We study relations (1) – (3) under the following main condition:  X ∈ E ( u )  a.s.  for certain  u ∈  E  +  or, which is
the same, 

|| x || u  <  ∞    a.s. (4)

Below, we present necessary definitions and notation from the theory of Banach lattices.  A set  A  of a Banach

lattice  E  is called order-bounded if there exists  u > 0  such that  | x | ≤ u  for every  x ∈ A.

We say that a Banach lattice  E  is  σ-complete if, for an arbitrary order-bounded sequence  ( x  n ) ,  x  n ∈  E,  there
exist the least upper bound  sup n nx≥ 1   and the greatest lower bound  inf n nx≥ 1 . 

As an example of  σ-complete Banach lattices, one can mention Banach lattices dual to other Banach lattices.

In particular, a reflexive Banach lattice is  σ-complete.  Any Köthe functional space (see the definition below) is also

a  σ-complete lattice.  The lattice  C [ 0, 1 ]  is not  σ-complete [1, p. 4].

A Banach lattice  E  is called  σ-order-continuous if 

inf
n nx

≥ 1
  =  0  ⇒  || x n ||  →  0      as    n → ∞

for every decreasing sequence  x 1 ≥ x 2 ≥ … .

Köthe functional spaces are an important example of Banach lattices.  Let us give its definition.  Let  ( T, Λ, µ )
be a complete  σ-finite measurable space.  A Köthe functional space  E  on  T  is a Banach space (of equivalence

classes) of locally integrable functions on  ( T, Λ, µ)  that satisfies the following conditions: 

(i) if  | x ( t ) | ≤ | y ( t ) |  a.e.,  x ( t )  is measurable, and  y ∈ E,  then  x ∈ E  and  || x || ≤ || y || ; 

(ii) for a set  A ∈ Λ  with  µ ( A ) < ∞,  the characteristic function  I ( A ) = { I ( t, A ) , t ∈ T }  belongs to  E. 

The classical spaces  L p ( µ ) ,  1 ≤ p ≤ ∞,  and a Banach space with unconditional basis (in equivalent norm) are
examples of Köthe functional spaces. 

In what follows, we use the well-known statement presented below. 

Proposition 1.  Every separable  σ-complete Banach lattice is  σ-order-continuous [1, p. 7] and order-iso-
metric to a certain Köthe functional space [1, p. 29]. 

A Banach lattice  E  is called  q-concave,  1 ≤ q < ∞,  if there exists a constant  D( q ) < ∞  such that 
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for any finite collection of elements  ( )xi
n
1  ⊂ E.  A Banach lattice  E  has a lower  q-bound if there exists a constant

C( q ) < ∞  such that 
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for any finite collection of pairwise disjunctive elements  ( )xi
n
1  ⊂  E .  A  q-concave Banach lattice has a lower  q-

bound and, hence, its norm is  q-order-continuous [1, p. 83].  If, in addition, the measure  µ  is separable, then the  q-

concave Köthe space  E  is separable [9, p. 93]. 

We say that a Banach space  E  uniformly contains  ln
∞   if there exists a sequence of  n-measurable subspaces

E n ⊂ E  such that the Banach – Mazur distance  d E ln
n, ∞( )   tends to  1  as  n → ∞.  Every Banach lattice that does not

uniformly contain  ln
∞   is  q-concave for certain  q < ∞  [1, pp. 85, 91]. 

1.  First, we establish relation (1) in the Gaussian case for Köthe functional spaces with  σ-order-continuous

norm.  If  X  is a centered (i.e.,  M  X = 0)  Gaussian random element, then all moments of its norm exist, i.e.,

M X k  < ∞,  0 < k < ∞  [3, pp. 257, 258].  Therefore, the mean-square deviation of the random element  X 

� X  =  
π
2

1 2





/
M | X | (5)

exists.  Since  M γ = 0,  M γ 
2 = 1,  and  M  | γ | = ( / )– /π 2 1 2  for a standard Gaussian numerical random variable  γ,

we can conclude that, for a Köthe space, this definition coincides with the standard definition, namely,  � X  =

σ( ) ( ) ,
/

t X t t T= ( ) ∈


M
2 1 2

. 

Theorem 1.  Suppose that  E  is a separable Köthe space with  σ-order-continuous norm,  X   is a centered

Gaussian random element in  E,  and condition (4) is satisfied.  Then the sequence  Z  n  is relatively stable a.s.,
i.e., relation (1), where 
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2 3

1 3
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/
n n

n

( ) ≥

<







and  � X  is defined by equality (5), is true. 

