LIMITS ON THE REAL LINE OF SYMMETRIC SPACES ON SEGMENTS

O. V. Kucher and A. M. Plichko

UDC 517.982

In the same way as the known spaces M_{p}, \mathfrak{M}_{p}, and I_{p} are constructed on the basis of the space $L_{p}(-1,1)$, we construct the corresponding "limit" spaces M_{E}, \prod_{E}, and I_{E} on the real line on the basis of a symmetric function space E on a segment and study some of their Banach properties.

In connection with some questions of generalized harmonic analysis, Marcinkiewicz [1] defined the class \mathfrak{m}_{p}, $1<p<\infty$, as a set of Borel measurable functions $x(t)$ on the real line with

$$
\|x\|=\limsup _{T \rightarrow \infty}\left[\frac{1}{2 T} \int_{-T}^{T}|x(t)|^{p} d t\right]^{1 / p}<\infty .
$$

By identifying functions whose difference has norm zero, he proved that ($\mathbb{M}_{p},\| \|$) is a Banach space. Later [2-4], a space similar to $\mathbb{1}_{p}$, namely, the space M_{p} of functions such that

$$
\|x\|=\sup _{T \geq 1}\left[\frac{1}{2 T} \int_{-T}^{T}|x(t)|^{p} d t\right]^{1 / p}<\infty,
$$

and its subspace I_{p} consisting of functions for which

$$
\lim _{T \rightarrow \infty}\left[\frac{1}{2 T} \int_{-T}^{T}|x(t)|^{p} d t\right]^{1 / p}=0
$$

were investigated. Evidently, $\mathfrak{m}_{p}=M_{p} / I_{p}$. The properties of these spaces having a direct application to some questions of analysis and the usual Banach properties were studied.

In the same way as the spaces M_{p}, \mathbb{M}_{p}, and I_{p} were constructed on the basis of the space $L_{p}(-1,1)$, we construct the corresponding "limit" spaces M_{E}, \prod_{E}, and I_{E} on the real line on the basis of a symmetric function space E on a segment and study some of their Banach properties. The majority of the properties obtained are known for M_{p}, but some of them are new. Naturally, the methods of proof are more abstract, it seems, less cumbersome, and more transparent with the point of view of the theory of Banach spaces. First, we consider an abstract construction, which may be called the inductive l_{∞}-limit of a sequence of Banach spaces.

1. Let X_{n} be a sequence of linear spaces, $Y_{n}=X_{1} \oplus \ldots \oplus X_{n}$, and let Y_{n} be Banach spaces with norms $\left\|\|_{n}\right.$. Assume also that, for each n and any $y \in Y_{n}$, we have $\|y\|_{n+1} \leq\|y\|_{n}$, and the projection of Y_{n+1} onto Y_{n} along X_{n+1} is bounded in the norm $\left\|\|_{n+1}\right.$. Consider the set

$$
X=\left\{x=\left(x_{1}, \ldots, x_{n}, \ldots\right): x_{n} \in X_{n} \sup _{n}\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{n}<\infty\right\} .
$$

Institute of Applied Problems of Mechanics and Mathematics, Ukrainian Academy of Sciences, Lvov. Published in Ukrainskii Matematicheskii Zhurnal, Vol. 47, No. 1, pp. 46-55, January, 1995. Original article submitted February 25, 1993.

As usual, we identify the spaces X_{n} and Y_{n} with their natural imbedding into X, which is endowed by the coordinatewise linear operations. For $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)$, we put $P_{n} x=\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)$.

It is easy to see that, for a sequence of Banach spaces X_{n} and $1<p<\infty$, the space $X=l_{p}\left(X_{n}\right)$ satisfies these conditions. However, we shall consider the applications to other spaces [see condition (*) below].

Proposition 1. The set X with norm

$$
\|x\|=\sup _{n}\left\|P_{n} x\right\|_{n}
$$

is a Banach space.
Proof. It is easy to show that ($X,\| \|$) is a linear normed space. Completeness can be verified as usual. Let $x^{k}, k=\overline{1, \infty}$, be a Cauchy sequence in the space X, i.e., for any $\varepsilon>0$ there exists N such that, for each $j, k>N$, we have

$$
\left\|x^{j}-x^{k}\right\|=\sup _{n}\left\|P_{n} x^{j}-P_{n} x^{k}\right\|_{n}<\varepsilon .
$$

Then, for every n,

$$
\begin{equation*}
\left\|P_{n} x^{j}-P_{n} x^{k}\right\|_{n}<\varepsilon \tag{1}
\end{equation*}
$$

It is easy to see that every projection Q_{n} of X onto the subspace X_{n} along the $\|\|$-closed linear span [$\left.X_{m}: m \neq n\right]$ is bounded in this norm and that the norms $\|\|$ and $\| \|_{n}$ coincide on the subspace X_{n}. Thus, $\left(X_{n}\right.$, $\left\|\|\right.$) is a complete space. Then, for each $n, Q_{n} x^{k}, k=\overline{1, \infty}$, is a Cauchy sequence and, therefore, it converges to some element $x_{n} \in X_{n}$. Consequently,

$$
P_{n} x^{k}=\sum_{m=1}^{n} Q_{m} x^{k}
$$

converges to $\sum_{1}^{n} x_{m}$. Let us show that the sequence $x^{k}, k=\overline{1, \infty}$, converges to the element $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)$ in the space X. For any fixed n, we fix k and pass to the limit in inequality (1) as $j \rightarrow \infty$. As a result, we obtain $\left\|P_{n} x-P_{n} x^{k}\right\|_{n}<\varepsilon$. This inequality is valid for every n; hence, $\left\|x-x^{k}\right\| \leq \varepsilon$. This implies that $\left\|x-x^{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$. Since

$$
\sup _{n}\left\|P_{n} x^{k}\right\|_{n}<\infty \quad \text { and } \quad \sup _{n}\left\|P_{n} x-P_{n} x^{k}\right\|_{n} \leq \varepsilon
$$

we get $\sup _{n}\left\|P_{n} x\right\|<\infty$. Therefore, $x \in X$. Thus, the space X is complete.
Proposition 2. The space

$$
X_{0}=\left\{x \in X: \lim _{n}\left\|P_{n} x\right\|_{n}=0\right\}
$$

is a closed linear subspace of X.

