1996 FASC. 2

ON THREE PROBLEMS FROM THE SCOTTISH BOOK CONNECTED WITH ORTHOGONAL SYSTEMS

BY
A. PLICHKO and A. RAZENKOV (LVIV)

Introduction. In this paper we consider some questions connected with the following problems from [5]:

1. Problem of Mazur ([5, Problem 154]): Let $\left(\varphi_{n}\right)$ be an orthogonal system consisting of continuous functions and closed in C.
(a) If $f(t) \sim a_{1} \varphi_{1}(t)+a_{2} \varphi_{2}(t)+\ldots$ is the development of a given continuous function $f(t)$ and n_{1}, n_{2}, \ldots denote the successive indices for which $a_{n_{1}} \neq 0, \ldots$, can one approximate $f(t)$ uniformly by linear combinations of the functions $\varphi_{n_{1}}(t), \varphi_{n_{2}}(t), \ldots$?
(b) Does there exist a linear summation method M such that the development of every continuous function $f(t)$ in the system $\left(\varphi_{n}(t)\right)$ is uniformly summable by the method M to $f(t)$?

In [6] A. M. Olevskiĭ has given negative answers to both questions.
2. Problem of Banach ([5, Problem 86]): Given a sequence of functions $\left(\varphi_{n}(t)\right)$ which is orthogonal, normed, measurable, and uniformly bounded, can one always complete it, using functions with the same bound, to a sequence which is orthogonal, normed, and complete? Consider the case when infinitely many functions are necessary for completion.

This problem was first solved by S. Kaczmarz in [2]. Various solutions of this problem were found by B. S. Kashin, A. M. Olevskiŭ, S. V. Bochkarev and K. S. Kazarian [3, 4].
3. Problem of Mazur ([5, Problem 51]):
a) Is every set of functions, measurable in $[0,1]$ with the property that any two functions of the set are orthogonal, at most countable? (the functions are not assumed to be square-integrable!)
b) An analogous question for sequences: Is every set of sequences with the property that any two sequences $\left(\varepsilon_{n}\right),\left(\eta_{n}\right)$ of this set are orthogonal, that is, $\sum_{n=1}^{\infty} \varepsilon_{n} \eta_{n}=0$, at most countable?

1991 Mathematics Subject Classification: Primary 46B15.

It is stated in [5] that this problem was solved by Mazurkiewicz but there is no such remark in the xerox copy of the original manuscript we have.

Let X be a separable Banach space and let X^{*} be its dual. A system $x_{n}, f_{n}, x_{n} \in X, f_{n} \in X^{*}, n=1,2, \ldots, \infty$ is called biorthogonal if $f_{m}\left(x_{n}\right)=$ $\delta_{m n}$ (Kronecker delta). A biorthogonal system is called fundamental (or complete) if its closed linear span $\left[x_{n}\right]_{n=1}^{\infty}$ is equal to X, and total if for any non-zero element $x \in X$ there is an index n such that $f_{n}(x) \neq 0$. A fundamental and total biorthogonal system is called a Markushevich basis (an M-basis). A biorthogonal system is called a strong M-basis if $x \in$ [$\left.f_{n}(x) x_{n}\right]_{n=1}^{\infty}$ for every x in X. A system $\left(x_{n}\right)$ is called a T-basis if there exists a regular summation method such that for every element x in X there exists a unique series $\sum_{n=1}^{\infty} b_{n} x_{n}$ which is summable to x by this method.

We say that a Banach space X is densely embedded in a Banach space Y if X is a dense linear subspace of Y, it does not coincide with Y and there exists a positive constant C such that $\|x\|_{Y} \leq C\|x\|_{X}$ for $x \in X$.

1. An answer to the first part of Mazur's question [5, Problem 154] follows from the following general proposition which is an improvement of results of Gurariĭ and Johnson [1, 10].

Proposition 1. Let X be a separable Banach space which is densely embedded in a Hilbert space H. There exists a non-strong M-basis in X which is an orthogonal system in H.

