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LIMITS ON THE REAL LINE 

OF SYMMETRIC SPACES ON SEGMENTS 

O. V. Kucher and A. M. Plichko UDC 517. 982 

In the same way as the known spaces My, 9][p, and lp are constructed on the basis of the space 
Lp ( -  1, 1 ), we construct the corresponding "limit" spaces M e, ~fJ~e, and le on the real line on thebasis 
of a symmetric function space E on a segment and study some of their Banach properties. 

In connection with some questions of  generalized harmonic analysis, Marcinkiewicz [1] defined the class $'J~p, 

1 < p < 0% as a set of  Borel measurable functions x(t) on the real line with 

Ilxll-- l imsup Ix(t)lPdt < oo. 
T--->oo 

By identifying functions whose difference has norm zero, he proved that ( ~[J~p, I[ II) is a Banach space. Later 

[2-4], a space similar to ~J~p, namely, the space Mp of  functions such that 

[" ~ T ] l i p  

and its subspace I v consisting of functions for which 

T 11/p lim [1 f lx(t)l",tt = o 
T - ~  [ 2T -T 

were investigated. Evidently, ~J~p = Mp/Ip. The properties of  these spaces having a direct application to some 

questions o f  analysis and the usual Banach properties were studied. 

In the same way as the spaces Mp, ~J~tp, and Ip were constructed on the basis of  the space Lp(- I, 1), we 

construct the corresponding "limit" spaces M E, fit  E, and IE on the real line on the basis of  a symmetric function 

space E on a segment and study some of  their Banach properties. The majority of  the properties obtained are 

known for M t~ but  some o f  them are new. Naturally, the methods of  proof  are more abstract, it seems, less 

cumbersome,  and more  transparent with the point of  view of  the theory of Banach spaces. First, we consider an 

abstract construction, which may be called the inductive l.o-limit of  a sequence of  Banach spaces. 

1. Let  Xn be a sequence of  linear spaces, Yn = X1 0 . . .  �9 Xn, and let Yn be Banach spaces with norms II IIn. 
Assume also that, for  each n and any y ~ Yn, we have Ilyll~§ -< Ilyll=, and the projection of  Yn+l onto Yn 

along Xn+l is bounded in the norm II IIn+l- Consider the set 

x = { x = ( x x  . . . . .  xn . . . .  ): xn~ X,~ supnl l (xl  . . . . .  x ,Ol ln<~176 
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As usual, we identify the spaces Xn and Yn with their natural imbedding into X, which is endowed by the 

coordinatewise linear operations. For x = ( x 1 . . . . .  xn, ... ), we put Pnx = (Xl . . . . .  Xn, 0 . . . .  ). 

It is easy to see that, for a sequence of Banach spaces Xn and 1 < p  < ~ ,  the space X = Ip(Xn) satisfies these 

conditions. However, we shall consider the applications to other spaces [see condition (*) below]. 

Proposition 1. The set X with norm 

is a Banach space. 

II x [1 = sup II P~x lln 
n 

Proof. It is easy to show that (X, [111) is a linear normed space. Completeness can be verified as usual. Let 

xk, k = 1, o~, be a Cauchy sequence in the space X, i.e., for any e > 0 there exists N such that, for each j ,  k > N, 
we have 

Il xJ - xkll = sup II PnxY - Pnxk ll n < ~. 
n 

Then, for every n, 

Il P j  - pnxk li~ < ~. (1) 

It is easy to see that every projection On of X onto the subspace Xn along the t[ H-closed linear span 

[Xm : m ~ n] is bounded in this norm and that the norms II II and 1[ IIn coincide on the subspace Xn. Thus, (Xn, 

I1 II) is a complete space. Then, for each n, Qn xk, k = 1, oo, is a Cauchy sequence and, therefore, it converges to 

some element xn~  Xn. Consequently, 

Pn xk = ~ Qm Xk 

m=l 

converges to ~ x m. Let us show that the sequence x~  k = 1 ~ ,  converges to the element x =  ( X l ,  . . . .  x n . . . .  ) 

in the space X. For any fixed n, we fix k and pass to the limit in inequality (1) as j ---> ~ .  As a result, we obtain 