Proof. It is easy to verify that the set X_{0} is linear. Let us show that it is closed. Assume that a sequence $x^{k} \in X_{0}$ converges to $x \in X$. Since $\lim _{n}\left\|P_{n} x^{k}\right\|_{n}=0$ for any k and $\sup _{n}\left\|P_{n} x-P_{n} x^{k}\right\|_{n} \rightarrow 0$ as $k \rightarrow \infty$,

$$
\underset{n}{\limsup }\left\|P_{n} x\right\|_{n} \leq \underset{n}{\limsup }\left\|P_{n} x-P_{n} x^{k}\right\|_{n}+\underset{n}{\limsup }\left\|P_{n} x^{k}\right\|_{n} \leq \sup _{n}\left\|P_{n} x-P_{n} x^{k}\right\|_{n} \rightarrow 0
$$

as $k \rightarrow \infty$. Consequently, $\lim _{n}\left\|P_{n} x\right\|_{n}=0$, i.e., $x \in X_{0}$.
Consider the space

$$
Y=\left\{y=\left(y_{1}, \ldots, y_{n}, \ldots\right): y_{n} \in Y_{n}, \sup _{n}\left\|y_{n}\right\|_{n}<\infty\right\}
$$

with norm $\|y\|=\sup _{n}\left\|y_{n}\right\|_{n}$ and its subspace $Y_{0}=\left\{y \in Y: \lim _{n}\left\|y_{n}\right\|_{n}=0\right\}$, i.e., $Y=l_{\infty}\left(Y_{n}\right)$ and $Y_{0}=c_{0}\left(Y_{n}\right)$. It is easy to see that the mapping T that associates an element $x=\left(x_{1}, \ldots, x_{n}, \ldots\right) \in X$ with the element $T x=$ $y=\left(y_{1}, \ldots, y_{n}, \ldots\right)$, where $y_{n}=P_{n} x$, is a linear isometry of X onto some subspace of Y and $T X_{0} \subset Y_{0}$.

Proposition 3. If, for each n, Y_{n} is separable, then the same is true for X_{0}. If the dual spaces Y_{n}^{*} are separable, then the same is true for X_{0}^{*}.

Proof. Since X_{0} is isometric to a subspace of $c_{0}\left(Y_{n}\right)$ and X_{0}^{*} is isometric to a quotient space of $l_{1}\left(Y_{n}^{*}\right)$, this fact is obvious.

We say that condition (*) is satisfied if, for any $y_{m} \in Y_{m},\left\|y_{m}\right\|_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Evidently, if this condition is satisfied, then, for every $n, Y_{n} \subset X_{0}$.
Proposition 4. Let condition (*) be satisfied. Then, for any $\varepsilon>0$, the space X contains a complemented subspace $Z,(1+\varepsilon)$-isometric to $l_{\infty} ;$ moreover, $Z \cap X_{0}$ contains a subspace $(1+\varepsilon)$-isometric to c_{0}.

Proof. Let $\varepsilon_{i}>0, \sum_{1}^{\infty} \varepsilon_{i}<\varepsilon$. We set $n_{1}=1$. For $i \geq 1$, we choose $x^{i}=\left(0, \ldots, x_{n_{i}}, 0, \ldots\right), x_{n_{i}} \in X_{n_{i}}$, and n_{i+1} so that $\left\|x_{n_{i}}\right\|_{n_{i}}=1$ and $\left\|x_{n_{i}}\right\|_{n_{i+1}} \leq \varepsilon_{i}$. Denote by Z the set

$$
\left\{x^{a}=\left(a_{1} x_{n_{1}}, 0, \ldots, 0, a_{2} x_{n_{2}}, 0, \ldots, a_{i} x_{n_{i}}, 0, \ldots\right): a=\left(a_{1}, \ldots, a_{i}, \ldots\right) \in l_{\infty}\right\}
$$

Let us show that Z is a subspace of $X,(1+\varepsilon)$-isometric to l_{∞}. Obviously, Z is a linear subspace.
On the one hand, for any n, there exists i such that $n_{i} \leq n \leq n_{i+1}$ and, by the triangle inequality and the choice of n_{i},

$$
\begin{aligned}
\left\|P_{n} x^{a}\right\|_{n} & \leq \sum_{k=1}^{i}\left|a_{k}\right|\left\|x^{k}\right\|_{n}+\left|a_{i+1}\right|\left\|x^{i+1}\right\|_{n} \\
& \leq \sum_{k=1}^{i}\left|a_{k}\right| \varepsilon_{k}+\left|a_{i+1}\right| \leq\left(\sum_{k=1}^{i} \varepsilon_{k}+1\right) \sup _{k}\left|a_{k}\right| \leq(1+\varepsilon) \sup _{k}\left|a_{k}\right| .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left\|x^{a}\right\| \leq(1+\varepsilon) \sup _{k}\left|a_{k}\right| . \tag{2}
\end{equation*}
$$

On the other hand, let $i \in N$ and let the number $1 \leq j \leq i$ be such that $\max _{1 \leq k \leq i}\left|a_{k}\right|=\left|a_{j}\right|$. Then

$$
\begin{aligned}
\max _{1 \leq n \leq n_{j}}\left\|P_{n} x^{a}\right\|_{n} \geq\left\|P_{n_{j}} x^{a}\right\|_{n_{j}} & \geq\left\|a_{j} x^{j}\right\|_{n_{j}}-\left\|P_{n_{j-1}} x^{a}\right\|_{n_{j}} \geq\left|a_{j}\right|\left\|x^{j}\right\|_{n_{j}}-\sum_{k=1}^{j-1}\left|a_{k}\right|\left\|x^{k}\right\|_{n_{j}} \\
& \geq\left|a_{j}\right|-\sum_{k=1}^{j-1}\left|a_{k}\right| \varepsilon_{k} \geq\left|a_{j}\right|-\left(\sum_{k=1}^{j-1} \varepsilon_{k}\right)\left|a_{j}\right| \geq(1-\varepsilon) \max \left|a_{k}\right|
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|x^{a}\right\| \geq(1-\varepsilon) \sup _{k}\left|a_{k}\right| \tag{3}
\end{equation*}
$$