For the proof we need three lemmas.
Lemma 1. Let X be a Banach space which is densely embedded in a Banach space Y and let E be a finite-codimensional closed subspace of Y. Then $X \cap E$ is densely embedded in E.

Proof. Let Z be a finite-dimensional complement to $X \cap E$ in X. Then for every $e \in E$ there exists a sequence $x_{n}+z_{n} \rightarrow e$ in Y-norm with $x_{n} \in X \cap E$ and $z_{n} \in Z$. Since $Z \cap E=0, Z$ and E are closed in Y and Z is finite-dimensional, we have $x_{n} \rightarrow x$ and $z_{n} \rightarrow z$ as $n \rightarrow \infty$, with $x \in E$, $z \in Z$ and $e=x+z$. Thus $z=0$ and $x_{n} \rightarrow e$ as $n \rightarrow \infty$, i.e. $X \cap E$ is densely embedded in E. If $X \cap E=E$, then $X=(X \cap E)+Z=Y$. Therefore $X \cap E \neq E$.

Lemma 2. Let X be a Banach space which is densely embedded in a Hilbert space H. For any $\varepsilon>0$ there exist x and x^{\prime} in X such that $\|x\|_{X}=$ $\left\|x^{\prime}\right\|_{X}=1,\left\|x-x^{\prime}\right\|_{X}<\varepsilon$ and $x \perp x^{\prime}$ in H.

Proof. Let $\|\|$ be the norm in X and $\| \|_{H}$ be the norm in H. Without loss of generality we may suppose that there exists u in X such that $\|u\|=$ $\|u\|_{H}=1$. Let E be the orthogonal complement of u in H. Then codim E
$=1$. It follows from Lemma 1 that $X \cap E$ is dense in E and this embedding is not an isomorphism. Hence we may choose v in $X \cap E$ such that $\|v\|_{H}=1$ and $a:=\|v\|$ is sufficiently large. Put $\bar{x}=v+u, \bar{x}^{\prime}=v-u, x=\bar{x} /\|\bar{x}\|$ and $x^{\prime}=\bar{x}^{\prime} /\left\|\bar{x}^{\prime}\right\|$. Then $\left(\bar{x}, \bar{x}^{\prime}\right)=(v+u, v-u)=\|v\|_{H}-\|u\|_{H}=0$, hence $x \perp x^{\prime}$ in H. It is easy to see that $a-1<\|\bar{x}\|,\left\|\bar{x}^{\prime}\right\|<a+1$. This implies that $\left|\|\bar{x}\|-\left\|\bar{x}^{\prime}\right\|\right| \leq 2$ and $\|\bar{x}\| \cdot\left\|\bar{x}^{\prime}\right\| \geq(a-1)^{2}$. Then

$$
\begin{aligned}
\left\|x-x^{\prime}\right\| & =\frac{\| \| \bar{x}^{\prime}\|\bar{x}-\| \bar{x}\left\|\bar{x}^{\prime}\right\|}{\|x\| \cdot\left\|x^{\prime}\right\|} \leq \frac{\left\|\left(\left\|\bar{x}^{\prime}\right\|-\|\bar{x}\|\right) v+\left(\left\|\bar{x}^{\prime}\right\|+\|\bar{x}\|\right) u\right\|}{(a-1)^{2}} \\
& \leq \frac{2\|v\|+2(a+1)\|u\|}{(a-1)^{2}} \leq \frac{2 a+2(a+1)}{(a-1)^{2}},
\end{aligned}
$$

i.e. choosing a sufficiently large we may obtain $\left\|x-x^{\prime}\right\|$ less than any preassigned ε.

Lemma 3. Let X be a Banach space which is densely embedded in a Hilbert space H. Let $\left(\varphi_{n}\right)$ be a system which is fundamental in X and orthogonal in H. Then $\left(\varphi_{n}\right)$ is an M-basis in X.

