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LIMITS ON THE REAL LINE
OF SYMMETRIC SPACES ON SEGMENTS

0. V. Kucher and A. M. Plichko UDC517. 982

In the same way as the known spaces Mp, Mp, and Ip are constructed on the basis of the space
Lp(~1, 1), we construct the corresponding “limit” spaces M g, Mz, and Iz on the real line on thebasis
of a symmetric function space E on a segment and study some of their Banach properties.

In connection with some questions of generalized harmonic analysis, Marcinkiewicz [1] defined the class T,
1 < p <o, as a set of Borel measurable functions x(z) on the real line with

1 T 1/p
-— 1 —_— p oo
llxll = timsup [ZT J1s0) dz] <o

T—o0

" By identifying functions whose difference has norm zero, he proved that (R, || ||) is a Banach space. Later
[2—4], a space similar to J},, namely, the space M, of functions such that

1 T 1/p
- A p o
x|l = sup |:2T J]x(t)] dt] < oo,

T21 T

and its subspace Ip consisting of functions for which

I T 1/p
lim | — [[x(@®)}Pdt| =0
T—-)oo 2T —T

were investigated. Evidently, Jt,= M/ I, The properties of these spaces having a direct application to some
questions of analysis and the usual Banach properties were studied.

In the same way as the spaces Mp, T, and I, were constructed on the basis of the space Lp(-1, 1), we
construct the corresponding “limit” spaces Mg, Mz, and I¢ on the real line on the basis of a symmetric function
space E on a segment and study some of their Banach properties. The majority of the properties obtained are
known for M p, but some of them are new. Naturally, the methods of proof are more abstract, it seems, less
cumbersome, and more transparent with the point of view of the theory of Banach spaces. First, we consider an
abstract construction, which may be called the inductive [..-limit of a sequence of Banach spaces.

1. Let X, be a sequence of linear spaces, ¥, = X1 ®...®X,, and let Y, be Banach spaces with norms || ||,
Assume also that, for each n and any ye Y, we have ||y||,,,<I[¥ll,, and the projection of Y,.1 onto Y,

along X,. is bounded in the norm || |},,,,- Consider the set

X = {x=(Xp oo s X o) %€ X sUPRll (&1, - s 22 ], <0 }-
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As usual, we identify the spaces X, and Y, with their natural imbedding into X, which is endowed by the
coordinatewise linear operations. For x=(x{, ... , Xy, ...), weput Ppx = (xy, ... , X5, 0, ...).

It is easy to see that, for a sequence of Banach spaces X, and 1 <p <o, the space X =1[,(X,) satisfies these
conditions. However, we shall consider the applications to other spaces [see condition (*) below].

Proposition 1. The set X with norm
=1l = sup | Paxll,
is a Banach space.
Proof. 1tis easy to show that (X, ||]]) is a linear normed space. Completeness can be verified as usual. Let

x*. k=T, o, be a Cauchy sequence in the space X, i.e., forany £>0 thereexists N such that, for each j, k>N,
we have

|2/ - x4} = sup | Pax/ - P, < e
Then, for every n,
| Prx! - P, < & ¢
It is easy to see that every projection @, of X onto the subspace X, along the |]||-closed linear span
[Xm: m#n] isbounded in this norm and that the norms |{ || and || ||, coincide on the subspace X,. Thus, (X,

[ll) is a complete space. Then, for each n, Q,x% k=1, oo, is a Cauchy sequence and, therefore, it converges to
some element x,& X,. Consequently,

n
ank = z mek
=1

converges to 2: Xm. Let us show that the sequence xX k=1 o, converges to the element x=(xy, ... , X, ...}
in the space X. For any fixed n, we fix k and pass to the limit in inequality (1) as j — . As a result, we obtain
| Pox - Pux*|| | < €. This inequality is valid for every n; hence, || x—x*|| < e. This implies that |jx—x*|| — 0
as k- oco. Since

sup || P,x*]], < e and sup | Pax— Pox*|] < e,
n n

we get sup || P,x|| < . Therefore, x € X. Thus, the space X is complete.
n

Proposition 2. The space
Xo = {xe X: lim ||P,,x||n=0}
n

is a closed linear subspace of X.
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Proof. 1t is easy to verify that the set X, is linear. Let us show that it is closed. Assume that a sequence
x*e X, convergesto x e X. Since li'{nllP,,xk“n:O forany k and sup [| Pyx—Pux*||, = 0 as k— oo,
n