If follows from inequalities (2) and (3) that Z is $(1+\varepsilon)$-isometric to l_{∞}.
If $a=\left(a_{1}, \ldots, a_{i}, \ldots\right) \in c_{0}$, then, for every $\delta>0$, there exists a number N such that $\left|a_{j}\right|<\delta$ for $i>N$ and

$$
\lim _{i}\left\|P_{n_{i}} x^{a}\right\|_{n_{i}} \leq \lim _{i}\left\|P_{N} x^{a}\right\|_{n_{i}}+\lim _{i}\left\|\left(P_{n_{i}}-P_{N}\right) x^{a}\right\|_{n_{i}} \leq(1+\varepsilon) \sup _{k>n}\left|a_{k}\right| \leq(1+\varepsilon) \delta .
$$

Consequently, $X_{0} \cap Z$ contains the subspace $Z_{0}=\left\{x^{a} \in Z: a \in c_{0}\right\},(1+\varepsilon)$-isometric to c_{0}. Recall that a set of elements ($x_{i}: i \in I$) of a Banach space X is called a complete minimal system if the closed linear span $\left[x_{i}: i \in I\right]=X$ and, for every $j \in I, x_{j} \notin\left[x_{i}: i \neq j\right]$. The dimension $\operatorname{dim} X$ of a Banach space X is defined as a minimal cardinality of its subsets, the linear span of which is dense in X.

Corollary. Let $\operatorname{dim} X \leq c$ and let X satisfy condition (*). Then the space X has a complete minimal system.

Proof. According to Proposition $4, X$ has a closed subspace V, which is a complement to $Z \cong l_{\infty}$. Therefore, there exists a closed subspace $W \subset Z$ such that $X /(V \oplus W)$ is isomorphic to a Hilbert space and [5]

$$
\operatorname{dim} X /(V \oplus W)=\operatorname{dim} X
$$

Since a Hilbert space has a complete minimal system, X also has one [6].

Proposition 5. Let condition (*) be satisfied and let, for all n, Y_{n} be a reflexive space. Then $X=X_{0}^{* *}$.

Proof. Consider the spaces Y_{0} and Y and the map T defined in the proof of Proposition 2. Since Y_{n} are reflexive, the space dual to $Y_{0}=c_{0}\left(Y_{n}\right)$ is $l_{1}\left(Y_{n}^{*}\right)$ and the second dual is $Y=l_{\infty}\left(Y_{n}\right)$. It is also known that the second dual to the subspace $T X_{0} \subset Y_{0}$ is its weak ${ }^{*}$ closure $\mathrm{cl}^{*}\left(T X_{0}\right)$ in $Y_{0}^{* *}$. Consequently, it suffices to prove that $\mathrm{cl}^{*}\left(T X_{0}\right)=T X$. If $y=\left(y_{1}, \ldots, y_{n}, \ldots\right)=T x=T\left(x_{1}, \ldots, x_{n}, \ldots\right) \in T X$ and $y \notin \mathrm{cl}^{*}\left(T X_{0}\right)$, then, by the HahnBanach theorem, there exists a functional $f \in Y_{0}^{*}$ such that $f\left(\mathrm{cl}^{*} T X_{0}\right) \equiv 0$ and $f(y)=1$. Since $Y_{0}^{*}=l_{1}\left(Y_{n}^{*}\right)$, we have

$$
f=\left(f_{1}, \ldots, f_{n}, \ldots\right), \quad f_{n} \in Y_{n}^{*}, \quad \text { and } \quad f(y)=\sum_{n=1}^{\infty} f_{n}\left(y_{n}\right)
$$

By condition (*), the element $y_{n} \in T X_{0}$; therefore, for any $n, f\left(y_{n}\right)=f_{n}\left(y_{n}\right)=0$; hence, $f(y)=0$. Thus, $T X \subset \mathrm{cl}^{*}\left(T X_{0}\right)$.

We now show the converse inclusion. Suppose that a net

$$
\left(y^{\alpha}: \alpha \in A\right), \quad y^{\alpha}=\left(y_{1}^{\alpha}, \ldots, y_{n}^{\alpha}, \ldots\right)=T x^{\alpha}=T\left(x_{1}^{\alpha}, \ldots, x_{n}^{\alpha}, \ldots\right) \subset T X_{0}
$$

weakly* converges to some element $y=\left(y_{1}, \ldots, y_{n}, \ldots\right) \in Y$. We need to show that there exists an element $x \in X$ such that $y=T x$. Since, for every n, the space Y_{n} is reflexive, the net $y_{n}^{\alpha}, \alpha \in A$, weakly converges to an element y_{n}. The net $T^{-1}\left(y_{n}^{\alpha}\right)=\left(x_{1}^{\alpha}, \ldots, x_{n}^{\alpha}, 0, \ldots\right), \alpha \in A$, is also weakly convergent because T is an isometry. Finally, by continuity of the projection Q_{n} for any n, the net $\left(x_{n}^{\alpha}\right)$ weakly converges to an element x_{n} Certainly, $T\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)=y_{n}$. Since $y \in Y$, we have $\sup _{n}\left\|y_{n}\right\|_{n}<\infty$, i.e., the element $x \in X$ and, certainly, $T x=y$. The proposition is proved.

Proposition 6. Suppose that there exists a constant $c<1$ such that, for every $n>1$ and every $y \in Y_{n-1}$, the condition $\|y\|_{n} \leq c\|y\|_{n-1}$ holds. For an element $x=\left(x_{1}, \ldots, x_{n}, \ldots\right) \in X$, we put

$$
\|x\|_{0}=\sup _{n}\left\|x_{n}\right\|_{n^{*}}
$$

Then the norm $\|x\|_{0}$ is equivalent to the initial norm $\|x\|$; therefore, the spaces $\left(X,\| \|_{0}\right)$ and $\left(X_{0},\| \|_{0}\right)$ are equal to $l_{\infty}\left(X_{n}\right)$ and $c_{0}\left(X_{n}\right)$, respectively.