Proof. Since $\left(\varphi_{n}\right)$ is orthogonal in H, there exist functionals $\left(\varphi_{n}^{*}\right) \subset H^{*}$ biorthogonal to $\left(\varphi_{n}\right)$. Since X is densely embedded in H, H^{*} is embedded in X^{*} and dense in the weak* topology, hence $\left(\varphi_{n}^{*}\right)$ is a total system on X, and therefore $\left(\varphi_{n}\right)$ is an M-basis in X.

Proof of Proposition 1. Let $\left(y_{n}\right)$ be some M-basis in X and let $\left(\varepsilon_{n}\right)$ be a sequence of positive scalars such that $\lim _{n} \varepsilon_{n}=0$. We proceed by induction. In the first step we put $z_{1}=y_{1}$ and choose x_{1} and x_{1}^{\prime} in $X \cap y_{1}^{\perp}$ which satisfy the conclusion of Lemma 2 with $\varepsilon=\varepsilon_{1}$. In the nth step we put $Y_{n-1}=\left(y_{i}, x_{i}, x_{i}^{\prime}\right)_{i=1}^{n-1}$, take $z_{n} \in \operatorname{lin}\left(Y_{n-1}, y_{n}\right)$ with $z_{n} \perp Y_{n-1}$ and choose x_{n} and x_{n}^{\prime} in $X \cap\left(Y_{n-1} \cup\left\{y_{n}\right\}\right)^{\perp}$ which satisfy Lemma 2 with $\varepsilon=\varepsilon_{n}$. Then the subspaces $X_{1}=\left[x_{n}, z_{n}\right]_{n=1}^{\infty}$ and $X_{2}=\left[x_{n}^{\prime}\right]_{n=1}^{\infty}$ are quasi-complementary but not complementary in X and orthogonal in H. It is known (see [8] for example) that we can choose a subspace X_{1}^{0} of X_{1} such that $\operatorname{dim} X_{1} / X_{1}^{0}=1$ and so that X_{1}^{0} and X_{2} remain quasi-complementary in X. Take a system $\left(u_{n}\right)$ which is complete in X_{1}^{0} and orthogonalize it in H. We get a system $\left(v_{n}\right) \subset X_{1}^{0}$ for which all conditions of Lemma 3 are valid, hence $\left(v_{n}\right)$ is an Mbasis in X_{1}^{0}, orthogonal in H. Put $\varphi_{2 n-1}=v_{n}$ and $\varphi_{2 n}=x_{n}$ for $n=1,2, \ldots$ Then $\left(\varphi_{n}\right)$ is an M-basis in X, it is orthogonal in H by Lemma 3, but it is not a strong M-basis because $\left[\varphi_{2 n-1}\right]_{n=1}^{\infty} \subset X_{1}^{0}$ and $\left(\left[\varphi_{2 n}\right]_{n=1}^{\infty}\right)^{\perp} \supset X_{1}$.

Remark. Since every T-basis (summation basis) is a strong M-basis (see [11, p. 357]), there exists an M-basis in X, orthogonal in H, which is not a T-basis in X. In the case when X has a conditional basis which is orthogonal in H, a negative answer to the second part of Mazur's question [5, Problem 154] can be obtained significantly simpler than in the article of
A. M. Olevskiĭ [6]. Such bases exist in $L_{p}, p>2$ (trigonometric system), and in C (Franklin system). We will show that such bases exist in some symmetric function spaces which are embedded in L_{2}.

Proposition 2. Let X be a Banach space densely embedded in a Hilbert space H and suppose that X has a conditional basis orthogonal in H. Then there exists a strong M-basis in X, orthogonal in H, which is not a T-basis in X.

Proof. This easily follows from the fact that every conditional basis has a permutation which is not a T-basis (see [11, p. 357]). It is clear that the rearranged system remains an M-basis and orthogonal in H.

The following statement is well known (see [9, p. 31], for example).
Lemma 4. No orthonormal basis $\left(x_{n}(t)\right)_{n=1}^{\infty}$ in $L_{2}(0,1)$ with $\left|x_{n}(t)\right| \equiv 1$ for all n can be an unconditional basis of a symmetric space E on $(0,1)$ different from L_{2}.