II P n x -  Pnx k I1~ < ~. This inequality is valid for every n; hence, II x -  xkll _< E. This implies that ][ x -  xk[] ---> O 

as k ---> oo. Since 

sup II Pnx k II n < ~ and sup [1Pnx- PnX k II. < e, 
n n 

we get sup II Pnx[[ < ~.  Therefore, x ~ X. Thus, the space X is complete. 
n 

Proposition 2. The space 

X 0 = { x ~ X: lim 11Pnx IIn = 0 } 
n 

is a closed linear subspace of  X. 
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Proof. It is easy to verify that the set X 0 is linear. Let us show that it is closed. Assume that a sequence 

xk~ X 0 converges to xE  X. Since limllPnxklln=O for any k and sup IIP.x-P.xkll, ,  -.-> o a s / c ~ ,  
n n 

limsupl[ P.xll .  <- limsuplt P.x -P .xk l l .  + limsupll P,,xkll. <- sup II P . x -  P.xkll. ---> 0 
n r/ r/ . 

as k ---> ~ .  Consequently, Iinm Ii iO.x I1. = o, i.e., x ~ x 0. 

Consider the space 

Y= {Y=(Yl . . . . .  Yn . . . .  ): y.r Y,. sup Ily~lt.<~o } 
n 

withnorm IlYll = sup Ily.ll. and its subspace Yo = {yE  Y: lim IlY.lln=0 }, i.e., Y=I,~(Yn) and Yo=co(Y . ) .  
n n 

It is easy to see that the mapping T that associates an element x =  (x t . . . . .  x .  . . . .  ) r  X with the element T x = 

Y = (Yl . . . . .  Yn . . . .  ), where y.= PnX, is a linear isometry of X onto some subspace of Y and TX 0 c Yo. 

Proposition 3. I f  f o r  each n, Yn is separable, then the same is true for  X o. I f  the dual spaces Y* are  

separable, then the same is true for  X~. 

Proof. Since X 0 is isometric to a subspace of co(Y.)  and X~ is isometric to a quotient space of  ll(Yn), 

this fact is obvious. 

We say that condition (*) is satisfied if, for any Ym ~ Ym, [lYre II. --'> 0 as n --> ~.  

Evidently, if this condition is satisfied, then, for every n, Y. c X o. 

Proposition 4. Let condition (*) be satisfied. Then, f o r  any ~ > O, the space X contains a comple- 

mented subspace Z, ( 1 + E)-isometric to l**; moreover, Z ~ X 0 contains a subspace (1 + E)-isometric to c 0. 

P r o o f .  L e t  E i > 0 ,  Z 1 E i  <E. Wese t  n l = l .  For i > l ,  wechoose x i = ( 0  . . . . .  Xnj, O . . . .  ), x n i E X n  i, 

and ni+ 1 sothat Iixmll., = 1 and IIx.,ll.,+l -< 8i. Denoteby Z the set 

{xa  = ( a l x . l , 0  . . . . .  0, a2xn2,0 . . . . .  aix~,O . . . .  ) :  a = (a 1 . . . . .  a i . . . .  )~ l**}. 

Let us show that Z is a subspace of X, (1 + e)-isometric to l**. Obviously, Z is a linear subspace. 

On the one hand, for any n, there exists i such that n i <n < ni+ 1 and. by the triangle inequality and the 

choice of n i, 

i 

llP.x~ll. -< ~ laklllxkll. + lai . l l  Ilxi+llln 
k=l 

< l a k l e k + l a i + l l  < ek +1 suplakl  
k 

k=l  

_< ( l + e )  sup lakl. 
k 

Hence, 

IIx~ll _ (1 +e)  sup lakl. (2) 
k 
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On the other hand, let i e N and let the number 1 < j  < i be such that max I akl = ] aj 1. Then 
l<_k<i 

j-1 
max IlPnxall~ >>. IIP~jxallnj >_ Ila:xJll~j-IIP~_,xall~j _ laylll#ll~j- ~ laklllxkll~: 

l<n<nj k=l 

and 

and 

>- la : l -  ~., laklEk-> [ay[-  ek la:[ >- ( 1 - e )  maxlakl 
k=l l<k<_i 

Ilxall _ (1 -~) sup lak[. (3) 
k 

If follows from inequalities (2) and (3) that Z is (1 + e)-isometfic to l~,. 