Proof. First, we show that $\|x\| \leq(1-c)^{-1}\|x\|_{0}$. Indeed, assume to the contrary that, for some $a>1,\|x\|>$ $(1-c)^{-1} a\|x\|_{0}$. Hence, for any $\varepsilon>0$, there exists a number n such that, simultaneously, $\left\|P_{n} x\right\|_{n}>(1-$ ع) $\|x\|$ and

$$
\left\|P_{n-1} x+x_{n}\right\|_{n}=\left\|P_{n} x\right\|_{n}>(1-c)^{-1} a\|x\|_{0}>(1-c)^{-1} a\left\|x_{n}\right\|_{n}
$$

From the last relation, we get

$$
\left\|P_{n-1} x\right\|_{n} \geq\left\|P_{n} x\right\|_{n}-\left\|x_{n}\right\|_{n} \geq\left(1-(1-c) a^{-1}\right)\left\|P_{n} x\right\|_{n}
$$

Taking into account the assumption of the proposition, we have

$$
\begin{aligned}
(1-\varepsilon)\|x\| & <\left\|P_{n} x\right\|_{n} \leq a(a-1+c)^{-1}\left\|P_{n-1} x\right\|_{n} \\
& \leq a c(a-1+c)^{-1}\left\|P_{n-1} x\right\|_{n-1} \leq a c(a-1+c)^{-1}\|x\| .
\end{aligned}
$$

Since ε is arbitrary, this leads to a contradiction.
On the other hand,

$$
\left\|x_{n}\right\|_{n} \leq\left\|P_{n} x\right\|_{n}+\left\|P_{n-1} x\right\|_{n} \leq\left\|P_{n} x\right\|_{n}+c\left\|P_{n-1} x\right\|_{n-1}
$$

By taking the supremum over all n on both sides of the inequality, we obtain $\|x\|_{0} \leq(1+c)\|x\|$. The inequal-
ities $(1-c)\|x\| \leq\|x\|_{0} \leq(1+c)\|x\|$ mean the equivalence of the norms, and the space X_{0} is equal to $c_{0}\left(X_{n}\right)$ and X is equal to $l_{\infty}\left(X_{n}\right)$ in the norm $\left\|\|_{0}\right.$.

Recall that a Banach space is called weakly compactly generated (WCG) if it is a closed linear span of its weakly compact subset. It is easy to see that separable and reflexive spaces are WCG spaces and if Y_{n} is a WCG space, then the space Y_{0} has the same property.

Corollary 1. Let at least one of the following conditions be satisfied:

(i) for all n, Y_{n} is weakly compactly generated and (*) holds;
(ii) there exists $c<1$ such that, for every n and any $y \in Y_{n-1}$, we have $\|y\|_{n} \leq c\|y\|_{n-1}$.

Then the space X_{0} contains a complemented subspace isomorphic to c_{0} and X_{0} is uncomplemented in X.

Proof. To prove the first part of Corollary 1, we note that if condition (i) is satisfied, then X_{0} is a WCG space. By Proposition 4, it contains a subspace isomorphic to c_{0}, which, by [7, p.115] and [8, p. 106], is complemented there. Under condition (ii), by Proposition 6, the space X_{0} is isomorphic to $c_{0}\left(X_{n}\right)$ and, certainly, contains a complemented subspace isomorphic to c_{0}.

We now show that the subspace X_{0} is uncomplemented in X. If condition (i) [condition (ii)] is satisfied, then it follows from Proposition 4 (Proposition 6, respectively) that X contains a subspace Z isomorphic to l_{∞} and $Z \cap X_{0}$ contains a subspace Z_{0} isomorphic to c_{0}. Suppose that X_{0} is complemented in X. Then, by the first part of this corollary, this is Z_{0} and, in particular, Z_{0} is complemented in Z. However, every infinite-dimensional complemented subspace of l_{∞} is isomorphic to $l_{\infty}[8$, p. 57]. We arrive at contradiction. Corollary 1 is proved.

Corollary 2. Under the assumptions of Corollary $1, X_{0}$ is not isomorphic to a dual space.
Proof. In the first case, X_{0} is a WCG space and, by Proposition 4, X_{0} contains a subspace isomorphic to c_{0}. Suppose that X_{0} is isomorphic to the dual space. Then it contains a subspace isomorphic to l_{cc} [8, p. 103]. But a WCG space does not contain a subspace of this sort; this can be easily deduced, for example, from Corollary 3 in [7, p. 114].

If the second condition is satisfied and X_{0} is isomorphic to the dual space, then it is complemented in the second dual $X_{0}^{* *}$. But $X \subset X_{0}^{* *}$ and, therefore, X_{0} is complemented in X. This contradicts Corollary 1.

Definition 1. We say that a sequence of closed subspaces $X_{n} n=\overline{1, \infty}$, of a Banach space X_{0} forms a basic decomposition if $\left[X_{n}: n=\overline{1, \infty}\right]=X_{0}$ and there exist projections $P_{n}: X_{0} \rightarrow\left[X_{i}\right]_{1}^{n}$ along $\quad\left[X_{i}:\right.$ $i=\overline{n+1, \infty}], \quad n=\overline{1, \infty}$, which are uniformly bounded. Moreover, if there exists a constant $k \geq 1$ such that, for every finite collection $\left(x_{i}\right)_{1}^{n}, x_{i} \in X_{i}$, and every collection of signs $\left(\theta_{i}\right)_{1}^{n}$, the relation $\left\|\Sigma \theta_{i} x_{i}\right\| \leq K\left\|\Sigma x_{i}\right\|$ holds, then a basic decomposition is called unconditional and the minimal number K is called an unconditional constant of a decomposition $\left(X_{n}\right)$. In addition, if there exists a number $c \geq 1$ such that, for every finite collection $x_{i}, y_{i}, i=\overline{1, n}, x_{i}, y_{i}, \in X_{i}$, the inequality $\left\|y_{i}\right\| \leq\left\|x_{i}\right\|$ implies $\left\|\Sigma y_{i}\right\| \leq c\left\|\Sigma x_{i}\right\|$, then the sequence $\left(X_{n}\right)$ is called a strong unconditional decomposition of X_{0}.