limsupl| P,x|, < limsup|| P,x - P,x*||,, + limsupl| P,x*||, < sup || Ppx—Pux*]l, = 0
n n n n

as k —> . Consequently, Iign [ Puxll,=0, ie., xe X,

~ Consider the space

Y = {y=(p s -+): Ya€ Yo S0P ll3ull, < }
n

with norm ||yl = sup || y.||, and its subspace Y; = {ye Y: 1i§n Hyall,=0 }, ie, Y=1_(Y,) and Yp=co(Yy).
B

It is easy to see that the mapping 7T that associates an element x=(xy, ... , Xy, ...)€ X with the element Tx=
y=(¥y -o- s Yp» --- ), Where y,= Ppx, is a linear isometry of X onto some subspace of ¥ and TX, < Yo.

Proposition 3. If, for each n, Y, is separable, then the same is true for X . If the dual spaces Y are

separable, then the same is true for X, ;.

Proof. Since X is isometric to a subspace of cy(Y,) and X o is isometric to a quotient space of I4( Y,
this fact is obvious.

We say that condition (*) is satisfied if, for any y,,€ Y, [|¥nll, = 0 as n— oo,

Evidently, if this condition is satisfied, then, for every n, ¥, C Xo-

Proposition 4. Let condition (%) be satisfied. Then, for any € > 0, the space X contains a comple-
mented subspace Z, (1 + g)-isometric to l.; moreover, Z ( X contains a subspace (1 + €)-isometric to cy.

Proof. Let £;>0, > ¢&; <& Weset ny=1. For i1, wechoose x'=(0, o X, 0, ...), xp € Xy,
and n;,; sothat || x|, = 1 and |[xyl,,, < €; Denoteby Z the set

{x*= (a;xn,0, ..., 0,89%,,0, ... ,a;%p, 0,...) 2 @ = (ay, ., @ .0 )€ I}

Let us show that Z is a subspace of X, (1 +¢€)-isometricto /. Obviously, Z is a linear subspace.
On the one hand, for any n, there exists i such that n; <n<n;,; and, by the triangle inequality and the

choice of n,,

i Py
NN, < 3 Lagl =50, + laa =1,
k=1

i i ‘
< Y ladeg+lajal s (Zek +1} S‘IlcPiakl < (1+¢g) S%P;ak!-
k=1 =1

Hence,

157l < (1+2) sup lagl @
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On the other hand, let i € N and let the number 1 <j<i be such that max lagl=1a;|. Then
<ksi

Jj=1
. . x
e 1Pl 2 1Pyl = el = WP 2l > a1, = 3 sl 124,

j-1 j~1
2 |gj|~ X layle, = [ - (Zskjla,-l 2 (1-e) max|a]
k=1 k=1

1<ksi
and

1571 2 (L-e) sup sl | )

If follows from inequalities (2) and (3) that Z is (1 + €)-isometricto [,

If a = (ay,...,a;...)€ cq, then, for every 6> 0, there exists a number N such that |a;|< & for i>N
and

tim || Pos“ll, < i [ Pyacll, + B (P P, € (1+8) suplay] < (1485
¢ ! ¢ k>n

Consequently, X, | Z contains the subspace Zo={x"€ Z: ae ¢y}, (1 + €)-isometric to ¢ Recall that a set
of elements (x;: iel) of a Banach space X is called a complete minimal system if the closed linear span

[x;: iel]l=X and, forevery je I, xj& [x;: i#j]. The dimension dimX of a Banach space X is defined as a
minimal cardinality of its subsets, the linear span of which is dense in X.

Corollary. Let dimX<c and let X satisfy condition (#). Then the space X has a complete minimal
system.

Proof. According to Proposition 4, X has a closed subspace V, which is a complementto Z =/_. Therefore,
there exists a closed subspace W < Z such that X/(V @ W) is isomorphic to a Hilbert space and [5]

dmX/(VO W) = dimX.

Since a Hilbert space has a complete minimal system, X also has one [6].
Proposition 5. Let condition (*) be satisfied and let, for all n, Y, be a reflexive space. Then X= X 6*.

