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Introduction. In this paper we consider some questions connected with
the following problems from [5]:

1. Problem of Mazur ([5, Problem 154]): Let (ϕn) be an orthogonal
system consisting of continuous functions and closed in C.

(a) If f(t) ∼ a1ϕ1(t) + a2ϕ2(t) + . . . is the development of a given con-
tinuous function f(t) and n1, n2, . . . denote the successive indices for which
an1 6= 0, . . . , can one approximate f(t) uniformly by linear combinations of
the functions ϕn1(t), ϕn2(t), . . .?

(b) Does there exist a linear summation method M such that the devel-
opment of every continuous function f(t) in the system (ϕn(t)) is uniformly
summable by the method M to f(t)?

In [6] A. M. Olevskĭı has given negative answers to both questions.

2. Problem of Banach ([5, Problem 86]): Given a sequence of
functions (ϕn(t)) which is orthogonal, normed, measurable, and uniformly
bounded, can one always complete it, using functions with the same bound,
to a sequence which is orthogonal, normed, and complete? Consider the
case when infinitely many functions are necessary for completion.

This problem was first solved by S. Kaczmarz in [2]. Various solutions of
this problem were found by B. S. Kashin, A. M. Olevskĭı, S. V. Bochkarev
and K. S. Kazarian [3, 4].

3. Problem of Mazur ([5, Problem 51]):

a) Is every set of functions, measurable in [0, 1] with the property that
any two functions of the set are orthogonal, at most countable? (the func-
tions are not assumed to be square-integrable!)

b) An analogous question for sequences: Is every set of sequences with
the property that any two sequences (εn), (ηn) of this set are orthogonal,
that is,

∑∞
n=1 εnηn = 0, at most countable?
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It is stated in [5] that this problem was solved by Mazurkiewicz but there
is no such remark in the xerox copy of the original manuscript we have.

Let X be a separable Banach space and let X∗ be its dual. A system
xn, fn, xn ∈ X, fn ∈ X∗, n = 1, 2, . . . ,∞ is called biorthogonal if fm(xn) =
δmn (Kronecker delta). A biorthogonal system is called fundamental (or
complete) if its closed linear span [xn]∞n=1 is equal to X, and total if for
any non-zero element x ∈ X there is an index n such that fn(x) 6= 0. A
fundamental and total biorthogonal system is called a Markushevich basis
(an M -basis). A biorthogonal system is called a strong M -basis if x ∈
[fn(x)xn]∞n=1 for every x in X. A system (xn) is called a T -basis if there
exists a regular summation method such that for every element x in X there
exists a unique series

∑∞
n=1 bnxn which is summable to x by this method.

We say that a Banach space X is densely embedded in a Banach space Y
if X is a dense linear subspace of Y , it does not coincide with Y and there
exists a positive constant C such that ‖x‖Y ≤ C‖x‖X for x ∈ X.

1. An answer to the first part of Mazur’s question [5, Problem 154]
follows from the following general proposition which is an improvement of
results of Gurarĭı and Johnson [1, 10].

Proposition 1. Let X be a separable Banach space which is densely
embedded in a Hilbert space H. There exists a non-strong M -basis in X
which is an orthogonal system in H.

For the proof we need three lemmas.

Lemma 1. Let X be a Banach space which is densely embedded in a
Banach space Y and let E be a finite-codimensional closed subspace of Y .
Then X ∩ E is densely embedded in E.

P r o o f. Let Z be a finite-dimensional complement to X ∩ E in X.
Then for every e ∈ E there exists a sequence xn + zn → e in Y -norm with
xn ∈ X ∩ E and zn ∈ Z. Since Z ∩ E = 0, Z and E are closed in Y and Z
is finite-dimensional, we have xn → x and zn → z as n → ∞, with x ∈ E,
z ∈ Z and e = x + z. Thus z = 0 and xn → e as n → ∞, i.e. X ∩ E
is densely embedded in E. If X ∩ E = E, then X = (X ∩ E) + Z = Y .
Therefore X ∩ E 6= E.

Lemma 2. Let X be a Banach space which is densely embedded in a
Hilbert space H. For any ε > 0 there exist x and x′ in X such that ‖x‖X =
‖x′‖X = 1, ‖x− x′‖X < ε and x⊥x′ in H.

