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The automatic continuity of a linear multiplicative operator T: X + Y, where 
X and Y are real complete metrizable algebras and Y semi-simple, is proved. 
It is shown that a complex Prechet algebra with absolute orthogonal basis (x i) 
(orthogonal in the sense that xix j = 0 if i # j) is a commutative symmetric 

involution algebra. Hence, we are able to derive the well-known result that 
every multiplicative linear functional defined on such an algebra is continu- 
ous. The concept of an orthogonal Markushevich basis in a topological algebra 
is introduced and is applied to show that, given an arbitrary closed subspace 
Y of a separable Banach space X, a commutative multiplicative operation whose 
radical is Y may be introduced on X. A theorem demonstrating the automatic 
continuity of positive functionals is proved. 

The subject of automatic continuity of linear multiplicative operators and linear mul- 
tiplicative functionals defined on algebras with involution possesses a rich history, having 
been initiated by a still unsolved problem posed by S. Mazur concerningthe continuity of a 
linear muitiplicative functional on a complete metrizable complex-valued algebra [i, p. 90]. 
Many results on the topic may be found in [i]. The definitions and notation used in the 
present article are taken from [!]. 

THEOREM i. Let X and Y be real-valued complete metrizable algebras, Y semi-simple. 
Then every linear multiplicative operator T: X + Y is continuous. 

Proof. We use the closed map theorem. Let x n + x, Tx n ~ y. If Tx @ y, then, from the 

fact that Y is semi-simple, there exists a linear multiplicative functional g on Y such that 
g(Tx) # g(y). Since the algebra R of real numbers satisfies the following condition: 

(C) for any sequence Yn e R, IynI > a > 0, there e~ists a sequence fn of real multipli- 

cative linear functionals with infmn]f m x (Yn) l = ~ > 0, then, by Theorem 3.5 of [i] the func- 

ti0nals g(y) and gT(x) are continuous on Y and X, respectively. Thus, gT(xn) > g(Tx) and 
g(Tx n) > g(y). Contradiction. 

Remark. Theorem 1 generalizes Theorem 3.5 of [i] and Theorem 1 of [2]; moreover, the 
proof as a whole is less tedious, since it is only necessary to derive Theorem 3.5 of [I] 
for the case of multiplicative functionals. As in Theorem 1 of [3], in Theorem 1 in place 
of semi-simplicity we need only require that TX intersect the radical of Y in zero. 

Let us recall some notation. A basis (xi)~ = of a Frechet algebra is said to be ortho- 
gonal if xix j = 0 whenever i ~ j. We say that an element x of a commutative algebra X is 

quasi-regular if there exists an element y e X such that xy + x + y = 0. A commutative in- 
volution algebra X is said to be symmetric if for every x ~ X the element xx ~ is quasi-regu- 
lar. 

THEORF~ 2. Any complex-valued Frechet algebra with absolute orthogonal basis (x i) is a 
commutative symmetric involution algebra. 

Proof. That an algebra with orthogonal basis is commutative is proved in [i, p. 63]. 

,2, " Let us introduce an involution on X in the following way: if x = a,x~, we set x* = \ ~ x  i. ' 

1 1 

From the fact that the basis is absolute it is clear that the remainder of the series con- 
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verges [I, p. 61]. Hence, it follows that the involution operation is continuous. It re- 
m a i n s  f o r  u s  t o  v e r i f y  t h a t  e v e r y  e l e m e n t  x x  ~ e X i s  q u a s i - r e g u l a r ,  t h a t  i s ,  t o  e s t a b l i s h  

~he existence of an element y e X such that yxx* + xx* + y = 0. Let x=~aix~. The ele- 
I 

ment y is found in the form 9---- ,b~x~" 
t 

We write 

I 1 " 1 

If xi 2 = 0, we have xi ~ = 0 and we may set b i = 0. If xi 2 # 0, but xi" = 0, we set 

bi=-{ai[ 2 But if xi ~ # 0 (whence xi 2 # 0 as well), from the representation x~= ~c~xk 
1 

we have that xi ~ = cixi 2. Therefore, we may suppose that xi ~ = xi 2, or else make the sub- 

stitution x i' = xi/~c i. Thus, for this i we have the equality 

b~ I a~ 2 x~ + I a~ 12 x~ + b~x~ = 0, 

whence b i =-[ai[2/(l + [ai[2). 