If  a = (a 1 . . . . .  a i  . . . .  ) s c0, then, for every $ > 0, there exists a number N such that [ aj ] < ~i for i > N 

li.m lien:aline < lira IlPNxallne + li.m II (eni-PN)xallni <- (1 +e)  sup lakl -- (1 + s ) &  
t t l k>n 

Consequently, X 0 N Z contains the subspace Zo = { x a ~  Z:  a ~ Co}, ( 1 + e)-  isometric to c o. Recall that a set 

of  elements (xi  : i E I)  of  a Banach space X is called a complete minimal system if the closed linear span 

[ xi : i ~ I] = X and, for every j ~ L xj  ~ [ x i : i ~j]. The dimension d imX of a Banach space X is defined as a 

minimal cardinality of  its subsets, the linear span of which is dense in X. 

Corollary. Let  d i m X  < c and let X satisfy condition (*). Then the space X has a complete minimal 

system. 

Proof.  According to Proposition 4, X has a closed subspace V, which is a complement to Z -___ l~. Therefore, 

there exists a closed subspace W c Z such that X / ( V @  W) is isomorphic to a Hilbert space and [51 

d i m X / ( g @  IV) = d imX.  

Since a Hilbert space has a complete minimal system, X also has one [6]. 

Proposi t ion 5. Let  condition (*) be satisfied and let, for  all n, Yn be a reflexive space. Then X = X 0 . 

Proof. Consider the spaces Y0 and Y and the map T defined in the proof of  Proposition 2. Since Yn are 

reflexive, the space dual to I70 = co(Yn) is ll (Yn) and the second dual is Y= l**(Yn). It is also known that the 

second dual to the subspace TXo c Yo is its weak* closure cl*(TXo) in Yg*. Consequently, it suffices to prove 

that cl* (TXo) = TX. If  y = (Yl . . . . .  Yn . . . .  ) = Tx = T (x  1 . . . . .  Xn . . . .  ) ~ TX  and y ~ cl* (TXo),  then, by the H a h n -  

Banach theorem, there exists a functional f ~  Y~ 
we have 

f = (f l  . . . . .  fn . . . .  ), 

such that f ( c l*  TXo) - 0 and f ( y )  = 1. Since E*0 = ll(Yn*), 

fn ~ Yn*, and f ( y )  = ~ fn(Yn).  
n--1 
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By condition (*), the element yn~ TXo; therefore, for any n, f ( y n ) = f n ( y n ) = O ;  hence, f ( y ) = 0 .  Thus, 

T X  c el* (TXo) .  
We now show the converse inclusion. Suppose that a net 

y ~  Yn,~ . )  - - . . . . .  Xn~ . . . .  ) 

weakly* converges to some element y = (yl . . . . .  yn . . . .  ) e Y. We need to show that there exists an element x ~ X 

such that y = Tx. Since, for every n, the space Yn is reflexive, the net yn a, a e A, weakly converges to an 

clement Yn. The net T - l ( y ~ )  = (x~ . . . . .  xn ~, 0, ...), cc e A, is also weakly convergent because T is an isometry. 

Finally, by continuity of the projection Qn for any n, the net (x~) weakly converges to an element xn. Certainly, 

T(Xl  . . . . .  Xn, 0 . . . .  ) = Yr~ Since y e Y, we have sup [[ Yn [[ n < oo, i.e., the element x e X and, certainly, Tx  = y. 
n 

The proposition is proved. 

Proposition 6. Suppose that there exists a constant c < 1 such that, f o r  every n > 1 and every y e Yn- I, 

the condition [[ y l]n < C l[ Y l[n_ l holds. For an element x = ( x  t . . . . .  X n  . . . .  ) a X, we put  

Ilxll0 = sup Ilxnlln. 
n 

Then the norm Ilxllo is equivalent to the initial norm Ilxll; therefore, the spaces (X,  II 11o) and ( Xo, II II0) 
are equal to l**(Xn) and co(Xn),  respectively. 

Proof. First, we show that IIx II-< (1 - c ) -1  II x 110. Indeed, assume to the contrary that, for some a >1, II x II > 

( 1 - c ) - l a l l x l l o  . Hence, for any e > 0 ,  there exists a number n such that, simultaneously, IIe~xll~ > ( 1 -  

e)ilxll and 

IIPn_~x + xnlln = IIP~xtln > ( l - c )  - l a l lx l lo  > ( 1 - c ) - l a l l x n l l ~  . 