P r o o f. Let ‖ ‖ be the norm in X and ‖ ‖H be the norm in H. Without
loss of generality we may suppose that there exists u in X such that ‖u‖ =
‖u‖H = 1. Let E be the orthogonal complement of u in H. Then codimE
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= 1. It follows from Lemma 1 that X ∩E is dense in E and this embedding
is not an isomorphism. Hence we may choose v in X∩E such that ‖v‖H = 1
and a := ‖v‖ is sufficiently large. Put x = v+ u, x′ = v− u, x = x/‖x‖ and
x′ = x′/‖x′‖. Then (x, x′) = (v+ u, v− u) = ‖v‖H −‖u‖H = 0, hence x⊥x′
in H. It is easy to see that a − 1 < ‖x‖, ‖x′‖ < a + 1. This implies that
| ‖x‖ − ‖x′‖ | ≤ 2 and ‖x‖ · ‖x′‖ ≥ (a− 1)2. Then

‖x− x′‖ =
‖ ‖x′‖x− ‖x‖x′‖

‖x‖ · ‖x′‖
≤ ‖(‖x′‖ − ‖x‖)v + (‖x′‖+ ‖x‖)u‖

(a− 1)2

≤ 2‖v‖+ 2(a+ 1)‖u‖
(a− 1)2

≤ 2a+ 2(a+ 1)
(a− 1)2

,

i.e. choosing a sufficiently large we may obtain ‖x − x′‖ less than any pre-
assigned ε.

Lemma 3. Let X be a Banach space which is densely embedded in a
Hilbert space H. Let (ϕn) be a system which is fundamental in X and
orthogonal in H. Then (ϕn) is an M -basis in X.

P r o o f. Since (ϕn) is orthogonal in H, there exist functionals (ϕ∗n) ⊂ H∗

biorthogonal to (ϕn). Since X is densely embedded in H, H∗ is embedded
in X∗ and dense in the weak∗ topology, hence (ϕ∗n) is a total system on X,
and therefore (ϕn) is an M-basis in X.

P r o o f o f P r o p o s i t i o n 1. Let (yn) be some M-basis in X and let
(εn) be a sequence of positive scalars such that limn εn =0. We proceed by
induction. In the first step we put z1 =y1 and choose x1 and x′1 in X ∩ y⊥1
which satisfy the conclusion of Lemma 2 with ε = ε1. In the nth step we put
Yn−1 = (yi, xi, x

′
i)

n−1
i=1 , take zn ∈ lin(Yn−1, yn) with zn⊥Yn−1 and choose xn

and x′n in X ∩ (Yn−1 ∪ {yn})⊥ which satisfy Lemma 2 with ε = εn. Then
the subspaces X1 = [xn, zn]∞n=1 and X2 = [x′n]∞n=1 are quasi-complementary
but not complementary in X and orthogonal in H. It is known (see [8] for
example) that we can choose a subspace X0

1 of X1 such that dimX1/X
0
1 = 1

and so that X0
1 and X2 remain quasi-complementary in X. Take a system

(un) which is complete in X0
1 and orthogonalize it in H. We get a system

(vn) ⊂ X0
1 for which all conditions of Lemma 3 are valid, hence (vn) is an M-

basis in X0
1 , orthogonal in H. Put ϕ2n−1 = vn and ϕ2n = xn for n = 1, 2, . . .

Then (ϕn) is an M-basis in X, it is orthogonal in H by Lemma 3, but it is
not a strong M-basis because [ϕ2n−1]∞n=1 ⊂ X0

1 and ([ϕ2n]∞n=1)⊥ ⊃ X1.

R e m a r k. Since every T-basis (summation basis) is a strong M-basis
(see [11, p. 357]), there exists an M-basis in X, orthogonal in H, which is
not a T-basis in X. In the case when X has a conditional basis which is
orthogonal in H, a negative answer to the second part of Mazur’s question
[5, Problem 154] can be obtained significantly simpler than in the article of
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A. M. Olevskĭı [6]. Such bases exist in Lp, p > 2 (trigonometric system),
and in C (Franklin system). We will show that such bases exist in some
symmetric function spaces which are embedded in L2.

Proposition 2. Let X be a Banach space densely embedded in a Hilbert
space H and suppose that X has a conditional basis orthogonal in H. Then
there exists a strong M-basis in X, orthogonal in H, which is not a T-basis
in X.

P r o o f. This easily follows from the fact that every conditional basis
has a permutation which is not a T-basis (see [11, p. 357]). It is clear that
the rearranged system remains an M-basis and orthogonal in H.

The following statement is well known (see [9, p. 31], for example).

Lemma 4. No orthonormal basis (xn(t))∞n=1 in L2(0, 1) with |xn(t)| ≡ 1
for all n can be an unconditional basis of a symmetric space E on (0, 1)
different from L2.

Let E be a symmetric function space, let pE and qE be its Boyd indices
(see e.g. [9, p. 27] for definition). It is known that the Walsh system is a
basis in Lp, 1 < p < ∞. If 1 ≤ pE ≤ qE < ∞, then E is an interpolation
space between LpE

and LqE
([9, p. 27]). The above observations imply that

the Walsh system is a conditional basis in E when 2 < pE ≤ qE <∞.

