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A series of generalizations of the classical Khinchin inequality to Banach lattices 
are given. The asymptotic behavior of llE~eixill is investigated. 

A substantial number of publications [I] have been devoted to the investigation of in- 
dependent random variables (i.r.v.) in Banach spaces. At the same time, relatively little 
attention has been given to an important special case of Banach spaces, namely to Banach 
lattices [2-5]. This paper has been stimulated by the following generalization of the 
classical Khinchin inequality to q-concave (q < ~) Banach lattices, obtained by Maurey [3, 
6, pp. 49-50]: 

I 1 I 

where (s i) are independent copies of e, E is a symmetric Bernoulli r.v., P(~ = +i) = i/2, x i 
are elements of a Banach lattice X. 

We obtain some generalizations of the inequalities (i) and we apply them to the investi- 
gation of the asymptotic behavior of the variable 117n~ixill. 

We recall some definitions [6, 7]. A Banach lattice X is a vector lattice which at the 
same time is a Banach space with the following consistency of the order and the norm: ~xl ~-~ 
lyl=>.llx]l~llyll, where Ixl is the absolute value of the element x6X. There exists a standard 
method of introducing into a Banch lattice functional operations, in particular, the operation 
(EnlxilP)i/P [6, l.d]. Therefore, the following definition makes sense. 

Definition. A Banach lattice X is said to be q-concave if there exists a constant Dq(X) 
such that 

,, iiq) ',0 < ''~ i 
i = 1  I 

s  1 ,11, q=  oo 
l<~i<~n i = I  

for any elements x I ..... x n from X and any n. 

As examples of Banach lattices we mention the spaces C[0, i], LD(~), and V[0, i]. The 
first two are Banach lattices with the usual pointwise order. In th~ space V[0, i] the 
order is generated by the duality between it and C[0, i]. The lattice Lp(~) is q-concave 
for q~p; V[0, 1] is q-concave for any |~<q~<oo; C[0, I] is not q-concave for any q < =. 

In the sequel by ($i)I we shall denote a sequence of i.r.v, in a Banach lattice X, 

MS i = 0, 11"11 is the norm in X, ll~IIv =(MII~IIP) I/p. If the Banach lattice X is nonseparable, 
then we shall assume the separability of $i. The constant 0 < Cp(X) < = depends only on p 
and X and in various places it does not necessarily denote the same quantity. 

Proposition i. Assume that for some q < ~ X is a q-concave Banach lattice. 
1,~<p<~ there exists a constant Cp(X) < = such that 

! ! 

Then for 

(2) 
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Proof. The inequalities (2) follow from (i) for p = 1 and ~ = slx~, i~I. On the other 
hand, for 0 < p, r < ~ there exists a number Kp, r such that 

(see [6, p. 74]). Consequently, inequalities (2) hold for l~p<oo and ~z ~ ~ixi �9 Since, 
without loss of generality [i, p. 209],_any independen t symmetric r.v. ($i)l in X can be con- 
sidered represented in the form $i = ei~i, where (E i, $i) are independent in their totality, 
for any i $i and $i of the same distribution, from Fubini's theorem there follows that in- 
equalities (2) hold for the symmetric r.v. ($i)l. The general case is obtained from the un- 
conditionality of the sequence ($i)~ [i, p. 239] in Lp(X), from Burkholder's known argtunents 
(see Proposition 2), and from the estimates in the symmetric case. 

A Banach space X is said to possess the unconditionality property for martingale dif- 
ferences (X C UMD) [8] if for any X-valued martingale difference sequence (d~)~,[]d~Hp<2 ~ ,  
any numbers 8 i (e i = • all n . ~  1 and i < p < ~ we have 

v 

Proposition 2. If a Banach lattice X has the UMD property, then for any i < p < ~ and 
any martingale difference sequence (di)~, IIdiIlp<oo we have the inequalities 

n n n 

P r o o f .  I t  i s  known [8 ]  t h a t  i f  a Banach space X ~ UMD, t hen  i t  i s  s u p e r r e f l e x i v e .  A 
superreflexive space has type greater than 1 [9, p. 91]. From here it follows [6, p. 92] 
that the Banach lattice X is q-concave for some q < ~. Assume that the sequence (el) I is 
such that the collections (ei) I and (di) ~ are independent among themselves. Then from (i) 
and Kahane's inequality [6, p. 74] we have 

n 
2 I/2 

l 1 ! 

