
ON THE LAW OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS 
OF INDEPENDENT RANDOM VARIABLES IN A BANACH SPACE 

I. K.  M a t s a k  1 and  A. M.  Pl ichko e UDC 519.21 

Assume that (Xn) are independent random variables in a Banach space, (b,)  is a sequence of real 

~,~ bi J~, and B~ = E ~ b~. Under certain moment restrictions imposed on the vari- numbers, Sn = t 1 , 

ables X~, the conditions for the growth of the sequence (bn) are established, which are sufficient for 

the almost sure boundedness and precompactness of the sequence (& 1 (B~ In In B, )1/2). 

1. Introduction and Principal Results 

Let E be a separable Banach space with a norm l[ -[] and let E* be its dual space. Denote  by Xn, n = 1, ~ ,  

E-valued independent random variables defined on a probability space (g2, Bj P )  [1, p. 201; 2]. Let b n, n = 1, ~ ,  

~__fbiX i, Bn= ~ n b ~ ,  andlet  L(t)  = lnt  for t > e  and L(t)  = 1 for t <  e. be a sequence of real numbers,  S~ = 1 1 

We also set L2( t  ) = L ( L ( t ) )  and )~(t) = (2tL2(t))  1/2 
W e  say that a sequence bn Xn satisfies the law of the iterated logarithm if 

A(b, X) = limsup iI Stl 
Z(~n----5 < = (1) 

almost surely (a.s.) and 

Sn n > 1 } (2) 
z(g~)' 

is precompact  in E almost surely. 

Under  the conditions imposed in the next paragraph, it follows f rom the 0 or 1 law that A ( b, X) is a nonran- 

dora variable. 
A survey of  the results and a fairly complete bibliography on the law of the iterated logarithm in Banach spaces 

can be found in [3 -6] .  In this paper, we extend to weighted sums some well-known results related to the law of the 

iterated logari thm for equally distributed random variables in a Banach space. In what follows, we suppose  that 

M X n =  O, D X n =  (M[[Xn[[2)II2 < ~, Bn'r ~ and Bn/ b2-* ~ a s  n ~ , .  Let 

F(b,X) = limsup M11S~II/Z(8~) 
/l  

and let a,~ be symmetric Bernoulli independent random variables, P (~n = + 1) = 1 / 2. 

Theorem 1. Assume that 
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b 2 = O ( B n  / (L(Bn))(l+8)/(p-I)), (3) 

sup M IIx, [I 2p < oe (4) 
/1 

for some 8 > 0 and l < p < ~. Then 

for d = sup D Xn. 
n 

r ( b , X )  _< A(b ,X)  <_ d + r ( b , X )  (5) 

Corollary 1. Let I"I N be a sequence of linear bounded finite-dimensional operators in the space E and let 

QN x x -  FINX. If  F( b, X) = 0 and 

sup D ( QnX~) -+ 0 as N--> ~,  (6) 
n 

then, under the conditions of  Theorem 1, the law of the iterated logarithm (1), (2) is valid. 

Note an important specific case where condition (6) is satisfied. Let R : E* --> E be the covariance operator of 

a random variable K M Y  = 0, D Y < ~,  and let H e be the Hilbert subspace of the space E associated with R [1, 

p. 1261, i.e., the completion of R ( E * )  in the norm of the scalar product ( R f R  g) = M f ( Y ) g ( Y ) ,  f, g ~ E*. 

Assume that (fk) C E* is a sequence, which is total in E and orthogonal with respect to the scalar product indi- 
�9 ~v 

cated above. If we set Hnx = k=l f~(x)Rfk, then D ( Q ~ Y ) ~  0 as N--> ~.  Therefore, if the variables Xn are 

equally distributed (and, hence, have the same covariance operator R ) ,  then the sequence (fk) satisfies condition 

( 6 ) .  

For a random variable Y with a covariance operator R, we set 

cy(R) = sup { l ( R f ,  f ) [ l l 2 :  Ilfll = 1 } = sup { ( M  If  ( Y)21)t/2: Ilftl = 1 }. 