It follows immediately from this definition that, in the case under consideration, the subspaces ($X_{n}\| \|$) form a basic decomposition of the space X_{0} and, under the conditions of Proposition 6, they form a strong unconditional
decomposition. It is easy to see that if $\left(X_{n}\right)$ form a strong unconditional decomposition, for each n, the subspace X_{n} has an unconditional basis $\left(X_{n}^{m}\right)_{m=1}^{\infty}$, and, moreover, their unconditional constants are uniformly bounded, then the system $\left(X_{n}^{m}\right)_{m, n=1}^{\infty}$ is an unconditional basis of X_{0}.
2. Definition $2[10$, p. 21]. Let (Ω, Σ, μ) be a measure space with a positive measure μ. A Banach space E of (classes of) measurable functions on Ω is called symmetric if
(i) the facts that $y \in E$ and $|x(\omega)| \leq|y(\omega)|$ for almost all $\omega \in \Omega$ imply that $\mathrm{x} \in E$ and $\|x\| \leq\|y\|$;
(ii) the facts that $y \in E$ and $d_{|x|}(t)=d_{|y|}(t)$ for all $t>0$ imply that $\mathrm{x} \in E$ and $\|x\|=\|y\|$, where $d_{|x|}(t)=\mu\{\omega:|x(\omega)|>t\}$ is the distribution function of $|x(\omega)|$.

For a number $T>0$, denote by φ_{T} the linear map of $[-T, T]$ onto $[-1,1]$ with $\varphi(-T)=-1, \varphi(T)=1$. Let E be a symmetric space on $[-1,1]$ with normalized Lebesgue measure $\lambda(-1,1)=1$. Then all functions $x\left(\varphi_{T}(t)\right)$, where x runs through E, form a symmetric space E_{T} on $[-T, T]$ with norm $\left\|x \circ \varphi_{T}\right\|_{T}=\|x\|_{E}$. We denote the composition of functions by the sign ${ }^{\circ}$. Every function on the segment $[-T, T]$ is identified with a function on the real line by defining it to be zero outside [$-T, T$]. Denote the set of measurable functions on the real line for which the number $\|x\|_{M_{E}}=\sup _{T \geq 1}\|x\|_{T}$ is finite by M_{E} and the subspace of M_{E} consisting of functions for which $\lim _{T \rightarrow \infty}\|x\|_{T}=0$ by I_{E}. It is easy to see that $\left(M_{E},\| \|_{M_{E}}\right.$) is a linear normed space and I_{E} is its linear subspace. Certainly, for $E=L_{p}(-1,1), \lambda(-1,1)=1$, our construction gives the spaces M_{p} and I_{p} defined at the beginning of this paper. It is also evident that the spaces M_{E} and I_{E} are normed lattices with a natural pointwise order. Even the spaces M_{p} and I_{p} are not symmetric function spaces on the real line. Some weak property of symmetry for the spaces M_{E} and I_{E} will be mentioned below (see the proof of Proposition 8).

Proposition 7. Let $T_{n} \geq 1, T_{1}=1, T_{n} \rightarrow \infty$, and $\sup _{n} T_{n+1} / T_{n}=a$ for some $1 \leq a<\infty$. Then

$$
\|x\|_{M_{E}} \leq 2 a \sup _{n}\|x\|_{T_{n}}
$$

for any $x \in M_{E}$ and, therefore, $\sup _{n}\|x\|_{T_{n}}$ is the norm on the space M_{E} equivalent to the norm $\|x\|_{M_{E}}$
To prove this proposition, we need the following lemma:
Lemma. If $1 \leq S \leq T$, then $E_{S} \subset E_{T}$ and, moreover, $(S / T)\|y\|_{S} \leq\|y\|_{T} \leq\|y\|_{S}$ for every $y \in E_{S}$.
Proof. Let $y \in E_{S}, y=x \circ \varphi_{S}$ where $x \in E$. It is necessary to find a function $z \in E$ such that $x \circ \varphi_{S}=z \circ \varphi_{T}$ and $(S / T)\|x\|_{E} \leq\|z\|_{E} \leq\|x\|_{E}$. We set

$$
\psi(t)=\left\{\begin{array}{lll}
\frac{T}{S} t & \text { if } & |t| \leq S / T \\
0 & \text { if } & S / T<|t| \leq 1
\end{array}\right.
$$

and $z=x \circ \psi$. Since $\varphi_{T}(t)=t / T$ and $\varphi_{S}(t)=t / S, \psi(\varphi(t))=(T / S)(t / T)=\varphi_{S}(t)$. Thus, $x \circ \varphi_{S}=z \circ \varphi_{T}$. The operator

$$
D_{\mathrm{S} / T^{x}(t)}= \begin{cases}x\left(\frac{T}{S} t\right) & \text { if } \quad|t| \leq S / T \tag{4}\\ 0 & \text { if } \quad S / T<|t| \leq 1\end{cases}
$$

associates a function $z(t)$ with a function $x(t)$. As is known [9, p. 130], $D_{S / T}$ acts in the space E, its norm is at most one, $\left\|D_{T / S}\right\| \leq \max (1, T / S)=T / S$, and $D_{S / T} D_{T / S} x=\chi_{[0, S / T]} x$. Then $D_{S / T} D_{T / S} z=z$ and

$$
\|x\|_{E}=\left\|D_{S / T^{2}}^{-1}\right\|_{E}=\left\|D_{T / S} z\right\|_{E}=\left\|D_{T / \mathrm{S}} z\right\|_{E} \leq(T / S)\|z\|_{E}
$$

Proof of Proposition 7. Let us take an arbitrary number $1<T<\infty$; for some $n, T_{n} \leq T \leq T_{n+1}$. Denote by χ_{n} the characteristic function of the set $\left\{t: T_{n}<|t| \leq T_{n+1}\right\}$. Then $\|x\|_{T}=\left\|x \chi_{\left[-T_{n}, T_{n}\right]}+x \chi_{n}\right\|_{T^{-}}$. Consider two possible cases.
I. $\left\|x \chi_{\left[-T_{n}, T_{n}\right]}\right\|_{T} \geq(1 / 2)\|x\|_{T}$. Then $\|x\|_{T} \leq 2\|x\|_{T_{n}} \leq 2 a \sup _{n}\|x\|_{T_{n}}$.
II. $\left\|x \chi_{n}\right\|_{T} \geq(1 / 2)\|x\|_{T}$. Then, by the lemma, $\left\|x \chi_{n}\right\|_{T} \leq\left(T_{n+1} / T\right)\left\|x \chi_{n}\right\|_{T_{n+1}} \leq\left(T_{n+1} / T_{n}\right)\left\|x \chi_{n}\right\|_{T_{n+1}}$.