From here and from the estimate (3) we obtain the inequalities of Proposition 2. 

We mention that the spaces L~ (~) 6 UMD for i < p < ~, the Orlicz spaces LM E UfZD, when 
M and M* satisfy the A2-condition [i0]. 

Remark. Inequalities (2) for 1 < p < ~ are valid for any martingale difference in R l 
(Burkholder's inequality). In the infinite-dimensional case this is not always so. For 
example, in the Banach lattice Lz[0, I], which is q-concave, for each 1~q<oo there exists 
a martingale difference sequence for which the inequalities (2) do not hold. 

Indeed, if the inequalities of Proposition 2 would hold in Ll[0, i], then also inequal- 
ity (3) would hold, i.e., /~[0, I]6 UA4D, leading to a contradiction since LI[0, i] is not re- 
flexive. 

We give some auxiliary statements. 

LEMMA I. Let X be a Banach space and let xi~ X, i= I, n. Then for any k~ 1 we have 

I 0,x, HT. 
1 ! 

The p r o o f  o f  Lemma 1 i s  c o n t a i n e d  i n  t he  p r o o f  o f  Theorem 1 . e . 1 3  [6 ,  p. 76 ] .  

L ~  2. Assume t h a t  f o r  some q < ~ i s  a q -concave  Banach l a t t i c e ,  ~ E X , i  ~ ], n. Then 

l I 

where Kq = Dr (X) B,, r = max (2, q), B~ = ]/2(F ((r -k 1)/2)/]/~/k is the Khinchin constant, B t = I, Dr(X) 
is the constant from the definition of q-concavity. 
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Proof. For q ~ > 2  we have 

(M ~ e l X i  12)t/2~-~(M 8,x, IQ)'/Q~(taking into account q-concavity and the fact that 
I I 

here the mathematical expectation is a simple finite sum)~ 

n n 

1 1 

The proof of the last inequality is contained in the proof of Theorem l.d.6 [6, p. 50]. 
For  1 ~ q < 2  we make u s e  o f  t h e  f a c t  t h a t  a q - c o n c a v e  l a t t i c e  i s  2 - c o n c a v e .  

LEMMA 3. Let (~n)1 be a sequence of r.v. in R Z, let (An) l be a real sequence, A n + ~ for 
n ~ ~, and let 

P ( max ;h ~> ! ' V ~ )  ~--< C exp (-- t2). 
l ~ k ~ n  

Then almost surely (a.s.) we have 

]Fs m Jn A~ <~ 1. 

Proof. Assume that the numbers ~ > X > I are fixed, let V(i) =]/AilnlnAi, let I n = 
oo {i:%n-l~V(i)<)f}, let(/nb)~ be the sequence of index sets, obtained from (In) I if we discard 

the empty sets, and let ~n = max ~h, A4h = max (i : iESnk), m~ = rain (i : i65,k). Under the conditions 

of the lemma we have 

(In AMk) . ( 4 )  
k ~ l  k : l  

Since for sufficiently large k we have In Ask -I- In !n In AMk > 2 (nh -- I) In % and, consequently, 

In AMk > (n~ -- l) In %, it follows that the series (4) converges and, by the Borel-Cantelli lemma, 

we have 

P (~M~ > fiv (Mh) i . o .  ) = o (5) 

(i.o. denotes infinitely often). Then from the conditions ~ > X > 1 and the equality (5) we 
obtain 

- P ( ; .  > fW (n) i.o.,) ~ P ~Mk ~ fiV (rnD i .o .  ) ~ p (~Mk ~ (f~DO V (M D i .o .  ) = O. 

Consequently, a.s. lim ~n/V(n)~. Since ~ > i is an arbitrary number, from here we obtain 
#I-~oo 

the assertion of the lemma. 

A statement closely related to Lemma 3 is contained in [ii]. 