Proof.  Since there exists a measurable isomorphism from  ( T, Λ, µ)  onto a certain measurable space  ( S, Σ, ν)
with  ν ( S ) = 1  that preserves sets of measure zero, we can assume that  µ ( T ) = 1.  Let us prove that 
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and there exists a random element  Y ∈ E  such that 

Z t

b
n

n

( )
  ≤  Y ( t )    a.s. (7)

for all  n ≥ 1. 
Since an abstract analog of the Lebesgue theorem on dominated convergence [10, p. 72] holds in Köthe spaces

with  σ-order-continuous norm, relations (6) and (7) yield (1). 
For real Gaussian random variables, the property of almost-sure relative stability is known [7, p. 203].  Thus,

for every  t ∈ T,  we have 

lim
( )

– ( )
n

n

n

Z t

b
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Hence, according to the Fubini theorem, we get 
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Thus, condition (6) is satisfied. 

Since  X ∈ E ( u ) ,  we have 

| X |  ≤  τ u,    τ  =  || X || u 
,    a.s. (8)

Considering the Gaussian random element  X  in the normed space  E ( u ) ,  we get [4, p. 59; 11, p. 120] 

P ( τ > s )  ≤  C C s1 2
2exp –( ), (9)

where  C1 
  and  C2  are certain constants dependent only on the correlation operator of the random element  X.  We

set 

τ n  =  || X n || u ,    n ≥ 1,      τ ∞  =  sup
n
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Then, taking (8) into account, we obtain
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It is easy to verify that the random variable  τ ∞  is bounded a.s.  Indeed,  τ  n  are independent copies of  τ,  and
estimate (9) yields 

P ( τ ∞ > s )  ≤  
n =

∞

∑
1

P ( τ n > s bn )  ≤  C s C s3
2
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2exp –( )
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for  s > 1  (see Lemma 2 in [2]).  This and (10) imply that the sequence  ( / )Z bn n   is bounded, i.e., condition (7) is
also satisfied. 

Corollary 1.  Suppose that  X = ( η n )  is a Gaussian random element in the space  E = c 0 
,  M  η  n = 0,  M ηn

2 =

σn
2,  and  � X = ( σ n ) ∈ c 0 

.  Then relation (1), where  bn  is defined in Theorem 1, is true. 

Proof.  As is known, for a sequence of random variables  η n → 0  a.s.,  n → ∞,  there exists a sequence of pos-

itive numbers  u n → 0  such that  η ∞ = sup /n n nu≥ 1 η  < ∞  a.s.  (see [12, p. 59]).  This implies that, for a Gaussian

random element  X  in  c 0 
,  there exists a positive element  u = ( u n ) ∈ c 0  and a bounded random variable  η ∞  such

that  | X | ≤ η ∞ u  a.s., i.e.,  X ∈ c 0 ( u ) .  In view of Theorem 1, this completes the proof of Corollary 1  (c 0  is a Köthe

space with  σ-order-continuous norm). 

Below, we give an analog of Theorem 1 for one class of abstract Banach lattices. 

Corollary 2.  Suppose that  E  is a separable  σ-complete Banach lattice,  X  is a centered Gaussian random

element in  E,  and condition (4) is satisfied.  Then the sequence  Z  n  is relatively stable a.s., i.e., relation (1),

where  bn  is defined in Theorem 1 and  � X  is given by equality (5), is true. 

Proof.  Indeed, since an order isometry preserves the order, least upper bound, and greatest lower bound and is
continuous, we conclude that Corollary 2 follows from Proposition 1 and Theorem 1. 

Remark 1.  It follows from the results of [2] and Proposition 1 that, in a separable Banach lattice that does not

uniformly contain  ln
∞  ,  equality (1) holds for any centered Gaussian random element. 

Below, we present (without proof) another result concerning the almost-sure relative stability of the sequence

( Z n ) . 

Proposition 2.  If  E  is a Banach space with unconditional basis   (  e  n ) ,  X = 
n n n ne∑ η σ   is a Gaussian ran-

dom element in the space  E,  M η n = 0,  M ηn
2 = 1,  � X = 

n n ne∑ σ  ∈  E
 
,  and the components  η  n  are independ-

ent, then relation (1) is true. 

The known results concerning the almost-sure relative stability of (1) allow us to make the following conjec-
ture: 

Hypothesis 1.  In a separable Banach lattice, relation (1) holds for every centered Gaussian random ele-
ment  X. 