Theorem 2. Under the conditions of Theorem 1, assume that the variables Xn have the same covariance 

operator R and that condition (6)is satisfied for the variables QNXn = X n - 2 u k=l fk (Xn) Rfk ,  where (fk) is 

an orthogonal sequence total in E. Then 

max (~(R),  F( b, X)) _< A( b, X) __. G(R) + F( b, X). 

Recall that E is called a space of type 2 if, for any sequence (xn) ~ E, the condition ~ 1  I[ xn![ 2 < c~ implies 

the almost sure convergence of the series ~ ?  e,~x ; it is called a space of cotype 2 if it follows from the almost sure 

convergence of the series ~ "  e n x  that ~ ?  II x I12 < ~ [1, p. 25x]. 

Corollary 2. If  E is a space of type 2, then, under the conditions of Theorem 1, relation (1) is satisfied or, 

more precisely, A( b, X) < d. Under the conditions of  Theorem 2, the law of the iterated logarithm (1), (2) holds 
and A ( b, X) = <y(R). 
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Recall that a covariance operator 

which R is a covariance operator. 
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R is called Gaussian if there exists a Gaussian random variable G(R) for 

Corollary 3. I f  E is a space of cotype 2 and the operator R is Gaussian under the conditions of The- 

orem 2, then the law of the iterated logarithm (1), (2) holds and A(b, X) = or(R). 

For equally distributed independent random variables X n, condition (3) can be slightly weakened. We set 

V(t) = t /L2( t  ). 

T h e o r e m  3. Assume that R is the covariance operator of X 1 , the independent random variables X n are 

equally distributed, condition (4) is satisfied, and 

b2n = O(v(Bn)  n-1/P). (7) 

Then Theorem 2 is true and the law of the iterated logarithm (1), (2) holds for F(b,  X) = 0. 

T h e o r e m  4. Assume that the independent random variables Xn are symmetric and equally distributed. Let 

E be a space of  type 2. In order that the law of the iterated logarithm (I), (2) and the equality A ( b, X) = cy(R) 
be valid, it is sufficient that any of the following groups of conditions be satisfied: 

(i) b 2,]. as ~i ~ ~ and 

(ii) For some l < p < ~ ,  

and 

= o ( v ( B . ) ) ;  (S) 

condition (4) is satisfied, 

b 25  and B n / b  2q" as n - + ~ ,  (9) 

b 2 = O ( S n / ( L ( B n ) ) I / ( p - 1 ) ) ;  (10) 

(iii) Conditions (8) and (9) are satisfied and there exists h > 0 such that 

Mexp(hl[X1 II) < 

2. The L a w  o f  the  I terated L o g a r i t h m  in R a 

Assume that ({n)  is a sequence of independent random variables in R 1, M ~.  = 0, D { .  = 1, and Zn= 

Z ~  bi~ i. In R 1 , the law of the iterated logarithm is usually understood in the sense that the equalities 

limsup Zn - 1, (11) 
z (B~)  

limsup Zn - 1 (12) 
n Z(Bn) 
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should be satisfied almost surely. 

Proposition 1. h~ order that the law of the iterated logarithm (11), (i2) be valid, it is sufficient that conditions 

(3) and (4) be satisfied for E = R 1 and X n = ~n" 

Proposition 2. Assume that the independent random variables (~.n) are equally distributed and conditions 

(4) and (7) are satisfied (for E = R 1 and X n = ~n)" Then the law of the iterated logarithm (11), (12) holds. 

Proposition 3. Assume that the independent random variables ( ~n) are equally distributed and symmetric. 

In order that the law of the iterated logarithm (11), (12) be valid, it is sufficient that any group of conditions (i)-  

(iii) in Theorem 4 be satisfied (for E = R 1 and X n = ~n)" 

Remark 1. Conditions ensuring the validity of the law of the iterated logarithm in R 1 were studied in many 

papers (see, e.g., [6 -8]). In [9], the weighted sums of equally distributed independent random variables in R 1 were 

investigated and a condition slightly weaker than (7) was imposed for 1 _< p < 3 / 2. 