Proof. Consider the spaces Yy and Y and the map 7 defined in the proof of Proposition 2. Since Y, are
reflexive, the space dual to Yo =co(Y,) is /1 (¥,) and the second dualis ¥ =1I_(¥,). It is also known that the
second dual to the subspace TXo < Yy is its weak® closure cl*(7Xg) in Yé"*. Consequently, it suffices to prove
that cI™(TXo)=TX. ¥ y=(y1sesVpp oo )= Tx=T(Xp, ..., Xp,...) € TX and y & cI* (TXg), then, by the Hahn—

Banach theorem, there exists a functional fe Y, such that f(cl*TXo)=0 and f(y)=1. Since ¥y = [;(¥)),
we have

f=fioesfw) fo€ Yy, and f(3) = 3 fulon-

n=1
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By condition (%), the element y,e TXq; therefore, for any n, f(y)=f,(y)=0; hence, f(y)=0. Thus,

TX ¢ cl* (TX).
We now show the converse inclusion. Suppose that a net

(y*: ae A), y*= (y‘f,..., yff,...) = Tx% = T(x?,...,x‘,’,‘,‘..) c TX,

weakly™ converges to some element y=(yy, ..., Yy, ...) € Y. We need to show that there exists an element xe X
such that y=Tx. Since, for every n, the space ¥, is reflexive, the net y‘,’,‘, o € A, weakly converges to an

element y, The net T‘l(y‘,’,‘) = (x‘f‘, s X9, 0, ), o € A, is also weakly convergent because T is an isometry.

Finally, by continuity of the projection @, for any n, the net (xﬁ‘) weakly converges to an element x, Certainly,

T(Xys e+ »%n, O, ...) = Y Since y e ¥, wehave sup [[y,ll,< e, ie., the element x € X and, certainly, Tx=y.
n

The proposition is proved.

Proposition 6. Suppose that there exists a constant ¢ <1 such that, for every n>1 and every y€ Y,_1,
the condition ||yl S cllyll,_, kolds. Foranelement x = (xy, ..., Xp, ...) € X, we put

lixlly = sup llxall,
n

Then the norm || x||, is equivalent to the initial norm || x||; therefore, the spaces (X, lllo) and (Xo, l1lo)
are equalto 1_(X,) and co(Xy), respectively.

Proof. First, we show that [|x|| < (1- ey Hix [lo- Indeed, assume to the contrary that, for some a >1, [|x]I>
(1 —-c)"laux ll,- Hence, for any £>0, there exists a number n such that, simultaneously, || P,xll,> (1-
e)llx|l and

IPpyx + xall, = 1Poxll, > (1=c)allxlly > (1-¢) allxal,.
From the last relation, we get
1ozl 2 1Pl =l xall, 2 (1= (1=c)a™ D | Pyl
Taking into account the assumption of the proposition, we have
(1-e)llxll < 1Puxll, < at@a=1+0) 1P,
< ac(a-1 +¢)“1 IP_ixll,_; < ac(a-1 -l-c)"1 =l

Since € is arbitrary, this leads to a contradiction.
On the other hand,

Nxall, < NPuxll,+ 1 Py xll, < 1Pl + el ooy xll, e

By taking the supremum over all » on both sides of the inequality, we obtain ||x|l, < (1+¢)llx||. The inequal-
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ities (1-c)llx||sllxllo<(1+c¢)llx|| mean the equivalence of the norms, and the space Xo is equal to co(X,)
and X isequalto I_(X,) inthenorm ||[,.

Recall that a Banach space is called weakly compactly generated (WCG) if it is a closed linear span of its
weakly compact subset. It is easy to see that separable and reflexive spaces are WCG spaces and if ¥, is a WCG
space, then the space Yy has the same property.

Corollary 1. Let at least one of the following conditions be satisfied:
(i) forall n Y, is weakly compactly generated and (*) holds;

(ii) there exists ¢ <1 such that, for every n andany y€ Yy, wehave ||yl <cllyll,_ ;.

Then the space X contains a complemented subspace isomorphic to co and X is uncomplemented
inX.

Proof. To prove the first part of Corollary 1, we note that if condition (i) is satisfied, then Xy is a WCG
space. By Proposition 4, it contains a subspace isomorphic to ¢, which, by [7, p. 115] and {8, p. 106], is comple-
mented there. Under condition (ii), by Proposition 6, the space X is isomorphic to ¢o(X,) and, certainly, con-
tains a complemented subspace isomorphic to ¢y.

