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There is a Banach space X enjoying the Radon-Nikody� m Property and a separable
subspace Y which is not contained in any complemented separable subspace of X.
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In [9] a Banach space is said to have the separable complementation
property (which we abbreviate SCP) if every separable subspace is contained
in a complemented separable subspace. W. B. Johnson [4, p. 38] announced
that every dual space with the Radon-Nikody� m Property (RNP) has SCP;
one proof of this can be found in [17, Proposition 2] and another in [7].
Diestel and Uhl [4, Problem 22] asked whether every Banach space with
the Radon-Nikody� m Property has SCP; here we give a counterexample. Of
course our example is not isomorphic to any dual space. It is easy to check
that every Banach space with both the weak RNP (as defined by Musial
[13]) and the SCP already has the RNP; our example also shows that this
result has no converse.

It may be useful to recall that a Banach space X has the Radon-Nikody� m
Property if the Radon-Nikody� m Theorem is valid for measures taking
values in X. It is clear that this property is invariant under renorming, and
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straightforward to prove that the l1 sum of a (possibly uncountable) family
of Banach spaces, each with RNP, will also have RNP. These facts about
RNP are sufficient for our purposes. An equivalent geometric property is
that every non-empty bounded subset of X admits a slice (i.e. a non-empty
intersection with a half-space) of arbitrarily small diameter. There are many
other equivalent formulations: we refer to [4] or [5] for further enlighten-
ment. Amongst other facts which we don't actually need here, Asplund spaces
coincide with spaces whose duals have RNP. In particular, separable dual
spaces have the Radon-Nikody� m Property.

Of course the SCP is only interesting for non-separable spaces. It is fairly
clear that for any 1�p<� and any measure +, the familiar spaces Lp(+)
have SCP. However L�(+) does not have any non-trivial separable
complemented subspaces. Some other sufficient conditions for the separable
complementation property are: being a Banach lattice not containing c0

[9, p. 83], being the predual of a von Neumann algebra [8, pp. 111�112],
having a so-called projective generator [6, Chapter 6, and references
therein]. The latter class includes all weakly compactly generated spaces
(for which the SCP was first established in [2, Lemma 4]) and all dual
spaces with the RNP.

An earlier sufficient condition involves Markus� evic� bases. Recall that
a Markus� evic� basis (x# , f#)# # 1 for a Banach space X is a biorthogonal
system for which (x#)# # 1 generates a dense subspace of X and ( f#)# # 1

generates a weak* dense subspace of X*. For the moment, write 8( f )=
[x# : f (x#){0] for each f # X*. According to [14], a Markus� evic� basis
(x# , f#)# # 1 is said to be countably norming if the collection of functionals
M=[ f # X*: 8( f ) is countable] forms a norming subspace of X*, i.e. if
_x_=sup[ f (x): f # M, & f &=1] defines an equivalent norm on X. It was
shown in [14, Theorem 1] that any Banach space with a countably norming
Markus� evic� basis has the SCP. However it is not hard to see that for such
a space, renormed as above, 8 will be a projective generator.

We note in passing that not every Banach space is isomorphic to a
subspace of a Banach space with SCP. That l� is not was proved without
statement in [15, Theorem 3]. More complicated examples had been discussed
earlier by Musial [13, p. 162]; they depend on his result [13, Theorem 1]
that if X has the weak RNP and is isomorphic to a subspace of a Banach
space with SCP, then X already has the RNP.

Our idea is to show that certain renormings of l1(|1) fail what might be
called the *&SCP, for arbitrarily large real numbers *. (As usual, we
denote by |1 the first uncountable ordinal; by definition it is also a
cardinal number.) We build on the technique developed in [16, Section 8],
where a weaker and more technical result about large families of projec-
tions was proved. We begin with the following simple combinatorial result
[16, Lemma 8.2].
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Lemma 1. There is an uncountable collection [N: : 0�:<|1] of infinite
subsets of the integers such that

(i) the intersection of any two is finite,

(ii) if A is an uncountable subset of [0, |1), and ;1 , ..., ;k are ordinals
outside A, then there is an infinite set B/A and an integer j � �k

i=1 N;i
with

j # N: for all : # B, and
(iii) given finitely many distinct ordinals :1 , ..., :n in [|0 , |1), there

exist distinct ordinals #1 , ..., #n , in [0, |0), such that the 2n sets N:k
"N#k

and
N#k

"N:k
are pairwise disjoint.