From the last relation, we get 

IIPn-lxil~ >- IlPnxll~-llx~ll~ >- (1 - (1 - c )a -1 ) l lP~x l l~  . 

Taking into account the assumption of the proposition, we have 

( 1 - e ) l l x l l  < IIPnxll~ <-- a ( a - 1  +c)-lllPn_lxll~ 

< a c ( a -  1 + c )  -111Pn_lxll~_l <- a c ( a -  1 + c )  -111xll. 

Since e is arbitrary, this leads to a contradiction. 
On the other hand, 

Ilxnll~ -< tl P~xll~+ I! P~-lXlIn <-- II P~xltn + c IIe~- lx l ln_r  

By taking the supremum over all n on both sides of the inequality, we obtain II x [10 < ( 1 + c) II x II. The inequal- 
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ities ( 1 - c ) [] x II -< II x II 0 -< ( 1 § c) II x II mean the equivalence of the norms, and the sp ace X 0 is equal to c 0 (X n) 

and X i sequa l to  l~(Xn) i n thenorm IIII0. 
Recall that a Banach space is called weakly compactly generated (WCG) if it is a closed linear span of its 

weakly compact subset. It is easy to see that separable and reflexive spaces are WCG spaces and if Yn is a WCG 

space, then the space Iio has the same property. 

Corollary 1. Let at least one o f  the following conditions be satisfied: 

(i) f o r  all n, Yn is weakly compactly generated and (*) holds; 

(ii) there exists c < 1  suchthat, for  every n andany y ~  Yn-1, we have [lylln<_cllylln_r 

Then the space Xo contains a complemented subspace isomorphic to co and  X o is uncomplemented 
inX. 

Proof. To prove the first part of Corollary 1, we note that if condition (i) is satisfied, then Xo is a WCG 
space. By Proposition 4, it contains a subspace isomorphic to co, which, by [7, p. 115] and [8, p. 106], is comple- 
mented there. Under condition (ii), by Proposition 6, the space X0 is isomorphic to co(Xn) and, certainly, con- 

tains a complemented subspace isomorphic to co. 
We now show that the subspace X0 is uncomplemented in X. If condition (i) [condition (ii)] is satisfied, then 

it follows from Proposition 4 (Proposition 6, respectively) that X contains a subspace Z isomorphic to l~ and 

Z N X0 contains a subspace Z0 isomorphic to co. Suppose that X0 is complemented in X. Then, by t]ae first part 
of this corollary, this is Zo and, in particular, Zo is complemented in Z. However, every infinite-dimensional 
complemented subspace of i~ is isomorphic to l~, [8, p. 57]. We arrive at contradiction. Corollary 1 is proved. 

Corollary 2. Under the assumptions o f  Corollary' 1, Xo is not isomorphic to a dual space. 

Proof. In the first case, X0 is a WCG space and, by Proposition 4, X0 contains a subspace isomorphic to c 0. 
Suppose that X0 is isomorphic to the dual space. Then it contains a subspac, e isomorphic to l~ [8, p, t03]. But a 

WCG space does not contain a subspace of this sort; this can be easily deduced, for example, from Corollary 3 in [7, 
p. 114]. 

If the second condition is satisfied and X0 is isomorphic to the dual space, then it is complemented in the 

second dual Xo*. But X c Xo* and, therefore, Xo is complemented in X. This contradicts Corollary 1. 

Definition 1. We say that a sequence of  closed subspaces X~ n = 1,-~, of  a Banach space Xo forms a 

basic decomposition i f  [Xn: n = l ,  oo] =X0 and there exist projections Pn: XO "~ [ Xi] ~ along [ Xi" 

i - ~ ], n = 1, o~, which are uniformly bounded. Moreover, i f  there exists a constant k >_ I such that, for  
n n every finite collection (xi) 1 , x i ~ X i, and every collection of  signs (0 i )1, the relation II Z ei xi II ~ KIIZ xi I[ 

holds, then a basic decomposition is called unconditional and the minimal number K is called an unconditional 
constant o f  a decomposition (Xn). In addition, i f  there exists a number c >_ 1 such that, for  e.very finite 

collection xi ,  yi, i = l , n ,  xi ,  Yi, e Xi ,  the inequality Ilyill_< llx l[ implies tlZyill-< cHZx tl, then the 
sequence (Xn) is called a strong unconditional decomposition of  X O. 