We now show that the subspace X is uncomplemented in X. If condition (i) [condition (ii)] is satisfied, then
it follows from Proposition 4 (Proposition 6, respectively) that X contains a subspace Z isomorphic to [ and
Z (] X contains a subspace Z isomorphic to ¢g. Suppose that X is complemented in X. Then, by the first past
of this corollary, this is Zy and, in particular, Zy is complemented in Z. However, every infinite-dimensional
complemented subspace of [ is isomorphic to I [8, p. 57]. We arrive at contradiction. Corollary 1 is proved.

Corollary 2. Under the assumptions of Corollary 1, Xy is not isomorphic to a dual space.

Proof. 1In the first case, X is a WCG space and, by Proposition 4, X contains a subspace isomorphic to cj.
Suppose that X is isomorphic to the dual space. Then it contains a subspace isomorphic to /_, [8, p. 103]. Buta

WCG space does not contain a subspace of this sort; this can be easily deduced, for example, from Corollary 3 in {7,
p. 114].
If the second condition is satisfied and Xy is isomorphic to the dual space, then it is complemented in the

second dual Xg*. But X Xg* and, therefore, X is complemented in X. This contradicts Corollary 1.

Definition 1. We say that a sequence of closed subspaces X,, n=1,%, of a Banach space X forms a
basic decomposition if [X,: n=1,00]=Xy and there exist projections P,: Xo —> {Xi]’: along [X;:
i=n+l,=], n=1c, which are uniformly bounded. Moreover, if there exists a constant k=1 such that, for
every finite collection (x;)], x; € X;, and every collection of signs (8;);, the relation ||3.8,x;]|< K||T x]|

holds, then a basic decomposition is called unconditional and the minimal number K is called an unconditional
constant of a decomposition (X,). In addition, if there exists a number c=1 such that, for every finite

collection x;,y,i=Ln, x;,y, € Xy, the inequality ||y;|<|lx;|| implies |3 vl cllZ xll, then the
sequence (X,) is called a strong unconditional decomposition of Xy,

It follows immediately from this definition that, in the case under consideration, the subspaces ( X, || ||} form
a basic decomposition of the space X, and, under the conditions of Proposition 6, they form a strong unconditional
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decomposition. It is easy to see that if (X,) form a strong unconditional decomposition, for each n, the subspace
X, has an unconditional basis (X’ ):;=v and, moreover, their unconditional constants are uniformly bounded, then

the system (X'). _  is an unconditional basis of X,

m,n=1

2. Definition 2 [ 10, p.21]. Let (Q,X, L) be a measure space with a positive measure |L.. A Banach
space E of (classes of) measurable functions on Q. is called symmetric if

(i) the facts that ye E and |[x(®)|<|y(w)| for almost all ® € Q imply that x € E and
Hxll<lylk

(ii) the facts that y € E and d\y(t)=d)y(t) for all t>0 imply that x € E and ||x]|=]iy]l
where di(t) = p{o: |x(@)|>1} is the distribution function of |x(w)|.

For a number 7> 0, denote by ¢, the linear map of [-T, T] onto {-1,1] with @(-T)=~-1, ¢(I)=1.
Let E be a symmetric space on [—1, 1] with normalized Lebesgue measure A(—1,1)=1. Then all functions
x(@ (1)), where x runs through E, form a symmetric space Ey on [-7, 7] with norm fxeodl =lxll;. We
denote the composition of functions by the sign °. Every function on the segment [T, T] is identified with a
function on the real line by defining it to be zero outside [-T7, T]. Denote the set of measurable functions on the
real line for which the number || x{} M= gxlgﬂ x|l is finite by M and the subspace of Mg consisting of functions
for which T11'_1;13°||x|[T= 0 by Ig. Itis easy—to see that (Mg, ||| ME) is a linear normed space and Iy is its linear

subspace. Certainly, for E=Lp(-1,1), A(-1, 1)= 1, our construction gives the spaces Mp and I defined at the
beginning of this paper. It is also evident that the spaces Mz and I are normed lattices with a natural pointwise
order. Even the spaces M, and I, are not symmetric function spaces on the real line. Some weak property of
symmetry for the spaces My and Iz will be mentioned below (see the proof of Proposition 8).