Lemma 1. Let I { A } 

for any z > 0 and 

be the characteristic function of a set A. If 

P(lbng~l > "Cll l (Bn)  1 / 2 )  < c~ (13) 
// 

n 
lira B 2 1 ~  bZM(~ZI{[bi~i[ > z~g(Bi)l/2}) : O, (14) 

n-->~ i=l 

then the sequence Z n satisfies the law of the iterated logarithm (11), (12). 

Lemma 2. Assume that the conditions in Statement 3 and any group of conditions (i) -(iii) in Theorem 4 are 

satisfied. Then lim B~-~'~_,~.= b/2 {~ = l almostsurely. 
n---~ ~ 1 

Lemma 1 is a corollary of the classical Kolmogorov law of the iterated logarithm [7, 10]. Lemma 2 follows 
from the results in [11]. 

Proof o f  Proposition 1. It suffices to establish relations (13) and (14). We have 

P(lb   l > "Cll/(~n) 1/2) -< M[ ~nbn [ 2p ~t( Bn) P < p~  2c~n gt( Bn ) p 
T2P -- T2P 

It follows from condition (3) that b 2p / N(Bn) p < C 1 b 2 / BnL(Bn) I +8/2 for sufficiently large n. Since the series 

~ n  b2 / BnL (Bn) l+6/2 is convergent [7, p. 339], condition (13) is satisfied. By using HOlder's inequality, we ob- 

tain 

M( 2iZ{Ibi il > (Ml il2p)I/P(P(lbi il > "cv(Bn)a/2)) l/q, 
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where 1 / p + 1 / q = 1. This and relations (4) and (13) imply (14). 

Proo f  o f  Proposit ion 2. Proposition 2 can be proved similarly. We have 

P ( I b ~ l  > "~lll(Bn) l/2 ) <- Z P ( I ~ I  > CT, nl/P) < 0% 
n n 

It is well known that the second series is convergent provided that condition (4) is satisfied and the variables are 
equally distributed. 

P r o o f  o f  Proposit ion 3. We use the following well-known inequality [12]: 

Ei limsup ~ ,  a i 
n 1 Z(An) 

< 1 a.s .  

~ "  a~ -+ oo as n --+ ~.  For symmetric independent random variables, this inequality implies that for A n = 1 

n 

limsup ~ b i ~i < 1 a.s (15) 
n 1 Z(An(~) ) 

if 

12 

& ( { )  = ~ b2{/2 ---> oo as n---+oo 
1 

almost surely. 

bn Cn under the conditions of Proposition 3 follows from the equalities The divergence of the series ~ ,~ 2 2 

Mmin(1 ,  e 2 2 2 < = ( P ( b n ~  n 1) 
n n 

(see [13, p. 53]). 
Inequality (15) and Lemma 2 imply the estimate 

+ b2M(~2ni { 2 2 bn ~n -> 1 })) = 

limsup Zn < 1 a.s. (16) 
n Z(Bn) 

In Proposition 3, condition (8) is assumed to be satisfied, whence we immediately get (14) for equally distri- 

buted variables ~n" It is known that (14) implies the inequality limsup Zn/z(Bn)  > 1 a.s. [14]. This and (16) 
tl  

yield equality (11). Equality (12) can be obtained from (11) by passing to the variables - ~  n. 
The following auxiliary statement was presented in the proof of Lemma 3 in [ 15]. 

L e m m a  3. Let  ( ~n) be a sequence of  random variables in R 1 and let A n be a real-valued sequence, 

A n ' ~  as n-->oo, l f f o r s o m e  C > 0 ,  ~ >  1, n o , andaI l  t ~  ( 1 , ~ ) ,  w e h a v e  P(maxl_<k_<n~k> tz(A~)) < 

CL(An) -?" f o r  n > n o, then limsup ~n/z(A~) < 1 almostsurely,  
n 
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3. Proof of Theorems 1-4 

Proof  o f  Theorem 1. Fix an arbitrary number 0 < z < 1 / 2 and set 

/7 

X~,~ = I{[[b,,Xn] I <_ z&x(Bn)l/2}Xr~, X2" = Xn- Hn; $7~ = ~ bi~], S'~' = Sn-S[~. 
1 

To estimate the value 
inequality [16~, 
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II SI{ tl we need an infinite-dimensional analog of the well-known Bernshtein's exponential 

? 