Let E be a symmetric function space, let p_{E} and q_{E} be its Boyd indices (see e.g. [9, p. 27] for definition). It is known that the Walsh system is a basis in $L_{p}, 1<p<\infty$. If $1 \leq p_{E} \leq q_{E}<\infty$, then E is an interpolation space between $L_{p_{E}}$ and $L_{q_{E}}([9, \mathrm{p} .27])$. The above observations imply that the Walsh system is a conditional basis in E when $2<p_{E} \leq q_{E}<\infty$.
2. The following proposition gives, in particular, a negative answer to Banach's question [5, Problem 86].

Proposition 3. Let X be a Banach space which is densely embedded in a Hilbert space H and this embedding is not compact. Then there exists a sequence $\left(\varphi_{n}\right)$ such that
(i) $\left(\varphi_{n}\right)$ is bounded in X;
(ii) $\left(\varphi_{n}\right)$ is orthogonal in H;
(iii) $\left(\varphi_{n}\right)$ admits no extension to a fundamental and orthogonal sequence in H, using elements from X;
(iv) the closed linear span of $\left(\varphi_{n}\right)$ in H has an infinite codimension in H.

We need two lemmas for the proof.
Lemma 5. Let X be a Banach space which is densely embedded in a Hilbert space H and the embedding is not compact. Then there exists a positive scalar a such that for any finite-codimensional closed subspace $E \subset$ H there exists $x \in X \cap E^{\perp}$ such that $\|x\|_{X} \leq a\|x\|_{X}$.

Proof. Suppose the converse. Then for every a there exists a finitecodimensional subspace $E \subset H$ with $\|x\|_{X} \geq a\|x\|_{H}$ for every $x \in X \cap E$. We will show that this implies the compactness of the embedding of X in H.

We need to show that for every $\varepsilon>0$ there exists a finite cover of $B(X)$ (the unit ball of X) by balls S_{1}, \ldots, S_{m} in H with radius ε. It follows from the assumption that $B(X) \cap E \subseteq \varepsilon B(H)$ if $\varepsilon=1 / a$. Compactness of the embedding now easily follows from the fact that $X \cap E$ is closed and finite-codimensional.

Lemma 6. Let X be a Banach space which is densely embedded in a Hilbert space H. Let E be a finite-codimensional closed subspace of H, let $\varepsilon>0$ and $v \in X$. Then there exists $y \in X \cap E$ such that $d\left(v, \operatorname{lin}\left(E^{\perp}, y\right)\right)<\varepsilon$, where d means the distance in H.

Proof. Decompose v in H as $v=v^{*}+v^{* *}$, where $v^{*} \in E$ and $v^{* *} \in E^{\perp}$. Hence

$$
\begin{aligned}
d\left(v, \operatorname{lin}\left(E^{\perp}, y\right)\right) & =\inf \left\{\|v-z\|_{H}: z \in \operatorname{lin}\left(E^{\perp}, y\right)\right\} \\
& =\inf \left\{\left(\left\|v^{*}-\lambda y\right\|^{2}+\left\|v^{* *}-u\right\|^{2}\right)^{1 / 2}: \lambda \in \mathbb{R}, u \in E^{\perp}\right\} \\
& =\inf \left\{\left\|v^{*}-\lambda y\right\|_{H}: \lambda \in \mathbb{R}\right\}
\end{aligned}
$$

Since $X \cap E$ is densely embedded in E by Lemma $1, v^{*}$ can be approximated arbitrarily closely by an element y from $X \cap E$.

Proof of Proposition 3. The proof is a modification of arguments from [7]. The reasoning uses the orthogonal transformation of A. M. Olevski1̆ and takes into account results from [8].