It follows immediately from this definition that, in the case under consideration, the subspaces ( Xr~ 11 [] ) form 
a basic decomposition of the space X 0 and, under the conditions of Proposition 6, they form a strong unconditional 
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decomposition. It is easy to see that if (Xn) form a strong unconditional decomposition, for each n, the subspace 
m X,~ has an unconditional basis (X n )m=P and, moreover, their unconditional constants are uniformly bounded, then 

m oo 
the system ( X  n ),,,.n=l is an unconditional basis of X 0. 

2. Definition 2 [ 10, p. 21 ]. Let (f2, Z, IX) be a measure space with a positive measure Ix. A Banach 

space E of(classes of) measurable functions on f2 is called symmetric if  

(i) the facts that y ~  E and [x(o))[_<ly(o))[ for  almost all co E f2 imply that x ~ E and 

II x II --- II Y II; 

(ii) the fac ts that  y ~ E and dlxl(t)=dlyl(t  ) for  all t > 0  imply that x E E and I lx l l=l ly l l ,  
where dlx I(t) = IX{ co: ix(o))l > t} is the distribution function of ix(o))I. 

Foranumber  T > 0 ,  denoteby O r  the linear map of [ -T,  T] onto [ -1 ,  1] with ~ p ( - T ) = - l ,  r 1. 

Let E be a symmetric space on [ -  1, 1 ] with norrnalized Lebesgue measure X ( -  1, 1 ) = 1. Then all functions 

x(q)T(t)), where x runs through E, form a symmetric space E r on I -T,  T] with norm II x ,  ~ r l i r  = II xllE. We 
denote the composition of functions by the sign o. Every function on the segment [ -T,  T] is identified with a 

function on the real line by defining it to be zero outside [-T, T]. Denote the set of measurable functions on the 

real line for which the number [[ x lime= supll x lit is finite by M s  and the subspace of M e consisting of functions 
T>__I 

for which rlim II x II r = 0 by I E. It is easy to see that (M s ,  II II ~ )  is a linear normed space and I s is its linear 

subspace. Certainly, for E = Lt,(-  1, 1 ), X ( -  1, t ) = 1, our construction gives the spaces Mp and Ip defined at the 
beginning of this paper. It is also evident that the spaces M s and /E are normed lattices with a natural pointwise 

order. Even the spaces Mp and Ip are not symmetric function spaces on the real line. Some weak property of 

symmetry for the spaces M s  and I s will be mentioned below (see the proof of Proposition 8). 

P r o p o s i t i o n  7.  Let Tn > 1, T 1 = 1, Tn -'4 ~ , and sup Tn+ 1 / Tn = a for some 1 <_ a < ~.  Then 
n 

IlxilM~ < Zasup Ilxllr. 
n 

for  any x E M E and, therefore, sup Ilxlir. is the norm on the space M e equivalent to the norm t[x [[M~ 
n 

To prove this proposition, we need the following 1emma: 

Lemma.  I f  1 < S < T, then E s ~ E r and, moreover, ( S I T) l] Y IIs < II y Ii r-- II y IIs for every y ~ E s. 

Proof. Let y ~  Es, y=xocp~ where x ~  E. It is necessary to find a function z e E such that X,  g s = Z * 9  r 

and (S/T) l lx l le  <-Ilzlle <-Ilxlle. Weset  

~ ( t )  = t if I t t<S/T ,  

if S / T  <]tI<I 

and z = x* W- Since opt(t) = t~ T and 9s( t )= t /S ,  g(cp( t ) )= (T /S) ( t /T)  = r Thus, x ,  r = z o 9T" The 

operator 
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f x ( T t )  if ]tINS~T, (4) 

DS/TX(t) = I 0  S if S/T<ItI<_I 

associates a function z(t) with a function x(t). As is known [9, p. 130], Ds/r acts in the space E, its norm is at 

most one, II Dr/s]] < max (1, T/S) = T/S, and Ds/rDr/sX =X[o,s/rl x. Then Ds/rDr/sZ = z and 

-1 
IlxllE = l[ Ds/r2 lie = IIDr/szllE = IlDr/szlle <- (Z/S)l lz l le .  

Proof of  Proposition 7. Let us take an arbitrary number 1 < T <  oo; for some n, Tn < - T< Tn+1. Denote by 

)~n the characteristic function of  the set { t: Tn < I tl-< Tn+l }. Then 11 x []r = II xzt_r. ,  r . j  + x)~nllr' 
two possible cases. 