Since in all three cases /]biI < fail, the series ~]/~b--~ x~ converges. Therefore, 
I 

the series ~.Ibi[xi-~-(i]/~Ix~)(~]/~x~) converges, and hence the series ~b~x~ also 
1 z: i ] 

converges. 

COROLLARY. Every linear multiplicative functional defined on a complex-valued Frechet 
algebra with absolute orthogonal basis is continuous. 

The proof is a simple combination of Theorem 2 and Mackley's theorem [I, p. 37]. 

Remark. A straightforward proof of this corollary is given in [i, p. 66], though it 
is lengthier. 

Definition. A system xi, fi, i = i, =, x i e X, fie X* (X is a topological algebra 
and X* a directed space) is said to be an orthogonal Markushevich basis (briefly, an orthog- 
onal M-basis) if the linear hull [xi]z ~ = X is closed, fi(xj) = 6ij (6ij is the Kronecker 

symbol), ~x6X, x~0 Bi:f~(x)=/=0"and xixj=O for i=/=]. 
The trigonometric system of the algebra Lz(0 , 27) is an example of an orthogonal M- 

basis that is not an orthogonal basis. Many of the results found by Husain and his coworkers 
on orthogonal bases may be carried over to orthogonal M-bases. We will not make this transi- 
tion, but instead will use orthogonal M-bases to determine whether radicals are complement- 
able in a Banach algebra. Determining under what conditions a radical will possess a closed 
or open subalgebra as complement has been investigated in considerable detail (cf. [4] and 
the bibliography therein). Let us show that there exist many radicals in Banach algebras 
that do not possess complements of a closed subspace. 

THEOREM 3. Let Y be a closed subspace of a separable Banach space X. Then on X we 
may introduce a continuous commutative multiplicative operation so that, relative to this 
operation, Y becomes a radical. 

Proof. It is known [5] that for any E > 0 there exists a sequence xn, fn, n = I, oo, 
x~6X/Y, ~6Y• ={~6X*:~gEY ~(g) ~-:0}, such that [xn]l =X/Y; ~n(xm)=~nm; ~x6X/Y 3n:~n(x)~0; 

[[xnll = I , []fn[l< I -~ s . Let us consider arbitrary representatives x n ~ Xn with [IXn][ < 

1 + E. For arbitrary y, y' e y and an arbitrary finite number sequence (an, bn)1N we set 
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N N N 
1 

1 1 

(1) 

The norm of the right side does not exceed max[anb~]/(1-}-~)2, and for some m, i < m -< N, 
N N N 

11 E + ,fo, >II .(E + therefore, It X + t>> ==I=o1'( + +) A simi- 
I .  1 1 n 

N. 

iar inequality holds for E b~x~+y'. Therefore, the inequality lluvli ~ Ilull Itvll is satisfied 
1 

on the linear hull !in(Y, (Xn)z~), which is dense in the space X. Obviously, the operation 
(i) is a commutative multiplication operation, and therefore it may be extended continuously 
to all X. As usual, Y belongs to the radical of the resulting algebra. If x ~ Y, then for 

some n, fn(X) # 0, whence the multiplicative functional (2n(l + E)s)-z/2 fn is not zero on 
x; therefore, x does not belong to the radical. 

Remark. Numerous examples of noncomplementable subspaces are given in [6]. By Theorem 
3, they are radicals of certain commutative Banach algebras. Theorem 3 may be easily car- 
ried over to separable Frechet spaces. It would be of considerable interest to determine if 
this theorem may be extended to nonseparable Banach spaces. 