Let $\left(v_{n}\right)_{n=1}^{\infty} \subset X$ be a complete sequence in H such that each element is repeated infinitely many times. Let $\left(\varepsilon_{n}\right)_{n=1}^{\infty}$ be a sequence of positive scalars such that $\lim _{n} \varepsilon_{n}=0$. By [8] there exists a closed infinite-dimensional subspace Z in H such that $Z \cap X=0$. We proceed by induction. Let a be the constant from Lemma 5. For elements $\left(z_{i}, x_{i}, y_{i}\right)_{i=1}^{n} \subset H$ we put $H_{n}=\operatorname{lin}\left(z_{i}, x_{i}, y_{i}\right)_{i=1}^{n}$. In the first step we use Lemma 5 to find $z_{1} \in Z$, $z_{1} \neq 0$, and $x_{1} \in X$ with $x_{1} \perp z_{1},\left\|x_{1}\right\|_{H}=1$ and $\left\|x_{1}\right\|_{X} \leq a$. Next we use Lemma 6 to choose $y_{1} \in X$ such that $y_{1} \in\left(z_{1}, x_{1}\right)^{\perp},\left\|y_{1}\right\|_{H}=1$ and $d\left(v_{1}, H_{1}\right)<\varepsilon_{1}$. In the nth step we take $z_{n} \in Z \cap H_{n-1}^{\perp}, z_{n} \neq 0$, choose $x_{n} \in X \cap H_{n-1}^{\perp} \cap z_{n}^{\perp}$ such that $\left\|x_{n}\right\|_{H}=1$ and $\left\|x_{n}\right\|_{X} \leq a$ and choose $y_{n} \in X \cap H_{n-1}^{\perp} \cap\left(z_{n}, x_{n}\right)^{\perp}$ such that $\left\|y_{1}\right\|_{H}=1$ and $d\left(v_{n}, H_{n}\right)<\varepsilon_{n}$.

Now we rearrange the sequence $\left(y_{n}\right)$ and relabel it as $\left(\psi_{i_{m}}\right)_{m=1}^{\infty}$, where $\left(i_{m}\right)_{m=1}^{\infty}$ is an increasing sequence such that for every $m, i_{m}-i_{m-1}=2^{s_{m}}$, where the positive integer s_{m} is chosen to satisfy $2^{-s_{m} / 2}\left\|\psi_{i_{m}}\right\|_{X}<2^{-m}$. We relabel $\left(x_{n}\right)_{n=1}^{\infty}$ using the remaining positive integers to get the sequence $\left(\psi_{i}: i \notin\left(i_{m}\right)_{m=1}^{\infty}\right)$. Let us apply for each block $\left(\psi_{i}: i_{m-1}<i \leq i_{m}\right)$ the orthogonal transformation of Olevskiĭ [7]. We obtain a sequence $\left(\varphi_{k}\right)_{k=1}^{\infty}$ which is bounded in X and orthonormal in H. The closed linear span of $\left(\varphi_{k}\right)_{k=1}^{\infty}$ in H coincides with the closed linear span of $\left(x_{n}, y_{n}\right)_{n=1}^{\infty}$ in H. It is clear that the subspace $\left[z_{n}\right]_{n=1}^{\infty}$ is an orthogonal complement to this closed linear span.
3. In this section we will answer Mazur's question [5, Problem 51]. First we consider the discrete variant. We need the following known lemma ([11, p. 208]).

Lemma 7. Let N be a countable set. Then there exists a family $\left\{M_{\alpha}\right\}_{\alpha \in A}$ of subsets of N with the following properties:
(i) The index set A has cardinality continuum.
(ii) Each set M_{α} is infinite.
(iii) $M_{\alpha} \cap M_{\beta}$ is finite for $\alpha \neq \beta$.

Proof. Let N be the set of all rational numbers in $(0,1), A$ be the set of all irrational numbers in $(0,1)$ and, for each $\alpha \in A$, let M_{α} be an arbitrary infinite sequence in N converging to α.

Proposition 4. There exist continuum many sequences $x^{\alpha}=$ $\left(x_{1}^{\alpha}, x_{2}^{\alpha}, \ldots\right), \alpha \in A$, such that $x_{n}^{\alpha}=0,1$, or -1 for every n and α, and for $\alpha \neq \beta$ the series $\sum_{n=1}^{\infty} x_{n}^{\alpha} x_{n}^{\beta}$ contains a finite number of non-zero terms and its sum is equal to zero.