Proof. We simply recall the construction from [16], and leave the reader
to check the details. Rather than the integers, we work on the dyadic tree, D.
The collection of all its branches is undoubtedly uncountable and clearly
the intersection of any two is finite. The collection of branches which, from
some point onwards, turn only to the left is clearly countable; we will label
it as [N: : 0�:<|0]. For [N: : |0�:<|1], we choose a subset of the
remaining branches with cardinality |1 . K

Now we fix one such family N: . For each :<|1 , we denote by y: the
characteristic function of N: and by e: the usual basis vector in l1(|1).
Then we can define a bounded linear operator T: l1(|1) � l� by T(e:)=y: .
To avoid confusion, we will write & }&1 and & }&� for the natural norms on
l1(|1) and l� . For each integer n, we define an equivalent norm on l1(|1)
by

_x_n=max[n&1 &x&1 , &Tx&�].

Call this space Xn , and write Ln for the subspace l1(|0). (For convenience,
we will denote by l1(;) the subspace [x # l1(|1) : x:=0 for all :�;].)
For any Banach spaces Y and Z, we denote by Y�1 Z their direct sum
equipped with the norm &y+z&=&y&+&z&.

Lemma 2. Fix a natural number n. Then the space X=Xn just defined
has the following property: if Z is any Banach space whatsoever and U is any
complemented separable subspace of X�1 Z which contains Ln , then any
projection from X�1 Z onto U will have norm at least 1

4 (n&3).

Proof. Throughout this proof, we omit the subscript n . We need to
show that if V is any complement for U, then the natural projection
U�V � U has norm greater than 1

4 (n&3): to do this we will find an element
of large norm, which is close to both U and V.

Write P: X�Z � X for the natural projection. By separability, and the
regularity of |1 , there is an index :0<|1 for which P(U) is contained in
l1(:0). In other words, U/l1(:0)+Z. Note that :0�|0 because P(U)$L.
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It is clear that each x # U is the limit of a sequence in B(x, 1�n) &
(linsp[e: : :<:0]+Z). Since U is separable, we can then find a sequence
(wm)�

m = 1 in ( linsp[ e: : : < :0 ] + Z ) & ( U + B ( 0, 1 �n ) ) whose closure
contains U.

For any :�:0 , the decomposition U�V applied to e: gives us an index
m: such that d(e:+wm:

, V)<n&1. Since [:0 , |1) is uncountable, it must
contain an uncountable subset A, every member : of which satisfies d(e:+w, V)
<n&1 for some fixed element w=wm . This element w must have the form
w=�k

i=1 *ie;i
+z for some scalars *i , ordinals ;i # [0, :0) and z # Z.

Let B/A and j # �: # B N:"�k
i=1 N;i

be given by Lemma 1(ii). Being
infinite, B contains at least n elements :1 , ..., :n . Lemma 1(iii) gives us
corresponding finite ordinals #1 , ..., #n . We define now elements u # l1(|1)
and v # l� by u=�n

i=1 e#i
and v=�n

i=1 y#i
. Clearly Tu=v and &u&1=n.

A moment's reflection shows that &�n
i=1 y:i

&v&�=1. If we put x=
�n

i=1 e:i
+nw, then x&nw&u will belong to X, although x itself need not.

Now

&x&=" :
n

i=1

e:i
+n \ :

k

i=1

*i e;i
+z+"

= }}} :
n

i=1

e:i
+n :

k

i=1

*ie;i }}}+&nz&

�"T \ :
n

i=1

e:i
+n :

k

i=1

*ie;i+"�
+0

=" :
n

i=1

y:i
+n :

k

i=1

*i y;i"�

�\ :
n

i=1

y:i
+n :

k

i=1

* i y;i+ ( j)

= :
n

i=1

y:i
( j)+0=n

and

d(x, U)�_x&nw&u_+d(nw&u, U)

=max {1
n

&x&nw&u&, &T(x&nw&u)&=+d(nw, U)

�max {1
n " :

n

i=1

e:i
&u" , " :

n

i=1

y:i
&v"=+1

=3.
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With less difficulty, d(x, V)��n
i=1 d(e:i+w, V)<1.