I. 

Consider 

Ilxzt_r. .r~]llr  - (1 /2) l lx l l r .  Then Ilxllr_<Zllxllr. <2a supllxllr. 
n 

II. Ilxz.llr>__ (1/2)llxllr.  Then, by the lemma, Ilxz.llr--- (T .+l /r ) l lxz . l l r . . ,  <- (Z~+~/Z.)llxz.llr.+: 

Consequently, 

Ilxllr -< 211xz.llr < (2T~+I/T~)llxZnllr.+, <- (2Tn+l/Tn) llxllT..~ 

Since T is arbitrary, we obtain 

Note that, for the spaces 

IIxlIM~ = s u p  IlxllT -< 2asupllxl[T. 
T>I n 

-< 2a sup [Ixllr: 
n 

the conditions from Sec. 1 of  the present paper are satisfied. Therefore, Propositions 1, 2, and 7 yield the', following 
statement: 

Corollary 1. ME is a Banach space and IF. is its closed subspace. 

Recall that the norm 1[ ]] o f  a symmetric space E is called absolutely continuous if, for every x ~ E and 

every decreasing sequence f in  of  measurable subsets o f  f2 with empty intersection, I lxza.  I ]~  0 as n ~ 0. 

Note also that a symmetric Banach space on ( - 1 ,  1) with an absolutely continuous norm is a rearrangement 
invariant in the sense of  [9], and the Haar system forms a basis in E ( -  1, 1 ) [9, p. 150]. 

Further, we consider symmetric spaces E with an absolutely continuous norm only. It is easy to see, that if E 

is a symmetric space with an absolutely continuous norm, then condition (*) is satisfied for the spaces Yn = ET,, 

Tn-'+ oo. Therefore, the reasoning presented after Definitions 1 and 2 and Proposition 7 yields the fol lowing 
assertion: 

Corollary2. The subspaces En= { XXn_l : x ~ IE } form an unconditional decomposition of the space IE 

Yn = ET n, Xn={XZn_ l  : x ~ g T n } ,  X = (ME, SUp[lx[l~), a n d  Xo = (IE, supl]xl[T~), 
n n 
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with the unconditional constant equal to one. 

The next corollary is a consequence of Propositions 3-5, 7 and Corollaries 1, 2 of Proposition 6. 

Corollary 3. The space IE is separable, not isomorphic to a dual space, and uncompIemented in Me a n d  

contains a complemented subspace isomorphic to co. I f  E is a reflexive space, then I'E* = Me .  

Since a space E on (-1, 1 ) with an absolutely continuous norm is separable, d i m M g = c  and, by Proposition 
4, the corollary of Proposition 4, and Proposition 7, we obtain the following corollary: 

Corollary 4. The space ME contains a complemented subspace isomorphic to l** and has a complete 

minimal system. 

Denote by ~ E  the set of (classes of) measurable functions x(t) on the real line for which the following norm 

is finite: 

llxllr   = limsup Ilxllr. 
T--->~ 

Thus, the functions x, y ~ ME, for which x - y  e IE, are identified in the space ~Jl E and ~J~ =ME ~lB. Note that 

the symmetric space of Bezikovich almost periodic functions Eap considered in [10] is a subspace of ~fJ~t E. 

Corollary 5. I f  a space E is reflexive, then fit E = 1~, where I~ is the annihilator o f  IE C M e  in the 

dual space M~. 

Indeed, by Corollary 2, I~* = ME and, consequently, M~ = I~ �9 I~. However, we have ~ftE = ME//g. 

Corollary 6. I f  a space E is reflexive, then ~t E contains a subspace isomorphic to l . . /co  and, hence, 

~t  E has no equivalent strictly convex norm [11 ]. 

Indeed, by Corollary 3, IE = U ~ V, U is isomorphic to co, and Me  = U** �9 V**, U** is isomorphic to 

l**. Therefore, ~Jl E = ME/IE contains a subspace isomorphic to U** / U, i.e., l**/co. 

Recall that the lower and upper Boyd indices of a symmetric space E are defined by 

PE = sup(logs)/logliDsll and q e =  inf (logs)/logllDsll, 0<s<l s>l 

respectively, where Ds is the operator defined by (4). 

Corollary 7. Let E be a symmetric space with qE < ~" 

and IF. is isomorphic to co(E). 