Proposition 7. Let T,21,T; =1, T, —> o, and sup T,.1/Ty=a forsome 1 <a<oe. Then
n
"x"ME < 2asup “x“T,,
n
forany x& My and, therefore, sup l|x|ly is the norm on the space My equivalent to the norm =l My
n n

To prove this proposition, we need the following lemma:

Lemma. If 1<S<7, then Es C Er and, moreover, (S/T) Iylissliyliz<lyllg forevery ye Es.

Proof. Let ye Eg, y=x0Q, where x € E. Itis necessary to find a function z € E such that xe@g=2z29,
and (S/T)lIxllg<lizllg £l x]lz Weset

L, i |ssim,
y() =38
0 if S/T<]tl<1

and z=x-y. Since QH#)=t/T and (ps(t)=l‘/s, Y (P = (T/SH(t/T)= 7). Thus, X Qg=2°Qr The
operator
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{Z) w wesr
0 if §/T<H<1

Dgpx(2) = { “)

associates a function z(z) with a function x(¢). Asisknown [9, p. 130], Dy, acts in the space E, its norm is at
most one, || Dysll < max (1, 7/S) = T/S, and DgrDy 5% =% o 5/77%- Then DgrDyysz=2 and

-1
Ixliz = Il Dgj2 lg = IDgyszllg = 1 Dyyszlly < (T/8)lzllg-

Proof of Proposition 7. Let us take an arbitrary number 1< T<oo; for some n, T,<T<T,.1. Denote by
X, the characteristic function of the set {7: T,<|7|<T,.1}. Then |x]l; = I I, 7] +x¥ ;. Consider

two possible cases.

L Nxxeg, 5llr 2 (1/2)]lxlly. Then [|xll;<2lixll;, <2a supllxly.
n

IL |[xx,ll72(1/2)lIxll7- Then, by the lemma, [|xx, [l 7S (Tust/ Dl xx, N7, < (Toet/ Tl 22,11, -
Consequently,
Ixlly < 2llxx, Ml € QT /T xx, iz, < QT /T)llxli,, | < 2a sup || x|l7,.
Since T is arbitrary, we obtain

lixlly, = sup llxlly < 2asup || x]l;.
721 n "

Note that, for the spaces
Y, = Er, Xp={x%,,:x€Eg}, X = (Mg, supIIxIITn), and Xg = (Ig, supl]xHTn),
n n

the conditions from Sec. 1 of the present paper are satisfied. Therefore, Propositions 1, 2, and 7 yield the following
statement:

Corollary 1. Mg is a Banach space and Ig is its closed subspace.

Recall that the norm || || of a symmetric space E is called absolutely continuous if, for every x € E and
every decreasing sequence {2, of measurable subsets of Q with empty intersection, [[xxg |0 as n—0.
Note also that a symmetric Banach space on (-1, 1) with an absolutely continuous norm is a rearrangement
invariant in the sense of [9], and the Haar system forms a basis in E(-1,1) [9, p. 150].

Further, we consider symmetric spaces E with an absolutely continuous norm only. It is easy to see that if E
is a symmetric space with an absolutely continuous norm, then condition (*) is satisfied for the spaces Y,=Ep,
T, —» o=. Therefore, the reasoning presented after Definitions 1 and 2 and Proposition 7 yields the following
assertion:

Corollary 2. The subspaces E"={xY, ,: x€Ig} form an unconditional decomposition of the space I
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with the unconditional constant equal to one.
The next corollary is a consequence of Propositions 3—5, 7 and Corollaries 1, 2 of Proposition 6.

Corollary 3. The space Ip is separable, not isomorphic to a dual space, and uncomplemented in Mg and
contains a complemented subspace isomorphic to cq. If E is a reflexive space, then 12* =Mg.

~ Since aspace E on (-1, 1) with an absolutely continuous norm is separable, dimMg=c and, by Proposition
4, the corollary of Proposition 4, and Proposition 7, we obtain the following corollary:

Corollary 4. The space Mg contains a complemented subspace isomorphic to 1, and has a complete
minimal system.