To finish the proof, note that the natural projection U�V � U has
norm at least (&x&&d(x, U))�(d(x, U)+d(x, V)). K

Theorem 3. There exists a Banach space X with the Radon-Nikody� m
Property but without the separable complementation property. Moreover,
X has a strong Markus� evic� basis, but no norming or countably norming
Markus� evic� basis, and no projective generator.

Proof. If X is the l1 sum of the Banach spaces Xn , and L is the sum of
the subspaces Ln , the previous Lemma shows that L is not contained in
any complemented separable subspace of X. It is clear from our preliminary
remarks that X has the Radon-Nikody� m Property, and no countably norming
Markus� evic� basis. As for strong Markus� evic� bases, this means [15, p. 638]
that for every 2/1, the closed linear span of [x# : # # 2] coincides with
[ f# : # # 2]0. Such a basis can easily be constructed in X, since each component
Xn has one. K

Note that although each Xn is isomorphic to l1(|1), their l1 direct sum
is not even isomorphic to a dual space. We do not know whether it is
isomorphic to a subspace of a dual space with RNP.

The Banach space just constructed has density character |1 . A modifica-
tion of our argument will obviously yield examples with larger density
characters. Rather than slogging through the transfinite combinatorics, it is
easier to note that such examples can be constructed simply taking the
direct sum of X and a suitably large Hilbert space.

The choice of the l1 norm for our direct sums was arbitrary; the same
argument works equally well with the lp norm if p is finite. For the c0 direct
sum, we get a Banach space without the SCP, but also without the RNP.

We suspect that there are Banach spaces with RNP, but without any
complemented infinite-dimensional separable subspaces. Our space is obviously
not a counterexample to this harder problem. Kernels of particular
quotient maps from l1(:) onto l2 (which exist if : has cardinality at least
the continuum) were shown in [15, Section 4] to be counterexamples to
another complementation problem. They may turn out to be counterexamples
to this problem as well.

Some related problems are discussed in [3, Chap. VI] and [16, Section 8].
(We refer to either of these, or to [6], for the definition of PRI.) In particular,
[3, Problem VI.1] asks whether there is a subspace of l1(|1) which does
not have a PRI (Projectional Resolution of the Identity) in any equivalent
norm. There it was suggested considering the kernels of quotient maps
from l1(|1) onto l� (which clearly exist under the Continuum
Hypothesis). Such kernels are also candidates for a counterexample to the
preceding problem, and to the more general problem of finding a Banach
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space which fails the SCP but which embeds isomorphically into a dual
space with RNP.

As the referee has pointed out, the existence of a non-separable hereditarily
indecomposable space with RNP is also an open problem. Recall that a
Banach space is decomposable if it is the direct sum of two closed infinite-
dimensional subspaces; hereditarily indecomposable if it has no decom-
posable subspaces. The first infinite-dimensional examples of hereditarily
indecomposable spaces [10] were all separable and reflexive; in particular
they had RNP. We observed in [16, Proposition 3.2] that a hereditarily
indecomposable space cannot be too large, in the sense that its cardinality
must equal the continuum. Recently, S. Argyros has constructed the first
example of a non-separable hereditarily indecomposable Banach space. He
has informed us that his example is the dual of a separable space, and thus
it cannot enjoy RNP.

We note that the following statement [5, p. 208] is still true. ``It is
unknown to this day whether each Banach space with the Radon-Nikody� m
property admits an equivalent strictly convex norm.'' We are equally ignorant
about locally uniformly convex norms. Fabian and Godefroy [7] proved that
every dual space with RNP has an equivalent locally uniformly convex norm,
but for non-dual spaces, the question remains open. That our example does
admit such a norm follows from its possession of a strong Markus� evic� basis
[1], or by direct calculation.

Some recent progress on this question has been made by Molto� et al.
[12]. Recall that a Banach space has the Kadets-Klee Property if its weak
topology agrees with the norm topology on the unit sphere. It is an easy
exercise to show that every locally uniformly convex space has this
property. The following partial converse appears in [12]: if a Banach space
has the Krein-Milman Property (which is implied by RNP) and the
Kadets-Klee Property, then it has an equivalent locally uniformly convex
norm.
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