Proof. In a countable set N_{0} choose continuum many non-empty subsets $M_{\alpha}, \alpha \in A$, such that $M_{\alpha} \cap M_{\beta}$ is a finite set for $\alpha \neq \beta$, by Lemma 7 . Put $x^{\alpha}=\left(x_{1}^{\alpha}, x_{2}^{\alpha}, \ldots\right)$, where $x_{n}^{\alpha}=1$ if $n \in M_{\alpha}$, and $x_{n}^{\alpha}=0$ if $n \notin M_{\alpha}$. We have constructed continuum many sequences x^{α} so that for every $\alpha \neq \beta$ the series $\sum_{n=1}^{\infty} x_{n}^{\alpha} x_{n}^{\beta}$ is a finite sum.

Now we represent A as a dyadic tree $A=A_{1} \sqcup A_{2}, A_{1}=A_{3} \sqcup A_{4}$, $A_{2}=A_{5} \sqcup A_{6}, \ldots$, where \sqcup denotes disjoint union, by the scheme:

We make this representation in such a way that
(*) every chain $\left(A_{k_{i}}\right)_{i=1}^{\infty}$ has one-point intersection $\bigcap_{i=1}^{\infty} A_{k_{i}}$.
We shall add to N_{0} a countable number of countable sets $N_{i}, i=1,2, \ldots$, and shall complete the definition of our sequences on $\bigcup_{i=1}^{\infty} N_{i}$ by 0,1 , and -1 so that in the i th step for $\alpha \neq \beta$ the series

$$
S(\alpha, \beta, i):=\sum_{n \in \bigcup_{k=0}^{i} N_{k}} x_{n}^{\alpha} x_{n}^{\beta}
$$

will contain a finite number of non-zero terms; if $S(\alpha, \beta, i)=0$ then $S(\alpha, \beta, j)=0$ for $j>i$; and for every $\alpha \neq \beta$ there exists i such that $S(\alpha, \beta, i)=0$.

First step. Let N_{1} be a copy of N_{0} and $\varphi_{1}: N_{0} \rightarrow N_{1}$ be an identifying map. Put

$$
x_{\varphi_{1}(n)}^{\alpha}=\left\{\begin{array}{ll}
x_{n}^{\alpha} & \text { if } \alpha \in A_{1}, \\
-x_{n}^{\alpha} & \text { if } \alpha \in A_{2},
\end{array} \quad n \in N_{0} .\right.
$$

Then for every α, β the series $S(\alpha, \beta, 1)$ has a finite number of non-zero terms and its sum is zero for $\alpha \in A_{1}, \beta \in A_{2}$.

Second step. Let N_{2} be a copy of $N_{0} \cup N_{1}$ and $\varphi_{2}: N_{0} \cup N_{1} \rightarrow N_{2}$ be an identifying map. Put

$$
x_{\varphi_{2}(n)}^{\alpha}=\left\{\begin{array}{ll}
x_{n}^{\alpha} & \text { if } \alpha \in A_{3}, \\
-x_{n}^{\alpha} & \text { if } \alpha \in A_{4}, \\
0 & \text { if } \alpha \notin A_{1},
\end{array} \quad n \in N_{0} \cup N_{1} .\right.
$$

Then for every α, β the series $S(\alpha, \beta, 2)$ has a finite number of non-zero terms, its sum is zero for $\alpha \in A_{3}, \beta \in A_{4}$, and also for $\alpha \in A_{1}, \beta \in A_{2}$, since it is then equal to $S(\alpha, \beta, 1)$.

