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A SEPARABLE SPACE 
WITH NO SCHAUDER DECOMPOSITION 

G. ALLEXANDROV, DENKA KUTZAROVA, AND A. PLICHKO 

(Communicated by Dale Alspach) 

ABSTRACT. We combine some known results to remark that there exists a 
separable Banach space which fails to have a Schauder decomposition. It can 
be chosen as a subspace of Gowers-Maurey space without any unconditional 
basic sequence. 

The following problem was raised in [Si] (Problem 15.1, p. 494): Does every 
separable Banach space have a Schauder decomposition? This question goes back 
to J. R. Retherford [R]. 

Recall that a sequence {Xn}nl of closed subspaces of a Banach space X is said 
to be a Schauder decomposition of X if every x E X has a unique representation 
of the form x = E-=l Xn, with xn E Xn for every n. 

Let GM be Gowers-Maurey space which does not contain any unconditional 
basic sequence [GM]. As was observed by W. B. Johnson, GM has in fact a 
stronger property, namely it is hereditarily indecomposable (H.I.); i.e., no infinite- 
dimensional closed subspace can be written as a direct sum Y D Z, where Y and 
Z are infinite-dimensional closed subspaces. It is known that every block subspace 
of GM contains uniform copies of t?. This follows from the lower f-estimate and 
Krivine's theorem as in [S]. Then, by Szankowski's refinement of Enflo's criterion 
(see [LT2, p. 111, Remark 1]), we immediately obtain the following. 

Proposition. There exists a subspace X of GM which does not have the compact 
approximation property (C.A.P.). 

Remark 1. For the same purpose we can as well use other H.I. spaces constructed 
after the breakthrough of W. T. Gowers and B. Maurey. For example, there are 
subspaces without the C.A.P. of the super-reflexive H.I. spaces in [F] in the case 
when they contain uniform copies of pn for p :4 2. One can also use the asymptotic 
t? hereditarily indecomposable spaces constructed in [AD] and [ADKM]. The exis- 
tence of uniform copies of i? in these spaces follows directly from the definition and 
one does not need to apply Krivine's theorem. Therefore, they also have subspaces 
without the C.A.P. 

Corollary. The space X is an example of a separable Banach space with no 
Schauder decomposition. 
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Proof. Assume the contrary, i.e. X has a Schauder decomposition {Xn}n=l. 
Case 1. {Xn}?'l is a finite-dimensional decomposition. This is impossible since 

the existence of an F.D.D. implies B.A.P. which in turn implies C.A.P. (see [LT1]) 
and this contradicts the above Proposition. 

Case 2. There exists m such that Xm is infinite-dimensional. Denote Y = [Xn 
n r- mi. Then X = Xm D Y which is also impossible because Xm and Y are closed 
infinite-dimensional subspaces of X, X is a closed subspace of GM, and GM is 
H.I. D 

Remark 2. Clearly, the result is true hereditarily in all the above mentioned H.I. 
spaces, e.g. we have that every subspace of GM has a further subspace which has 
no Schauder decomposition. 
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