2.  Consider the law of large numbers for the  p th powers (2).  In what follows,  X  is an arbitrary (not neces-
sarily Gaussian) random element in the Banach lattice  E.  We set 

� p X  =  σ p
p p

t X t t T( ) ( ) ,
/

= ( ) ∈{ }M
1

,    1 ≤ p < ∞.

Theorem 2.  Suppose that  E  is a separable Köthe space with  σ-order-continuous norm and  X   is a cen-

tered random element in  E  for which condition (4) is satisfied and 
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M X u
p  <  ∞. (11)

Then the law of large numbers for the  p th powers (2) holds for  X. 

Proof.  Assume that  µ ( T ) = 1.  As in Theorem 1, it is necessary to verify that 
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Since, by virtue of conditions (4) and (11), 
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and  σ p t( )  exists, we establish that, according to the Kolmogorov law of large numbers [8, p. 337], for every  t ∈  T
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It remains to verify the existence of a random element  Y ∈  E  for which relation (12) is true.  It follows from

the definition of  Z tn
p( )( )   and relation (13) that 
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Estimate (11) and the Kolmogorov law of large numbers yield 
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Hence,  η < ∞  a.s.  and, setting  Y ( t ) = η1/ ( )p u t ,  we get (12). 
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Recall that a random element  X  in a Banach space  E  is called pre-Gaussian if there exists a Gaussian random

element  G ( X )  in  E  such that  X  and  G ( X )  have the same correlation operator.  For a centered pre-Gaussian ran-

dom element  X,  we define the mean-square deviation by the equality 

� X  =  � 2 X  =  π
2

1 2





/
( )M G X . (14)

Since a separable  σ-complete Banach lattice is order-isometric to a certain Köthe space (Proposition 1) and

S � X = � S X  for a linear isometry  S,  we obtain the following results: 

Corollary 3.  If  X  is a centered pre-Gaussian random element in a separable  σ-complete Banach lattice

and conditions (4) and (11) are satisfied for  p  = 2,  then the law of large numbers (2), where  p  = 2  and  � 2 X
is defined by equality (14), is true. 

Corollary 4.  Suppose that  X  is a centered pre-Gaussian random element in a separable  σ-complete Ba-

nach lattice  E  and there exists  u ∈ E  such that 

| X |  ≤  u    a.s. (15)

Then the law of large numbers (2), where  p = 2  and  � 2 X  is defined by equality (14), is true. 

In [6], the law of large numbers for squares was established for  q-concave Köthe spaces.  The analysis of this
result shows that it can be generalized as follows: 

Proposition 3.  Suppose that  E  is a separable  q-concave Köthe space,  1 ≤ p ≤ q < ∞,  and  σ  r ( t ) ∈  E  for

certain  r > q.  Then the law of large numbers for the  p th powers (2) is true. 

3.  Consider the central limit theorem (3).  First, we formulate one result obtained in [6], which is necessary for

what follows:  For a separable  q-concave  (q < ∞)  Köthe space  E  and a centered random element  X,  the condition

σ q ( t )  ∈  E (16)

is sufficient for the validity of the central limit theorem (3). 

Theorem 3.  Suppose that  E  is a separable  q-concave  (q < ∞)  Köthe space and  X  is a centered random

element in  E  for which conditions (4) and (11) are satisfied for  p = 2.  Then the central limit theorem (3) holds
and 

M
S

n
n

1 2

2

/   →  M G 2 (17)

as  n → ∞. 

Proof.  First, we prove the theorem under the additional condition 

| X |  ≤  c u    a.s., (18)
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where  c > 0  is a nonrandom constant.  It follows from (18) that  �q X ≤ c  u,  whence, taking into account that

u ∈ E,  we get  �q X ∈ E. 

Thus, condition (16) is satisfied, and the central limit theorem (3) holds for  X. 

For fixed  λ > 0,  we set 
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Denoting by  I ( A )  the characteristic function of the set  A,  by definition we get 

Xi
( )λ   ≤  λ  u ,      X( )λ   ≤  λ  u ,

M( )λ   =  M MX X( ) –λ   =  M I X Xu >( )λ   ≤  u I X Xu uM >( )λ . (19)

If condition (11) is satisfied and  p = 2,  then estimate (18) and the central limit theorem (3) are true for the dif-

ference  X 
(
 
λ

 
) – M 

(
 
λ

 
).  According to the known result of Pisier [4, p. 278], the central limit theorem (3) holds for a

random element  X  if  ∀ ε > 0  ∃ λ > 0  such that 
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/
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To verify (20), we use the known estimate [13] 
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which is true for a  q-concave Banach lattice  ( q < ∞  )  and independent random elements  Yi  
,  M

 
Yi = 0.  The last in-

equality and (19) yield 
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≤  C
n
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For  p = 2,  it follows from estimate (11) that 

M I X Xu u>( )λ 2   →  0      as    λ → ∞,

which yields inequality (20). 
The convergence of moments (17) follows from the well-known general results. 