2. The following proposition gives, in particular, a negative answer to
Banach’s question [5, Problem 86].

Proposition 3. Let X be a Banach space which is densely embedded in
a Hilbert space H and this embedding is not compact. Then there exists a
sequence (ϕn) such that

(i) (ϕn) is bounded in X;
(ii) (ϕn) is orthogonal in H;
(iii) (ϕn) admits no extension to a fundamental and orthogonal sequence

in H, using elements from X;
(iv) the closed linear span of (ϕn) in H has an infinite codimension in H.

We need two lemmas for the proof.

Lemma 5. Let X be a Banach space which is densely embedded in a
Hilbert space H and the embedding is not compact. Then there exists a
positive scalar a such that for any finite-codimensional closed subspace E ⊂
H there exists x ∈ X ∩ E⊥ such that ‖x‖X ≤ a‖x‖X .

P r o o f. Suppose the converse. Then for every a there exists a finite-
codimensional subspace E ⊂ H with ‖x‖X ≥ a‖x‖H for every x ∈ X ∩ E.
We will show that this implies the compactness of the embedding of X in H.
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We need to show that for every ε > 0 there exists a finite cover of B(X)
(the unit ball of X) by balls S1, . . . , Sm in H with radius ε. It follows
from the assumption that B(X) ∩ E ⊆ εB(H) if ε = 1/a. Compactness of
the embedding now easily follows from the fact that X ∩ E is closed and
finite-codimensional.

Lemma 6. Let X be a Banach space which is densely embedded in a
Hilbert space H. Let E be a finite-codimensional closed subspace of H, let
ε > 0 and v ∈ X. Then there exists y ∈ X∩E such that d(v, lin(E⊥, y)) < ε,
where d means the distance in H.

P r o o f. Decompose v in H as v = v∗+v∗∗, where v∗ ∈ E and v∗∗ ∈ E⊥.
Hence

d(v, lin(E⊥, y)) = inf{‖v − z‖H : z ∈ lin(E⊥, y)}
= inf{(‖v∗ − λy‖2 + ‖v∗∗ − u‖2)1/2 : λ ∈ R, u ∈ E⊥}
= inf{‖v∗ − λy‖H : λ ∈ R}.

Since X∩E is densely embedded in E by Lemma 1, v∗ can be approximated
arbitrarily closely by an element y from X ∩ E.

P r o o f o f P r o p o s i t i o n 3. The proof is a modification of arguments
from [7]. The reasoning uses the orthogonal transformation of A. M. Olevskĭı
and takes into account results from [8].

Let (vn)∞n=1 ⊂ X be a complete sequence in H such that each element is
repeated infinitely many times. Let (εn)∞n=1 be a sequence of positive scalars
such that limn εn = 0. By [8] there exists a closed infinite-dimensional
subspace Z in H such that Z ∩ X = 0. We proceed by induction. Let a
be the constant from Lemma 5. For elements (zi, xi, yi)n

i=1 ⊂ H we put
Hn = lin(zi, xi, yi)n

i=1. In the first step we use Lemma 5 to find z1 ∈ Z,
z1 6= 0, and x1 ∈ X with x1⊥z1, ‖x1‖H = 1 and ‖x1‖X ≤ a. Next we
use Lemma 6 to choose y1 ∈ X such that y1 ∈ (z1, x1)⊥, ‖y1‖H = 1 and
d(v1,H1) < ε1. In the nth step we take zn ∈ Z ∩ H⊥

n−1, zn 6= 0, choose
xn ∈ X ∩ H⊥

n−1 ∩ z⊥n such that ‖xn‖H = 1 and ‖xn‖X ≤ a and choose
yn ∈ X ∩H⊥

n−1 ∩ (zn, xn)⊥ such that ‖y1‖H = 1 and d(vn,Hn) < εn.
Now we rearrange the sequence (yn) and relabel it as (ψim)∞m=1, where

(im)∞m=1 is an increasing sequence such that for every m, im − im−1 = 2sm ,
where the positive integer sm is chosen to satisfy 2−sm/2‖ψim‖X < 2−m.
We relabel (xn)∞n=1 using the remaining positive integers to get the sequence
(ψi : i 6∈ (im)∞m=1). Let us apply for each block (ψi : im−1 < i ≤ im) the
orthogonal transformation of Olevskĭı [7]. We obtain a sequence (ϕk)∞k=1

which is bounded in X and orthonormal in H. The closed linear span of
(ϕk)∞k=1 in H coincides with the closed linear span of (xn, yn)∞n=1 in H. It is
clear that the subspace [zn]∞n=1 is an orthogonal complement to this closed
linear span.
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3. In this section we will answer Mazur’s question [5, Problem 51]. First
we consider the discrete variant. We need the following known lemma ([11,
p. 208]).