Proposition 3. Let X be a Banach space and let 

( i  ) xi6X, i---- 1, n ,  No = m a x  1, T(ln( l  + 8))-'/2(1 + ~)-(~1,,c~+6~-I , 

Then for all 6 > 0 and t > 0 we have 

1 

Proof. It is sufficient to justify the estimate 

f o r  6 > 0 and any  f i n i t e  t .  The p a s s a g e  (7 )  ~ (6 )  i s  known [12 ,  p.  70 o f  t h e  R u s s i a n  e d i -  
t i o n ] .  A p p l y i n g  t h e  known e s t i m a t e  exp ( u ) ~  2 c o s h  (u )  and Lermna 1, we o b t a i n  

(6) 

(7) 
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M exp t %x~ ~ 2 1 + 21 + z_2 (2k)! 
I k = 2  , 

2 1 -+ t~M2 (n) (tiM, (n)) k (2k-- I) k 
2! + k! 2 k (2k - -  l ) !!  ~ 

k=2 

~ M ,  (n) (t~M, (n )?  ]/~ (2k - -  1) ~ 
~--~2 1 -~ 2l + E  k! r ( k +  1/2) 2 ~ " 

k=2 

We introduce into (8) the elementary estimate 

V ~  (2k - -  1) * e~] /k~ 

P (k + 1/2) 2 ~ ~ 2 - - - - T -  

Then 

~< 

k=2 

~< 2max (1, max ~ (1 + 6) -k) exp ((1 + 6) eM2 (n) tU2) < 2N6 exp ((1 + 6) eM 2 (n) l~/2), 
k>~2 

i . e . ,  i n e q u a l i t y  (7 )  i s  e s t a b l i s h e d .  

From Proposition 3 and Lemmas 2, 3 we obtain the following consequences. 

Let X be a Banach space, let x; 6X, i> ! and M2(n) r ~ for n ~ ~. COROLLARY i. 
we have a.s. 

lim i 
,-~ "V2eM~ (n) In in M 2 (n) 

(8) 

Then 

COROLLARY 2. 
6 > 0. Then 

Let X be a q-concave Banach lattice for some q < ~ and let 

n n 

(9) 
1 I 

if l( Jx, I,)" ll t  for n then we have 
1 

l im ~ ~ -~<1 ,  (10)  

I 1 

where the constant Kq is defined in Lemma 2, while N 6 in Proposition 3. 

We recall that X is called a space of type p if there exists a constant Cp(X) such that 

for any finite collections xiEX we have the inequality [I zixi]I~Cp(X)(E']xiIlP) U~" 
i i 

From the estimates of [13], by a method close to Lemma 3 we derive the following corol- 
lary. 

COROLLARY 3. Let X be a Banach space of type 2 and let B~ = ~l[xi[[ 2 t ~176 Ilxn[l=o(Bi/ 
lnlnB~) '/2. Then we have a.s. l 

ti--~ V2B~ In In B~ ~< 1. 

ExamR!es. i. X = Lp[0,1], I~ ; ~ 2. Then in the inequalities (9), (i0) we have Kq = i. 
For p > 2 Kq = Bp is Khinchin's constant, while in the inequalities (9), (i0) the quantity 
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I ' ( •  II be replaced by (~[jxi,l~) '/2 i , . , I x  i t'~) 1t2 can 
I I 

2. X = V[0, i] is the Banach lattice of functions of bounded variation. V[0, i] is a 
2-concave Banach lattice in D2(V[0, I]) = 1 since V[0, i] = C*[0, I], while C[0, I] is a p- 
concave Banach lattice for any i ~p<co. O(2)(C[0. 11)= I (see Proposition l.d.4 from [6]). 

i. 

2. 

3. 

5 

6 

7 

8 

9 

i0. 

ii. 
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13. 
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SEMISCALAR EQUIVALENCE AND THE FACTORIZATION OF POLYNOMIAL MATRICES 

V. M. Petrichkovich UDC 512.64 

One considers the problem of the factorization of polynomial matrices over an arbi- 
trary field in connection with their reducibility by semiscalar equivalent trans- 
formations to triangular form with the invariant factors along the principal diago- 
nal. In particular, one establishes a criterion for the representability of a 
polynomial matrix in the form of a product of factors (the first of which is uni- 
tal), the product of the canonical diagonal forms of which is equal to the canoni- 
cal diagonal form of the given matrix. There is given also a method for the con- 
struction of such factorizations. 

Let P be an arbitrary field, let P[x] be the ring of polynomials over P, and let Pn 
and Pn[x] be the rings of n • n matrices over P and P[x], respectively. By ~(x) we shall 
denote the k-th invariant factor of the matrix A(x)E P,[x], by DA(x) the canonical diagonal form 
of A(x), i.e., DA(x) = U(x)A (x)V(x) = diag(~ (x) ..... ~ (x)), ~ (x)[ ~, (x), i = 1 ..... n -- I, for some 
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