To prove this corollary, we need two additional statements. 

Lemma 1. Let E be a symmetric space with qE < ~" 

I ly l l r -  < Cllylls forevery  y ~  E s, where C= ( S / T ) I / % <  1. 

Then the space ME is isomorphic to l., (E) 

Then, for  every S and T, S < T, we have 
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Proof. Since qE<(logs) / logl lDsl l  forany 0 < s <  1, wehave 

log liDs II - ( logs) /  q E = tog sl/%, 

!1 Ds I[ < s 1 / qz. Further, by analogy with the proof of the lemma after Proposition 7, by putting s = S / T, Hence, 

we get 

where 

I lYllr  

C = ( S / T ) I / % <  1. 

Lemma 2. Let a sequence Tn > 1, Tn ~ oo, and 

inf Tn+ l / Tn > 1, 
n 

= IIz~ = I lz l l~  = IIDsxllE -< I lOs l l l lx l lE  -< CIIx*~slls = CIlYl[s, 

sup Tn+ l / Tn < oo. 
n 

Then the spaces E n constructed by this sequence are uniformly isomorphic to E. 

Proof. Let E[-Sn, Sn] be a subspace of E consisting of functions x%[_s ~ ,s,]' 
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where S n = i - Tn- 1 / Tn, 

infSn> 0. By using the definition of ET, and the symmetry, we see that the space E rn is isometric to E and E n 

is isometric to E[-Sn,  Sn] �9 Then the operator Ds, defined by (4) acts from. E into its subspace E[-Sn ,  Sn] and 

has norm at most 1, and the norm of the inverse operator is at most 1 / Sn. 

Proof o f  Corollary 7. Choose a sequence Tn >_ 1, Tn --~ oo, such that 

1 < infTn+l/Tn and supT n+ l / T n<  ~. 
n n 

Then, by Proposition 6 and Lemma 1, we find that, for the subspaces E n constructed by this sequence, 

ME = loo(E n) and IE = co(E n) in the equivalent norm. To complete the proof, we apply Lemrna 2. 

Remark. It follows from the proof of Corollary 7 that if qE < oo, then the subspaces E n form a strong uncon- 

ditional decomposition of Is. 

Proposition 8. The space Is has a (Schauder) basis. 

Proof  Denote by /~,  m = 1, ~ ,  the Haar system in the space E n and enumerate the Haar functions by one 
index as is shown in the scheme below: 

1____>. 1 1 ~  1 hi 16 h3 hl 
2f 2f 2f 

h 1 h~ h 3 . 
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Let (hi) 1 be the system obtained. It is clear that its linear span is dense in IE. Therefore, by the sufficient 

condition of basisness [8, p. 2], it suffices to verify that, for any finite collection of  scalars ai, i = 1, k + 1, the 

inequality Ill x ill ---lily !II holds for 

k k+l 

x-- 2 aA, y= 
1 1 

where 

Tn > 1, Tn---~oo, supTn+l/Tn < oo, and IIIxlll = supl lx l l rn  
n n 

is the norm equivalent, by Proposition 7, to the initial norm of IE. Consider two cases. 

I. If supp x r supp y, where suppx = ~ t: x(t) ~ 0 ),  i.e., there exists j such that 

s u p p x = O ,  then, for all t, ly(t)l---[x(t)l and, consequently, for every 

III y III -> !11 x 111. 

h k+ 1 = h J, supp h k+ 1 f') 

n, Ilyllr_>llxllr. and 

H. The functions x and y coincide everywhere with the exception of an interval A c ( t: Tn < [ t I < Tn+ 1 

on which x is a constant, say, it takes a value b there, and y(t) is equal to b + ak+ 1 on the first half of 

A and to b - ak+ I on the second half of A. Let z be an automorphism of the real line which permutes 

the first half of A with its second half and leaves invariant every point outside A. It is easy to see that, for 

this automorphism, Illylll =illy~ III and x( t )  = ( y ( t ) + y ( ~ ( t ) ) ) / 2  for every t ~  R .  Therefore, 

IIIxlll <-Illylll. 

Proposition 9. The system (hi) 1 from the preceding proposition is an unconditional basis o f  IF, i f  and only 

i f  PE> l and qE <oo. 