P(  Yi - M  Yi >- u) <_ exp - 2 B + - 2 u V  ' 
1 1 

(17) 

n 
where (Y/) are independent random variables in E, u >  0, B _> ~ i  M]I Yi[I 2, and V> 0 is such that ?//II Yill m <- 

m!Mll Yill2v~-2/2 for m = 2,3, . . . .  

In addition, we use the following inequalities for the independent random variables (I7/) in E [16, 17]: 

for M Yi = 0 and 

P( sup. ~ Yi >t)_< 2P( ~ Yi > t-( ,~MllYiI[2) 1/2) (18) 
I < k < n ,  i=1 i=1 i=1 

By the definition of X'n', we have 

- -< ~ M[I Yil[ 2. (19) 
i=1 i=1 i=1 

P(x'~'~O) ~ ~ (bn/'cd)2PMIIX~II2Pv(Bn) -p < ~. 

Under condition (4), the last inequality was established in the proof of Proposition 1. Thus, by virtue of the BoreI -  
Cantelli lemma, we get 

sup II s2 II = s < ~ a.s. (20) /'Z 

Hence, to prove the inequality on the right-hand side of (5), it suffices to establish the estimate 

limsup tIS•[i < d + F (b ,X) .  (21) 
- 

By using estimates (19) and (20), we obtain 

1 
> P ( I [ I S ; ' I [ -  M I I S n ' I I  I _> "4~B 1/2) ~ P(MIlS 'n 'HBZ 1/2 >_ ][Sn'HBZ1/2 + af-2) 

> P(M[I Sff[[ Bn l/2 > SB-ff 1/2 + "if2). 
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This and (20) imply that 
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Further, we set Y i = bi ~ ,  B = d2 Bn, and V =  "cd~( Bn) 1/ 2 in (17). Then 

P(II s ~ l l - m  II sail > u) _ exp (-u2/[28n,~ + 2 u ~ ( B , , ) l / 2 ] ) .  

By inserting in this inequality u = vd( 1 + 2z)]/2z(Bn) for v s  ( 1 + J]), [3 = (2 / (1  +2"Q) 1/2, we get 

P ( [ ISn [  ] - M ] ] S ~ ] [  > vd( l + 2z) l /2z (Bn)  ) < L(Bn) -~  (23) 

For fixed 'r and sufficiently large n, we obtain 

mll  Snll - (r (b ,X)  + ~ ) z ( B  9 .  (24) 

Since I M l[ Sn 1[ - M 1[ 5 n 11 [ < M ]1 S~' ][, it follows from estimates (22) -(24) that 

P(]I S n [] > [F(b ,X)  +2"~+ vd( 1 +22)  1/2] x(Bn))  < L(Bn) -v~ (25) 

for v E ( 1, [3) and sufficiently large n. In view of the equality M Ss + m S~" = m S~ = 0, we have 

Ml] 5~ ]1 < M[] 5~' 1[ < CB 1/2. (26) 

It follows from estimates (18), (25), and (26) that 

P (  sup~ II S'k--MSk [I > v[F(b,X) +4"c+d(1 +2"Qa/z ]Z(Bn)  ) < t(Bn) -~  l<_k<_n 

for v s ( 1, 13) and sufficiently large n. By using Lemma 3, we obtain the inequality 

l imsup []S~ -MS~,]I < F(b,X)  + 42 + d(1 +2"0 lj2 

almost surely. Since "c is an arbitrary number from the interval (0, 1 / 2), we get 

l imsup ]IS~ - ms~ll < d + F(b ,X)  a.s. 

This and (26) yield (21), i.e., the right inequality in (5) is established. The left inequality in (5) follows from the 
Fatou lemma (see [5] ). 

Proof of  Corollary 1. The equality F ( b, X) = 0 and (5) imply (1); moreover, if we take into account that 

F(b, I-INX ) = 0 (27) 

MII S7~" 11-< c8~/2. (22) 
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in the finite-dimensional space FiNE and, hence, F ( b, QN X) = O, then we obtain 

A(b,X) <-A(b, FINX ) + A(b, QNX ) <- supD(VINXn) + supD(QNXn). 
n 1l 

By virtue of (6), the second term tends to zero as N --~ ,,% while the first one, in view of (4), is less than ~ for all 

N. Hence, for any ~ > 0, the set { Sn/Z (Bn), n 2 1 } can be covered (almost surely) by finitely many bails of radius 

and, thus, it is precompact. 