Denote by Mz the set of (classes of) measurable functions x(¢) on the real line for which the following norm
is finite:

llxlly, = timsp [|xlly-

T—oee

Thus, the functions x,y € Mg, for which x—y €Iz, are identified in the space Mz and Mg =Mg/Iz. Note that
the symmetric space of Bezikovich almost periodic functions E, p considered in [10] is a subspace of M.

Corollary 5. If a space E is reflexive, then M’ = I+, where Iz is the annihilator of Iz < Mg in the
E E E

dual space M 2
Indeed, by Corollary 2, 5 = Mg and, consequently, Mz = Iz ® I5. However, we have My=Mg/I5.

Corollary 6. If a space E is reflexive, then M contains a subspace isomorphic to 1. /co and, hence,
My has no equivalent strictly convex norm [11].

Indeed, by Corollary 3, Iz = U@V, U is isomorphic to co, and Mg =U™ @ V™, U™ is isomorphic to
... Therefore, Mz=Mg/Ig contains a subspace isomorphicto U™ /U, ie., l../co.
Recall that the lower and upper Boyd indices of a symmetric space E are defined by

py = sup(logs)/log|| Dl and g = inf, (logs)/log 1D, 1l

respectively, where D, is the operator defined by (4).

Corollary 7. Let E be a symmetric space with gp<c. Then the space Mg is isomorphic to 1, E)
and Iz is isomorphic to co(E).

To prove this corollary, we need two additional statements.

Lemma 1. Let E be a symmetric space with qp <. Then, for every S and T, S < T, we have

iyll;s Cllyllg forevery ye Eg, where c=(S/D" < 1.
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Proof. Since g <(logs)/log||Ds|| forany 0<s<1, wehave

log||Ds || < (logs)/ g, = logs''?z.

Hence, || D;||<s!/?c. Further, by analogy with the proof of the lemma after Proposition 7, by putting s =S/7,
we get

Iylly = lze@zlly = llzllg = IDsxllz < IDs Wi xllg < Cllx-o4lls = Cllylls.

where C=(S/T)V < 1.
Lemma 2., Let a sequence 1,21, T,, — o, and

inf Tp1 /Ty > 1,  supT1/T, < oo
n n

Then the spaces E" constructed by this sequence are uniformly isomorphic to E.

Proof. Let E[-S,, S,] be a subspace of E consisting of functions XXi_s s.p where S,=1-T,-1/Ty

inf§,,> 0. By using the definition of E7, and the symmetry, we see that the space E 7, is isometric to £ and E"
is isometric to E[-S,, S,;]. Then the operator Dg, defined by (4) acts from E into its subspace E[-S,, §,] and

has norm at most 1, and the norm of the inverse operator is at most 1/S5,,.
Proof of Corollary 7. Choose a sequence T,= 1, T, —> e, such that

1< iIrllf Tpe1/T, and sup7T,.1/T, < eo.
n

Then, by Proposition 6 and Lemma 1, we find that, for the subspaces E" constructed by this sequence,
Mg =1 (E" and Ig= co(E™) in the equivalent norm. To complete the proof, we apply Lemma 2.

Remark. 1t follows from the proof of Corollary 7 that if g, <o, then the subspaces E" forma strong uncon-
ditional decomposition of Ig.

Proposition 8. The space Ig has a (Schauder) basis.

Proof. Denote by k), m=1, o, the Haar system in the space E" and enumerate the Haar functions by one
index as is shown in the scheme below:

e phmsd
2/2/2/
y ke ks
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Let (h;); be the system obtained. It is clear that its linear span is dense in Ig. Therefore, by the sufficient
condition of basisness [8, p. 2], it suffices to verify that, for any finite collection of scalars a;, i=1k+1, the
inequality [{lx{ll </l y Il holds for

k k+1

x= Y ak y= 3 ah,

1 1

where

Tp21, Ty, suplhy/Ty <o, and [lix|ll = suplx]l7,
n n

is the norm equivalent, by Proposition 7, to the initial norm of Jg. Consider two cases.