Corollary 5.  Suppose that  E  is a separable Banach lattice that does not uniformly contain  ln
∞ ,  and  X   is

a centered random element in  E  for which conditions (4) and (11) are satisfied for  p = 2.  Then the central limit
theorem (3) and relation (17) are true. 

Proof.  According to Proposition 1, the lattice  E  is isometric to a certain separable Köthe space, which does

not uniformly contain  ln
∞ .  Since a Banach lattice that does not uniformly contain  ln

∞   is  q-concave for certain

q < ∞,  we can apply Theorem 3. 

In [14], for every Banach spaces that uniformly contains  ln
∞ ,  an example of a pre-Gaussian random element

bounded in norm for which the central limit theorem is not satisfied was constructed. 

It turns out that, even in certain Banach spaces that simultaneously have the type  2 – δ  and cotype  2 + δ,

δ > 0,  there exist bounded pre-Gaussian random elements for which the central limit theorem is not satisfied [15].

Recall that a Banach space  B  is of the type  p,  1 ≤ p ≤ 2,  and cotype  q,  q > 2,  if there exists a constant  C < ∞
such that, for any finite collection of elements  ( )xi   from  B,  we have, respectively, 
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where  ( )εi   is a sequence of independent symmetric Bernoulli random variables. 
The result presented below shows that if, in a Banach lattice, we replace the boundedness in norm by the order

boundedness, then the conditions for the validity of the central limit theorem can be significantly weakened. 

Proposition 4.  Suppose that  E  is a separable Banach lattice and  X  is a centered random element in  E.
Then the following assertions are true: 

(i) if  E  does not uniformly contain  ln
∞   and there exists  u ∈  E  +  such that condition (15) is satisfied,

then  X  satisfies the central limit theorem (3) and 
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M
S

n
n

p

1 2/   →  M G p

as  n → ∞  for every  1 ≤ p < ∞  ;

(ii) if  E  uniformly contains  ln
∞  ,  then there exists a centered pre-Gaussian random element  X  with

values in  E  and a nonrandom element  u ∈  E +  such that condition (15) is satisfied but  X  does not
satisfy the central limit theorem (3). 

Proof.  Assertion (i) is contained in Corollary 5. 

Let us prove assertion (ii).  If  E  uniformly contains  ln
∞  ,  then it obviously does not have any finite cotype.

Therefore, it does not have any lower  q-bound [1, p. 88].  Hence, for any  ε  and  n,  there exists a collection  xi
n( )1

of pairwise disjunctive elements of  E  such that 

max
1 ≤ ≤i n ia   ≤  

i

n

i ia x
=
∑

1
  ≤  ( ) max1

1
+

≤ ≤
ε

i n ia

for any collection of numbers  ai
n( )1   [1, p. 91].  Since 

i

n

i ia x
=
∑

1
  =  

i

n

i ia x
=
∑

1

for any disjunctive collection, we can assume that all  x i  are nonnegative. 

Hence, by analogy with [16], we can conclude that, for any sequence of positive numbers  α k  convergent to

zero, there exists a sequence of positive elements  x k ∈ E  such that  xk  = α  k  and the series  ∑ x  k  is uncondi-
tionally convergent. 

Let  α  k = 1 15/ln ln ln ( )k +   be a sequence of independent random variables  ξk( )  such that  P  ( ξ k = 1 ) =

P ( ξ k = – 1 ) = 1 7/ln ( )k +   and  P ( ξ k = 0 ) = 1 2 7– /ln ( )k + .  We set 

X  =  
i

i ix
=

∞

∑
1

ξ .

According to [14], the random element  X  is pre-Gaussian and does not satisfy the central limit theorem.  We set 

u  =  
i

ix
=

∞

∑
1

.

It is clear that 

| X |  ≤  
i

ix
=

∞

∑
1

  =  
i

ix
=

∞

∑
1

  =  u,

i.e., condition (15) is satisfied. 
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