Lemma 7. Let N be a countable set. Then there exists a family {Mα}α∈A

of subsets of N with the following properties:

(i) The index set A has cardinality continuum.
(ii) Each set Mα is infinite.
(iii) Mα ∩Mβ is finite for α 6= β.

P r o o f. Let N be the set of all rational numbers in (0, 1), A be the set of
all irrational numbers in (0, 1) and, for each α ∈ A, let Mα be an arbitrary
infinite sequence in N converging to α.

Proposition 4. There exist continuum many sequences xα =
(xα

1 , x
α
2 , . . .), α ∈ A, such that xα

n = 0, 1, or −1 for every n and α, and
for α 6= β the series

∑∞
n=1 x

α
nx

β
n contains a finite number of non-zero terms

and its sum is equal to zero.

P r o o f. In a countable set N0 choose continuum many non-empty sub-
sets Mα, α ∈ A, such that Mα ∩Mβ is a finite set for α 6= β, by Lemma 7.
Put xα = (xα

1 , x
α
2 , . . .), where xα

n = 1 if n ∈Mα, and xα
n = 0 if n 6∈Mα. We

have constructed continuum many sequences xα so that for every α 6= β the
series

∑∞
n=1 x

α
nx

β
n is a finite sum.

Now we represent A as a dyadic tree A = A1 t A2, A1 = A3 t A4,
A2 = A5 tA6, . . . , where t denotes disjoint union, by the scheme:

A

A1 A2

A3 A4 A5 A6

A7 A8 A9 A10 A11 A12 A13 A14
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We make this representation in such a way that

(∗) every chain (Aki)
∞
i=1 has one-point intersection

⋂∞
i=1Aki .

We shall add to N0 a countable number of countable sets Ni, i = 1, 2, . . . ,
and shall complete the definition of our sequences on

⋃∞
i=1Ni by 0, 1, and

−1 so that in the ith step for α 6= β the series

S(α, β, i) :=
∑

n∈∪i
k=0Nk

xα
nx

β
n
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will contain a finite number of non-zero terms; if S(α, β, i) = 0 then
S(α, β, j) = 0 for j > i; and for every α 6= β there exists i such that
S(α, β, i) = 0.

First step. Let N1 be a copy of N0 and ϕ1 : N0 → N1 be an identifying
map. Put

xα
ϕ1(n) =

{
xα

n if α ∈ A1,
−xα

n if α ∈ A2, n ∈ N0.

Then for every α, β the series S(α, β, 1) has a finite number of non-zero
terms and its sum is zero for α ∈ A1, β ∈ A2.

Second step. Let N2 be a copy of N0 ∪N1 and ϕ2 : N0 ∪N1 → N2 be an
identifying map. Put

xα
ϕ2(n) =

{
xα

n if α ∈ A3,
−xα

n if α ∈ A4,
0 if α 6∈ A1,

n ∈ N0 ∪N1.

Then for every α, β the series S(α, β, 2) has a finite number of non-zero
terms, its sum is zero for α ∈ A3, β ∈ A4, and also for α ∈ A1, β ∈ A2,
since it is then equal to S(α, β, 1).

Third step. Let N3 be a copy of N0∪N1∪N2 and ϕ3 : N0∪N1∪N2 → N3

be an identifying map. Put

xα
ϕ3(n) =

{
xα

n if α ∈ A5,
−xα

n if α ∈ A6, n ∈ N0 ∪N1 ∪N2.
0 if α 6∈ A2,

Then for every α, β the series S(α, β, 3) has a finite number of non-zero
terms, its sum is zero for α ∈ A5, β ∈ A6, for α ∈ A1, β ∈ A2 (being equal
to S(α, β, 1)) and for α ∈ A3, β ∈ A4 (being equal to S(α, β, 2)).

We have constructed our sequences so that in the ith step for α 6= β the
series S(α, β, i) has a finite number of non-zero terms and if S(α, β, i) = 0
then S(α, β, j) = S(α, β, i) = 0 for j > i. Condition (∗) ensures that for any
distinct α, β there exists i such that S(α, β, i) = 0.

An uncountable orthogonal system on an interval can be obtained as a
result of the following transformation. We decompose (0, 1) into a countable
union of disjoint sets (∆n)∞n=1 of positive measure, and for every sequence
x = (xn) we define a function fx(t) = xn/

√
µ(∆n) for t ∈ ∆n. It is easy to

see that if xα, α ∈ A, are the sequences from Proposition 4, then the set of
functions fxα , α ∈ A, has the property desired in [5, Problem 51].
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