Proof of  Theorem 2. The left inequality of the theorem is a consequence of the law of the iterated logarithm 

in R 1 (Proposition 1) and the Fatou lemma. Before proving the right inequality, let us establish the equality A(  b, 

X) = or(R) in the finite-dimensional case (E  = R'n). 

Due to the left inequality in Theorem 2, it suffices to show that r = A(b, X) < (r(R). By Proposition 1, we 

have T < ~ .  In our case, it follows from the 0 or 1 law that there exists a measurable subset ~2 c C D. such that 

P(f2c) = 1 and limsup H Sn(C~ = T for co e f2 c (see [3-5]). Since any bounded set in R 'n is precom- 
n 

pact, we conclude that, for every co e f2 c, there exist a (random) sequence n k and a (random) point x such that 

lim [[ snk(co)tl/z(Bnk) = Z and lim [1Snk(co)/Z(B~) - x[[ = 0. 
k " " k 

Thus, 11 xH = T. According to Proposition 1, for any f ~  E*, Ilfll = 1, we have 

(Mlf(X1)12)  1 / 2  = limsup f( Sn) /X(B~) 
11 

>_ lim f(Sn~)/z(Bn~ ) >_ f(x). 

Then 

cy(R) = s u p { ( M l f ( X  I )12) 1/2" Ilfl[ = 1} _> sup{ ff(x)l'llfll = 1} _> IIx[I = 77. 

Thus, A( b, I-INX ) = cS(RN) for any N, where R N is a (common) covariance operator of the variables IINX ~. It 
follows from the last equality and (5) that 

A(b ,X)  < A(b, FINX ) + A(b, QNX ) <_ cY(RN) + supD(QNXn) + F(b, QNX). 
ti  

Since r < or(R) (see [5]) and F(b, QN X) = F(b,X) [by virtue of (27)], we can pass to the limit with re- 

spect to N;  as a result, by using (6), we arrive at the right inequality of Theorem 2. 

We have M [[ $11 II = <- C(E) d 2 Bn in a space of type 2 and 

MILS111[ 2 C(E)MIIG(R)If2Bn 

in a space of cotype 2 [2]. Thus, F( b, N) = 0 in both these cases. This equality guarantees the validity of Corol- 
laries 2 and 3. 

Proof of  Theorem 3. The proof of Theorem 3 is similar to the proof of Theorem 2 (the transition from condi- 
tions (3) to conditions (7) is justified in the proof of Proposition 2). 
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Proof  o f  Theorem 4. According to the law of the iterated logarithm in 

f ~  E*, 

R 1 

almost surely. 

Thus, for any N, 

(Proposition 3), we have, for any 

l imsup z(,Bn )f(Sn) = ( M l f ( X  1 )12) 1/2 (28) 

A(b, IINX ) = (J( RN) 

almost surely (see the proof of Theorem 2). 

In a space of type 2, for the independent symmetric random variables (Xn), we have 

(29) 

for 

limsup IISnll < C <  ~ a.s. 2 ) (30) 

/l  

b 2 II x, II 21- n -+ oo a.s. (31) 
1 

(see [15]; the validity of condition (31) is established in Proposition 3). 

Lemma 2 and estimate (30) yield A( b, X)  < Cd. To complete the proof, it suffices to repeat the argument in 

the proof of Theorem 2 by using this inequality and (29). 

Remark  2. Let K be a unit ball in the Hilbert space H R. It is known [3] that, in the case where relations (2) 

and (28) are satisfied (they are satisfied, e.g., under the conditions of Theorems 2 - 4  with F(  b, X) = 0) , .  we have 

inf{ 1] Sn/;~(B/1) - x]] : x s K} --+ 0 as n ~ o~ almost surely; if, in addition, H R is an infinite-dimensional 

space, then C ( { S n / 2 ( B n )  }) = K almost surely; where C ( { x n }  ) is the set of  limiting points of the sequence 
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