Consequently,

$$
\|x\|_{T} \leq 2\left\|x \chi_{n}\right\|_{T} \leq\left(2 T_{n+1} / T_{n}\right)\left\|x \chi_{n}\right\|_{T_{n+1}} \leq\left(2 T_{n+1} / T_{n}\right)\|x\|_{T_{n+1}} \leq 2 a \sup _{n}\|x\|_{T_{n}}
$$

Since T is arbitrary, we obtain

$$
\|x\|_{M_{E}}=\sup _{T \geq 1}\|x\|_{T} \leq 2 a \sup _{n}\|x\|_{T_{n}} .
$$

Note that, for the spaces

$$
Y_{n}=E_{T_{n}}, \quad X_{n}=\left\{x \chi_{n-1}: x \in E_{T_{n}}\right\}, \quad X=\left(M_{E}, \sup _{n}\|x\|_{T_{n}}\right), \quad \text { and } \quad X_{0}=\left(I_{E}, \sup _{n}\|x\|_{T_{n}}\right),
$$

the conditions from Sec. 1 of the present paper are satisfied. Therefore, Propositions 1,2, and 7 yield the following statement:

Corollary 1. M_{E} is a Banach space and I_{E} is its closed subspace.
Recall that the norm $\|\|$ of a symmetric space E is called absolutely continuous if, for every $x \in E$ and every decreasing sequence Ω_{n} of measurable subsets of Ω with empty intersection, $\left\|x \chi_{\Omega_{n}}\right\| \rightarrow 0$ as $n \rightarrow 0$. Note also that a symmetric Banach space on $(-1,1)$ with an absolutely continuous norm is a rearrangement invariant in the sense of [9], and the Haar system forms a basis in $E(-1,1)$ [9, p. 150].

Further, we consider symmetric spaces E with an absolutely continuous norm only. It is easy to see that if E is a symmetric space with an absolutely continuous norm, then condition (*) is satisfied for the spaces $Y_{n}=E_{T_{n}}$, $T_{n} \rightarrow \infty$. Therefore, the reasoning presented after Definitions 1 and 2 and Proposition 7 yields the following assertion:

Corollary 2. The subspaces $E^{n}=\left\{x \chi_{n-1}: x \in I_{E}\right\}$ form an unconditional decomposition of the space I_{E}
with the unconditional constant equal to one.
The next corollary is a consequence of Propositions 3-5, 7 and Corollaries 1,2 of Proposition 6.
Corollary 3. The space I_{E} is separable, not isomorphic to a dual space, and uncomplemented in M_{E} and contains a complemented subspace isomorphic to c_{0}. If E is a reflexive space, then $I_{E}^{* *}=M_{E}$.

Since a space E on $(-1,1)$ with an absolutely continuous norm is separable, $\operatorname{dim} M_{E}=c$ and, by Proposition 4, the corollary of Proposition 4, and Proposition 7, we obtain the following corollary:

Corollary 4. The space M_{E} contains a complemented subspace isomorphic to l_{∞} and has a complete minimal system.

Denote by \mathbb{M}_{E} the set of (classes of) measurable functions $x(t)$ on the real line for which the following norm is finite:

$$
\|x\|_{\mathbb{M}_{E}}=\underset{T \rightarrow \infty}{\limsup }\|x\|_{T}
$$

Thus, the functions $x, y \in M_{E}$, for which $x-y \in I_{E}$, are identified in the space \mathbb{M}_{E} and $M_{E}=M_{E} / I_{E}$. Note that the symmetric space of Bezikovich almost periodic functions $E_{A P}$ considered in [10] is a subspace of \mathscr{M}_{E}.

Corollary 5. If a space E is reflexive, then $\mathbb{m}_{E}^{*}=I_{E}^{\perp}$, where I_{E}^{\perp} is the annihilator of $I_{E} \subset M_{E}$ in the dual space M_{E}^{*}.

Indeed, by Corollary $2, I_{E}^{* *}=M_{E}$ and, consequently, $M_{E}^{*}=I_{E}^{\perp} \oplus I_{E}^{*}$. However, we have $M_{E}=M_{E} / I_{E}$.
Corollary 6. If a space E is reflexive, then \prod_{E} contains a subspace isomorphic to l_{∞} / c_{0} and, hence, $\mathbb{T l}_{E}$ has no equivalent strictly convex norm [11].

Indeed, by Corollary $3, I_{E}=U \oplus V, U$ is isomorphic to c_{0}, and $M_{E}=U^{* *} \oplus V^{* *}, U^{* *}$ is isomorphic to l_{∞}. Therefore, $\mathbb{m}_{E}=M_{E} / I_{E}$ contains a subspace isomorphic to $U^{* *} / U$, i.e., l_{∞} / c_{0}.

Recall that the lower and upper Boyd indices of a symmetric space E are defined by

$$
p_{E}=\sup _{s>1}(\log s) / \log \left\|D_{s}\right\| \quad \text { and } \quad q_{E}=\inf _{0<s<1}(\log s) / \log \left\|D_{s}\right\|,
$$

respectively, where D_{s} is the operator defined by (4).
Corollary 7. Let E be a symmetric space with $q_{E}<\infty$. Then the space M_{E} is isomorphic to $l_{\infty}(E)$ and I_{E} is isomorphic to $c_{0}(E)$.

To prove this corollary, we need two additional statements.
Lemma 1. Let E be a symmetric space with $q_{E}<\infty$. Then, for every S and $T, S<T$, we have $\|y\|_{T} \leq C\|y\|_{S}$ for every $y \in E_{S}$, where $C=(S / T)^{1 / q_{E}}<1$.