Proof. Since the Haar system h n, m = 1, 0% forms an unconditional basis of En if and only if PE" > 1 and 

q/~, < oo [9, p. 156], these conditions are necessary. 

By Lemma 2 of  Corollary 7, the spaces E n are uniformly isomorphic to E. Moreover, under the assumptions 

of  Proposition 9, the subspaces E n form a strong unconditional decomposition of Ie (Corollary 7). Applying the 

remark after Definition 1, we conclude that the system (hi) ~ forms an unconditional basis of this space. 

Definition 3. Let K be a convex subset in a linear space X. An element x ~ K is called an extreme point 

o f  K if, for any y ~ X, x -T- y ~ K implies that y = O. 

Proposition I0. Let 

x ~ M g ,  Ilxll = 1, and l i m s u p l l x l l r <  1 as T---~oo. (5) 

Then there exists an element yE  IE, I lyl l~0,  such that ]Ix w yll < 1. Thus, any point with condition (5) 

is not an extreme point o f  the unit ball of ME, and the unit bali B (IE) of Ig contains no extreme point. 

Proof. Let sUPT>I I lxl l r= 1 and, for some a < 1, there exist a number S such that IlxllT--- a as T>  S. 
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Let y ~  IF., I lyl l<l-a,y~O, suppy~  [S, oo). For T < S ,  llx~yllr=llxllr, and, for T>S ,  

The proposition is proved. 

IIx ~- y l l r  -< Ilxllr + I lyl l r  -< a + 1 - a _< 1. 

Definition 4. A Banach space X is called uniform& convex [7, p.  34] if  

a(e) = inf{1-l lx+yll /2:  I l x - y l l - > e ,  x , y ~ B ( X ) } ,  e>O,  

is a strictly positive function on JR+; 5(.)  is called the modulus of convexity of X. 

Propos i t ion  11. Let E be a uniformly convex symmetric space and let x ~ B(MF.). Suppose that there 

exists C > 0  a n d a  sequence T n " ~  such that I lx l l r  > 1 -a(C/Zn) .  Then x is an extreme point o f  

B(Me). 

Remark. The condition of  Proposition 11 states that if  there exists a sequence Tn such that [] x I1~ -'~ 1 suf- 

ficiently fast, then x is an extreme point of  B(ME). 

Proof. Suppose that there exists an element y ~ ME such that l[ x -T- y ]1 < 1 and y( t )  ~ 0 on [ -S ,  S] for 

some S > 0 .  We  set c=lly l ls ,  u =x+y ,  v = x - y .  Then, for T > S ,  Ilu-vllr=21lyllr>_2ST-111ylls= 

2 S T - 1 C >  C/T .  The uniform convexity of E yields g ( C / T )  < 1 + II u+v 11/2 = 1 - l l x l [ ~  i.e., Ilxllr_< 1 - 

5 ( c / T ) .  We arrive at a contradiction. 

Proposi t ion 12. Let E be a uniformly convex symmetric space and u ~_ B ( ~J'tE ). Suppose that there exists a 

sequence Tn ~ o~ such that SUPn Tn+ 1 / Tn < ~ and l im II u II r~ -- 1 as n --~ ~. Then u is an extreme point 

of B(~E).  

Proof. Let v ~ ~t  E be a point such that 

Let us show that 

limsupll u �9 v lit -< 1. 
T-->~ 

l imsupl lv  IITn = 0. 
T---~, 

Assume the contrary. Then, by passing to a subsequence if necessary, we can assume that [] v ]! Tn >- 'e for some 

e > 0 .  Foreach n, weconsider  u and u -T- v as elements of  ET~. Since the norms IIIIro are uniformly convex, 

by putting u = x  and u + v = y  in Definition 4, we can find 8 ( e ) > 0  such that 5 < t - I l u + u + v l l T n / 2  < 

1 - II u IIT~- This contradicts the hypothesis that liml[ u II r. = l as n --~ oo. Thus, l i m n ~ = l l  v 11 r. = 0. For an 

arbitrary T > 0 ,  there exists n:  Tn<T<Tn+I.  Then 

IIVlIT ~-- T~+IT-111vlIT.+, -~ T~§ 
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The  boundedness  o f  { Tn+ 1 / Tn}  impl ies  that the last  t e rm tends to 0 as T ~ ~ .  Therefore ,  II v II = 0 and u 

is an ex t r eme  poin t  o f  B (9"J'te). 
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