I. If suppx#suppy, where suppx={z: x(t)#0}, ie., thereexists j such that h, = i, supp iy N
suppx=, then, for all ¢, |y()|2|x(z)| and, consequently, for every =, (| y"TnZH*“”Tn and

My =1 i

II. The functions x and y coincide everywhere with the exception of an interval A ¢ {¢: T,< |t|< Tpit}
on which x is a constant, say, it takes a value b there, and y(¢) is equal to b + a;,; on the first half of
A andto b-ay,; onthe second half of A. Let T be an automorphism of the real line which permutes
the first half of A with its second half and leaves invariant every point outside A. It is easy to see that, for
this automorphism, |||y |ll =llly-tlll and x() =(y()+y(z(t)))/2 for every te R. Therefore,

i<y -

Proposition 9. The system (h;)] from the preceding proposition is an unconditional basis of Ig if and only
if pp>1 and gg<ece.

Proof. Since the Haar system A%, m=1, o, forms an unconditional basis of E, if and only if p;.>1 and
ggn <o [9, p. 156], these conditions are necessary.

By Lemma 2 of Corollary 7, the spaces E " are uniformly isomorphic to E. Moreover, under the assumptions
of Proposition 9, the subspaces E”" form a strong unconditional decomposition of /g (Corollary 7). Applying the

remark after Definition 1, we conclude that the system (k;); forms an unconditional basis of this space.

Definition 3. Let K be a convex subset in a linear space X. An element x€ K is called an extreme point
of K if,forany ye X, x ¥y € K implies that y=0.

Proposition 10. Let

xe Mg, Ix]l =1, and limsupllxli; <1 as T (5)

Then there exists an element y< Iz, ||y||#0, suchthat ||x ¥ yl|< 1. Thus, any point with condition (5)
is not an extreme point of the unit ball of Mg, and the unit ball B(Ig) of Ig contains no extreme point.

" Proof. Let suppyllx|ly=1 and, for some a<1, there exist a number S such that [[x||;<£a as T>S.
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Let ye I, |lyll<1-a,y#0, suppye [S, ). For T<S, ||x F ylly=lx|l;. and, for 7>,
IxFyllp < lxlp+ Iyll;sa+1-as<t.
The proposition is proved.
- Definition 4. A Banach space X is called uniformly convex [7, p.34] if
de) = inf{1~|[x+yll/2: llx-y|l=2¢e, x,ye B(X)}, £>0,
is a strictly positive function on R*; 8(-) is called the modulus of convexity of X.

Proposition 11. Let E be a uniformly convex symmetric space and let x € B(Mg). Suppose that there
exists C>0 and a sequence T,—> o such that ”xHTn >1-8(C/T,). Then x is an extreme point of

B(Mg).

Remark. The condition of Proposition 11 states that if there exists a sequence T, such that ||x ”Tn -1 suf-
ficiently fast, then x is an extreme point of B(Mpg).

Proof. Suppose that there exists an element ye Mg such that |[x Fy|| £ 1 and y(#)£ 0 on [-S,S] for
some $>0. Weset C=|lylly, u=x+y, v=x-y. Then, for T>S8, [[u-v|l;=2[Iy[l;228T ! ||yls=
28T-1C>C/T. The uniform convexity of E yields 8(C/T)<1+|lu+v]|/2= T-flxllp ie, llxll;s1-
8(C/T). We arrive at a contradiction.

" Proposition 12. Let E be a uniformly convex symmetric space and u < B(WMg). Suppose that there exists a
sequence T,—> oo such that sup, Tn11/T,<e and lim||ull; =1 as n— . Then u is an exireme point
n

Of B(mE)
Proof. Let v e Mz be apoint such that
limsupllu Fvll; < 1.
T—eo

Let us show that

limsup|| v "T,. = Q.
T—>co
Assume the contrary. Then, by passing to a subsequence if necessary, we can assume that ||v]l;, =& for some
n
€>0. For each n, we consider u and u ¥ v as elements of E7,. Since the norms |||l are uniformly convex,
n

by putting u=x and » +v =y in Definition 4, we can find 8(¢)>0 suchthat d < 1-flu+u+vly /2 <
1 —|{ully, This contradicts the hypothesis that lim|lu||; =1 as n— e. Thus, lim,.|lv|l; =0. Foran
arbitrary 7> 0, thereexists n: T, <7< T,,1. Then

lvlly £ Tonr T vl < Tont LI
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The boundedness of {7,+1/T,} implies that the last term tendsto 0 as T — co. Therefore, |[v]| m, =0 and u

is an extreme point of B(Mg).
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