Third step. Let N_{3} be a copy of $N_{0} \cup N_{1} \cup N_{2}$ and $\varphi_{3}: N_{0} \cup N_{1} \cup N_{2} \rightarrow N_{3}$ be an identifying map. Put

$$
x_{\varphi_{3}(n)}^{\alpha}= \begin{cases}x_{n}^{\alpha} & \text { if } \alpha \in A_{5}, \\ -x_{n}^{\alpha} & \text { if } \alpha \in A_{6}, \quad n \in N_{0} \cup N_{1} \cup N_{2} . \\ 0 & \text { if } \alpha \notin A_{2},\end{cases}
$$

Then for every α, β the series $S(\alpha, \beta, 3)$ has a finite number of non-zero terms, its sum is zero for $\alpha \in A_{5}, \beta \in A_{6}$, for $\alpha \in A_{1}, \beta \in A_{2}$ (being equal to $S(\alpha, \beta, 1)$) and for $\alpha \in A_{3}, \beta \in A_{4}$ (being equal to $S(\alpha, \beta, 2)$).

We have constructed our sequences so that in the i th step for $\alpha \neq \beta$ the series $S(\alpha, \beta, i)$ has a finite number of non-zero terms and if $S(\alpha, \beta, i)=0$ then $S(\alpha, \beta, j)=S(\alpha, \beta, i)=0$ for $j>i$. Condition $(*)$ ensures that for any distinct α, β there exists i such that $S(\alpha, \beta, i)=0$.

An uncountable orthogonal system on an interval can be obtained as a result of the following transformation. We decompose $(0,1)$ into a countable union of disjoint sets $\left(\Delta_{n}\right)_{n=1}^{\infty}$ of positive measure, and for every sequence $x=\left(x_{n}\right)$ we define a function $f_{x}(t)=x_{n} / \sqrt{\mu\left(\Delta_{n}\right)}$ for $t \in \Delta_{n}$. It is easy to see that if $x^{\alpha}, \alpha \in A$, are the sequences from Proposition 4 , then the set of functions $f_{x^{\alpha}}, \alpha \in A$, has the property desired in [5, Problem 51].

Acknowledgements. The authors are grateful to Prof. V. Gaposhkin and Prof. A. Pełczyński for useful advice.

REFERENCES

[1] V. I. Gurariĭ, The existence of a non-hereditarily complete family in an arbitrary separable Banach space, Zap. Nauchn. Semin. LOMI 92 (1979), 274-277 (in Russian).
[2] S. Kaczmarz, O zupetności uktadów ortogonalnych [On completeness of orthogonal systems], Archiwum Towarzystwa Naukowego we Lwowie, Dział III 8 (5) (1936), 431-436 (in Polish).
[3] K. S. Kazarian, On some properties of uniformly bounded orthonormal systems, Dokl. Rassh. Zased. Semin. Inst. Prikl. Mat. im. I. N. Vekua (Tbilisi) 3 (1988), no2, 41-44 (in Russian).
[4] -, On a problem of S. Banach from the Scottish Book, Proc. Amer. Math. Soc. 110 (1990), 881-887.
[5] R. D. Mauldin (ed.), The Scottish Book, Birkhäuser, Boston, 1981.
[6] A. M. Olevski1̆, On approximation with the preservation of spectrum, Dokl. Akad. Nauk SSSR 311 (1990), 32-36 (in Russian).
[7] R. I. Ovsepian and A. Pełczyński, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in L^{2}, Studia Math. 54 (1975), 149-159.
[8] A. N. Plichko, Selection in a Banach space of subspaces with some special properties and some properties of quasicomplements, Funktsional. Anal. i Prilozhen. 15 (1) (1981), 82-83 (in Russian).
[9] A. M. Plichko and M. M. Popov, Symmetric function spaces on atomless probability spaces, Dissertationes Math. 306 (1990).
[10] W. H. Ruckle, On the classification of biorthogonal sequences, Canad. J. Math. 26 (1974), 721-733.
[11] I. Singer, Bases in Banach Spaces, II, Springer, Berlin, 1981.

Institute of Applied Problems of Mechanics and Mathematics
Ukrainian Academy of Sciences
Naukova 3b
290053 Lviv, Ukraine
Current address:
Department of Mathematics
Pedagogical Institute
Shevchenko St. 1
316050 Kirovograd, Ukraine

Reçu par la Rédaction le 5.5.1994;
en version modifiée le 11.7.1995