Proof. Since $q_{E} \leq(\log s) / \log \left\|D_{s}\right\|$ for any $0<s<1$, we have

$$
\log \left\|D_{s}\right\| \leq(\log s) / q_{E}=\log s^{1 / q_{E}}
$$

Hence, $\left\|D_{s}\right\| \leq s^{1 / q_{E}}$. Further, by analogy with the proof of the lemma after Proposition 7, by putting $s=S / T$, we get

$$
\|y\|_{T}=\left\|z \circ \varphi_{T}\right\|_{T}=\|z\|_{E}=\left\|D_{s} x\right\|_{E} \leq\left\|D_{s}\right\|\|x\|_{E} \leq C\left\|x \cdot \varphi_{S}\right\|_{S}=C\|y\|_{S},
$$

where $C=(S / T)^{1 / q_{E}}<1$.
Lemma 2. Let a sequence $T_{n} \geq 1, T_{n} \rightarrow \infty$, and

$$
\inf _{n} T_{n+1} / T_{n}>1, \quad \sup _{n} T_{n+1} / T_{n}<\infty .
$$

Then the spaces E^{n} constructed by this sequence are uniformly isomorphic to E.
Proof. Let $E\left[-S_{n}, S_{n}\right]$ be a subspace of E consisting of functions $x \chi_{\left[-S_{n}, S_{n}\right]}$, where $S_{n}=1-T_{n-1} / T_{n}$, $\inf S_{n}>0$. By using the definition of $E_{T_{n}}$ and the symmetry, we see that the space $E_{T_{n}}$ is isometric to E and E^{n} is isometric to $E\left[-S_{n}, S_{n}\right]$. Then the operator $D_{S_{n}}$ defined by (4) acts from E into its subspace $E\left[-S_{n}, S_{n}\right]$ and has norm at most 1 , and the norm of the inverse operator is at most $1 / S_{n}$.

Proof of Corollary 7. Choose a sequence $T_{n} \geq 1, T_{n} \rightarrow \infty$, such that

$$
1<\inf _{n} T_{n+1} / T_{n} \text { and } \sup _{n} T_{n+1} / T_{n}<\infty .
$$

Then, by Proposition 6 and Lemma 1, we find that, for the subspaces E^{n} constructed by this sequence, $M_{E}=l_{\infty}\left(E^{n}\right)$ and $I_{E}=c_{0}\left(E^{n}\right)$ in the equivalent norm. To complete the proof, we apply Lemma 2.

Remark. It follows from the proof of Corollary 7 that if $q_{E}<\infty$, then the subspaces E^{n} form a strong unconditional decomposition of I_{E}.

Proposition 8. The space I_{E} has a (Schauder) basis.

Proof. Denote by $h_{m}^{n}, m=\overline{1, \infty}$, the Haar system in the space E^{n} and enumerate the Haar functions by one index as is shown in the scheme below:

Let $\left(h_{i}\right)_{1}^{\infty}$ be the system obtained. It is clear that its linear span is dense in I_{E}. Therefore, by the sufficient condition of basisness [8, p. 2], it suffices to verify that, for any finite collection of scalars $a_{i}, i=\overline{1, k+1}$, the inequality $||x|||\leq|||y|||$ holds for

$$
x=\sum_{1}^{k} a_{i} h_{i}, \quad y=\sum_{1}^{k+1} a_{i} h_{i}
$$

where

$$
T_{n} \geq 1, \quad T_{n} \rightarrow \infty, \quad \sup _{n} T_{n+1} / T_{n}<\infty, \quad \text { and } \quad\left\|\|x\|=\sup _{n}\right\| x \|_{T_{n}}
$$

is the norm equivalent, by Proposition 7, to the initial norm of I_{E}. Consider two cases.
I. If supp $x \neq \operatorname{supp} y$, where $\operatorname{supp} x=\{t: x(t) \neq 0\}$, i.e., there exists j such that $h_{k+1}=h_{1}^{j}, \operatorname{supp} h_{k+1} \cap$ $\operatorname{supp} x=\varnothing$, then, for all $t,|y(t)| \geq|x(t)|$ and, consequently, for every $n,\|y\|_{T_{n}} \geq\|x\|_{T_{n}}$ and $|||y \| \geq||x||$.
II. The functions x and y coincide everywhere with the exception of an interval $A \subseteq\left\{t: T_{n}<|t| \leq T_{n+1}\right\}$ on which x is a constant, say, it takes a value b there, and $y(t)$ is equal to $b+a_{k+1}$ on the first half of A and to $b-a_{k+1}$ on the second half of A. Let τ be an automorphism of the real line which permutes the first half of A with its second half and leaves invariant every point outside A. It is easy to see that, for this automorphism, $|\|y \mid\|=\| \| y \circ \tau\| \|$ and $x(t)=(y(t)+y(\tau(t))) / 2$ for every $t \in \mathbb{R}$. Therefore, $|||x||| \leq|||y|||$.

Proposition 9. The system $\left(h_{i}\right)_{1}^{\infty}$ from the preceding proposition is an unconditional basis of I_{E} if and only if $\dot{p}_{E}>1$ and $q_{E}<\infty$.

Proof. Since the Haar system $h_{m}^{n}, m=\overline{1, \infty}$, forms an unconditional basis of E_{n} if and only if $p_{E^{n}}>1$ and $q_{E^{n}}<\infty[9, \mathrm{p} .156]$, these conditions are necessary.

By Lemma 2 of Corollary 7, the spaces E^{n} are uniformly isomorphic to E. Moreover, under the assumptions of Proposition 9 , the subspaces E^{n} form a strong unconditional decomposition of I_{E} (Corollary 7). Applying the remark after Definition 1, we conclude that the system $\left(h_{i}\right)_{1}^{\infty}$ forms an unconditional basis of this space.

Definition 3. Let K be a convex subset in a linear space X. An element $x \in K$ is called an extreme point of K if, for any $y \in X, x \mp y \in K$ implies that $y=0$.