The following results are related to the next two questions. 

- N  

1. Let X be a Banach algebra and suppose that the subspace X 2 {Ex,y~:x,,  y, 6X, 
1 

n =  1, oo} has finite defect in X. Is it closed [7, p. 76]? 

2. Let X be a Banach involution algebra and suppose that the subspace X = is closed and 
has finite defect in X. Is every positive functional on X continuous [8]? 

In [8] it is shown that if an involution algebra is commutative and separable, and X 2 
has finite defect, any positive functional X is continuous. 

THEOREM 4. Let X be a semi-simple commutative Banach involution algebra and suppose 
that the unit sphere B(X) is compact in the weak topology w(X, F), where r is the set of 
linear multipiicative functionals continuous on X. If X = has finite defect in X, the sub- 
space X = is closed and every positive linear functional on X is continuous. 

Proof. Let us show that the closure of the set Z '~,~ = {z = ~ x,yj: II x, II = II u, II, ~ tl x, I1 tl ~J, II ~< 
1 1 

__ X a a - Z n mllzll is in X =. In fact, let z~-+zo, z ~ E ~yit ~. Since the sequence (z k) is bounded, 

f o r  some i t h e  t w o  s e q u e n c e s  ( x i k ) k _ - z  ~ a n d  ( y i k ) k = l  ~ a r e  b o u n d e d .  T h e r e f o r e ,  b y  v i r t u e  o f  

compactness there exist a sequence k(s), s = i, .... ~ and points xi, Yi, i = i, ..., n, 
that are limit points of the corresponding sets {xik(s), s = I, ..., ~} and {yik(s), s = 

n 

i, ..., co} in the topology w(X, F). Since X is a semi-simple algebra, ~x~y~=zo. 

Thus, the subspace X 2 will be a countable union of closed sets, that is, a Borel set. 
Since a Borel subspace of a separable Banach space of finite codimension is closed [9], it 
is easily deduced that this result also holds without assuming separability. Since X = has 
finite defect, X s also has finite defect. Thus [7, p. 77], any positive linear functiona ! 
on X is continuous. 

Remark. In a certain sense Theorem 3 strengthens a result found in [i0] that, in turn, 
strengthens an unpublished result of the present author (cf. remark in [i0]). 
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LIMITS OF ANALYTIC VECTOR MEASURES 

V. A. Romanov UDC 519.53 

The article attempts to determine when a vector measure is the limit of a se- 
quence of analytic vector measures in the sense of convergence in semivari- 
ation and when it is the limit of a sequence of such measures in variation. 

Suppose H is the linear hull of an orthonormal basis in an infinite-dimensional sepa- 
rable Hilbert space X and let ~ be a vector measure defined on the sigma algebra B(X) of 
Borel subsets of X.taking values in the Banach space Y. In the present article we investi- 
gate when the vector measure ~ may be represented as the limit of H-analytic vector measures 
in the sense of convergence in semivariation, and when as the limit of such measures in 
variation. 

The concept of analyticity of scalar measures was introduced in [i]. In [2] the rela- 
tionship between analyticity and other differential properties of scalar measures was stud- 
ied, and in [3] the limits of H-differentiable scalar measures were investigated. In view 
of the development of the theory of general vector measures (the basicconcepts of this 
theory may be found in [4]), it is of interest to consider H-analyticity and the correspond- 
ing limits for vector measures. 

i. By a shift of the vector measure D by an element h e X we will understand the vec- 
tor measure ~ specified by means of the formula ~h(E) = ~(E + h). By [i], ~ is said to be 
H-analytic if for any h e H and E ~ ~ (X) the function t + ~(E + th) is extended analyti- 
cally in some neighborhood of zero to ~, independent of E. From the analyticity of ~ along 
h it follows not only that it is infinitely differentiable, but also that it is quasi-in- 
variant along h (the proof presented in [2], Proposition 3, part 2, is easily extended to 
the case of vector measures). 
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