Proposition 10. Let

$$
\begin{equation*}
x \in M_{E},\|x\|=1, \text { and } \lim \sup \|x\|_{T}<1 \text { as } T \rightarrow \infty . \tag{5}
\end{equation*}
$$

Then there exists an element $y \in I_{E},\|y\| \neq 0$, such that $\|x \mp y\| \leq 1$. Thus, any point with condition (5) is not an extreme point of the unit ball of M_{E}, and the unit ball $B\left(I_{E}\right)$ of I_{E} contains no extreme point.

Proof. Let $\sup _{T \geq 1}\|x\|_{T}=1$ and, for some $a<1$, there exist a number S such that $\|x\|_{T} \leq a$ as $T>S$.

Let $y \in I_{E},\|y\|<1-a, y \neq 0$, supp $y \in[S, \infty)$. For $T \leq S,\|x \mp y\|_{T}=\|x\|_{T}$, and, for $T>S$,

$$
\|x \mp y\|_{T} \leq\|x\|_{T}+\|y\|_{T} \leq a+1-a \leq 1
$$

The proposition is proved.
Definition 4. A Banach space X is called uniformly convex [7,p.34] if

$$
\delta(\varepsilon)=\inf \{1-\|x+y\| / 2:\|x-y\| \geq \varepsilon, x, y \in B(X)\}, \quad \varepsilon>0,
$$

is a strictly positive function on $\mathbb{R}^{+} ; \delta(\cdot)$ is called the modulus of convexity of X.
Proposition 11. Let E be a uniformly convex symmetric space and let $x \in B\left(M_{E}\right)$. Suppose that there exists $C>0$ and a sequence $T_{n} \rightarrow \infty$ such that $\|x\|_{T_{n}}>1-\delta\left(C / T_{n}\right)$. Then x is an extreme point of $B\left(M_{E}\right)$.

Remark. The condition of Proposition 11 states that if there exists a sequence T_{n} such that $\|x\|_{T_{n}} \rightarrow 1$ sufficiently fast, then x is an extreme point of $B\left(M_{E}\right)$.

Proof. Suppose that there exists an element $y \in M_{E}$ such that $\|x \mp y\| \leq 1$ and $y(t) \neq 0$ on $[-S, S]$ for some $S>0$. We set $C=\|y\|_{S}, u=x+y, v=x-y$. Then, for $T>S,\|u-v\|_{T}=2\|y\|_{T} \geq 2 S T^{-1}\|y\|_{S}=$ $2 S T^{-1} C>C / T$. The uniform convexity of E yields $\delta(C / T) \leq 1+\|u+v\| / 2=1-\|x\|_{T}$ i.e., $\|x\|_{T} \leq 1-$ $\delta(C / T)$. We arrive at a contradiction.

Proposition 12. Let E be a uniformly convex symmetric space and $u \in B\left(\mathbb{M}_{E}\right)$. Suppose that there exists a sequence $T_{n} \rightarrow \infty$ such that $\sup _{n} T_{n+1} / T_{n}<\infty$ and $\lim \|u\|_{T_{n}}=1$ as $n \rightarrow \infty$. Then u is an extreme point of $B\left(\mathbb{M}_{E}\right)$.

Proof. Let $v \in \mathcal{M}_{E}$ be a point such that

$$
\underset{T \rightarrow \infty}{\limsup }\|u \mp v\|_{T} \leq 1
$$

Let us show that

$$
\underset{T \rightarrow \infty}{\limsup }\|v\|_{T_{n}}=0
$$

Assume the contrary. Then, by passing to a subsequence if necessary, we can assume that $\|v\|_{T_{n}} \geq \varepsilon$ for some $\varepsilon>0$. For each n, we consider u and $u \mp v$ as elements of $E_{T_{n}}$. Since the norms $\left\|\|_{T_{n}}\right.$ are uniformly convex, by putting $u=x$ and $u+v=y$ in Definition 4, we can find $\delta(\varepsilon)>0$ such that $\delta<1-\|u+u+v\|_{T_{n}} / 2<$ $1-\|u\|_{T_{n}}$. This contradicts the hypothesis that $\lim \|u\|_{T_{n}}=1$ as $n \rightarrow \infty$. Thus, $\lim _{n \rightarrow \infty}\|v\|_{T_{n}}=0$. For an arbitrary $T>0$, there exists $n: T_{n} \leq T \leq T_{n+1}$. Then

$$
\|v\|_{T} \leq T_{n+1} T^{-1}\|v\|_{T_{n+1}} \leq T_{n+1} T_{n}^{-1}\|v\|_{T_{n+1}}
$$

The boundedness of $\left\{T_{n+1} / T_{n}\right\}$ implies that the last term tends to 0 as $T \rightarrow \infty$. Therefore, $\|v\|_{M_{E}}=0$ and u is an extreme point of $B\left(ग_{E}\right)$.

REFERENCES

1. J. Marcinkiewicz, "Une remarque sur les espaces de M. Besicowitch," C. R. Acad. Sci. Paris, 208, 157-159 (1939).
2. A. Beurling, "Construction and analysis of some convolution algebra," Ann. Inst. Fourier (Grenoble), 14, 1-32 (1964).
3. K. Lau, "On the Banach spaces of functions with bounded upper means," Pacif. J. Math., 91, 153-173 (1980).
4. Y. Chen and K. Lau, "Some new classes of Hardy spaces,"J. Funct. Anal., 84, No. 2, 255-278 (1989).
5. H. P. Rosenthal, "On quasi-complemented subspaces of Banach spaces with an appendix on compactness of operators from $L^{P}(\mu)$ to $L^{r}(v)$," J. Funct. Anal., 4, 176-214 (1969).
6. A. N. Plichko, "Fundamental biorthogonal systems and projective bases in Banach spaces," Mat. Zametki, 33, No. 3, 473-476 (1983).
7. J. Diestel, Geometry of Banach Spaces - Selected Topics, Springer, Berlin (1975).
8. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Springer, Berlin (1977).
9. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer, Berlin (1979).
10. A. M. Plichko and M. M. Popov, "Symmetric function spaces on atomless probability spaces," Dissertationes Math., 306, 88 (1990).
11. J. Bourgain, " l_{∞} / c_{0} has no equivalent strictly convex norm," Proc. Amer. Soc., 78, No. 2, 255-256 (1980).
