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Two known definitions of regularizability for topological vector spaces are found 
to be equivalent. Regularizability in the sense of Tikhonov is considered in re- 
flexive linear metric spaces. In particular, an example is presented of a linear 
continuous injective operator on a reflexive Fr~chet space whose inverse cannot 
be regularized. The latter indicates the sharp difference between regularizability 
in Frgchet spaces and in Banach spaces, respectively. 

Whereas the regularizability of linear inverse problems in Banach spaces has been ex- 
tensively studied (see [i, 2] and the bibliography), the conditions of regularizability in 
topological vector spaces (TVS), or even in Fr~chet spaces, have been hardly studied. In 
this paper we show that the two definitions of regularizability given in [3, 4] are equiv- 
alent, and we consider regularizability in reflexive linear metric spaces. In particular, 
we present an example of linear compactification (of a continuous injective operator) on a 
reflexive Frgchet space whose inverse cannot be regularized. The latter indicates the sharp 
difference between regularizability in Fr~chet spaces and in Banach spaces, respectively. 

Let X and Y be TVS, let ~ (X) and ~ (Y) be their topologies, let 9~ be the base of a 
filter of neighborhoods of the origin in X, let f: X + Y be a mapping with a domain of defi- 
nition D(f), and let S be a system of subsets of X. 

Definition i [3]. A mapping R: S + 2 Y is said to be an A-regularizer of f with respect 
to the system S if the following conditions hold: 

1) v A E S ,  A N D ( f ) v ~ O : R ( A ) ~ ;  

2) vxED(D,  V G ~ ( y ) ,  Ggf(x), H V E ~ ( X ) ,  V~x, vAES ,  V ~ A  9 x : R ( A ) ~ G .  

A mapping f is said to be A-regularizable with respect to the system S if there exists 
an A-regularizer of f with respect to S. 

Definition 2 [4]. A family of mappings Ru:X-~Y, U6~, is said to be a T-regularizer of 
a mapping f in a base U, if ~xED(f), VG 6~(Y) ,  f(x) EG, ~UoEU, vUEU , U cUo:R~(x..bU)~G. 

A mapping f is said to be T-regularizable in the base ~ if there exists a T-regularizer 
of f in the base~. 

We shall assume that the base q~ consists of balanced sets that satisfy the condition 
u E ~ U + U 6 ~ .  

THEOREM 1. A - r e g u t a r i z a b i l i t y  of  a mapping f w i t h  r e s p e c t  t o  a s y s t e m  S = {x+U~ x6 X, 
U E~L} i s  e q u i v a i e n t  t o  T - r e g u l a r i z a b i i i t y  o f  f in  a b a s e  c~. 

P r o o f .  L e t  R be an A - r e g u l a r i z e r  o f  t h e  mapping f ,  and l e t  RU: X + Y be a mapping in 
Ru(x)ER(x+ U) f o r  any xED([) and UEU.  S i n c e  R i s  an A - r e g u l a r i z e r ,  i t  f o l l o w s  t h a t  ~ x E  
D([), v G E ~ ( Y  ), G3[(x), ~U16~, VAES. x+U~A3x:R(A)~O.  Le t  us t a k e  a UoEU, such  t h a t  
Uo-kUo~U~. Then vU~U o, U6~, and by taking A = v + U in the definition of an A-regular- 
izer, we obtain 

Ru (x § U) = U ~ (v) c O .~+vR (v + U) c O, 

because v-i-Ucx+U+U~-x-]-U1, and since U is balanced, we have o-bU~x. Hence {Ru} is a 
T-regularizer. 

Let {Ru} be a T-regularizer for f. Let us define the mapping R: S + 2 Y by the relation 
R(x + U) = RU+U(x + U). Since {Ru} is a T-regularizer, it follows that ~xED([), ~G6~(Y), 
Ogf(x), ~Uo6~, vU6U, U cUo:Ru(x-~U)cO. Let us take a W6~ such that 
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and let V = x + W. 
that 

W+W+W+WcU0, (i) 

If A=v+Ugx, A~V, then it follows from the fact that U is balanced 

vEx+U. (2) 

From v + U c x + W it follows that v--x6W, and since every element uE U has the form 
u =x--~-~w, wE W, we obtain U c W + W, and by virtue of (I) we have 

u+UcUo. (3) 
Thus, 

R (A) = R (v + U) = Ru+ u (v + U) ~ (2) c Ru+ u (x + U + U) c (~  c C. 

Hence R i s  an A - r e g u l a r i z e r .  

We shall assume that a mapping f is linearly (finite-dimensional linearly) regularizable 
if there exists a T-regularizer {Ru}, where all the RU'S are linear (finite-dimensional) con- 
tinuous mappings. 

Definition 3. A mapping f with a domain of definition D(f) c X and a set of values in Y 
has the property FD for a base ~ of neighborhoods of the origin in Y if for any U C~ there 
exists a finite-dimensional linear continuous operator BU: X + Y such that the net BUX con- 
verges to f(x) for any x E D (~). The set of net indexes {Bux} is ordered by the relation 

Definition 4. A TVS X is said to be a space with the bounded approximation property 
in the base q~, if there exists a family of linear continuous finite-dimensional operators 
{Bu: UE 9~}, Bu:X-+X such that the net BUX converges to x for any xEX. 

THEOREM 2. Let X be a semi-reflexive space with the property of bounded approximation 
in the base c~, and let Y be a locally convex space (LCS). For any linear compactification 
T: X + Y, the mapping T-lIT(p) will then have the property FD in the base ~ for any bounded 
set P c X. 

Proof. It is easy to see that the image T'Y* is compact in X* in a strong topology of 
X*. Indeed, since T is an injective operator, it follows that T'Y* c X* is a total subspace, 
i.e., for any x ~ 0 there exists an fE T'Y* in f(x) z 0. It hence follows by virtue of the 
semireflexivity of X that any functional in X** is determined by an xEX; for any q)E X ~* 
there then exists an [6 T'Y*, such that ~)=/=0. But precisely this implies that T'Y* 
is compact in X*, since otherwise T'Y* would be contained in a closed hyperplane, and 
hence there would exist a functional ~E X** , such that ~(~)= 0 for any ~ ET*} "~, 

Since X has the property of bounded approximation, it then follows that for any U67/ 
there exist elements x~, x~,.. n l 2 ,f~U in �9 ,xuU in X and f u ,  f u , ' ' "  X* such  t h a t  f o r  any x E X  

nu 

t h e  n.et { ~  t~(x)x~.} c o n v e r g e s  t o  x.  

Ne x t ,  s i n c e  T'Y* i s  compact  in  X*, i t  i s  p o s s i b l e  t o  s e l e c t  f o r  any bounded s e t  P c X 
1 g~, ,g~U in  T'Y* such  t h a t  f o r  any x EP we have  e l e m e n t s  gu,  " -"  

n U  

(:I - Cx)t ::b u .  

Indeed, for any UE?/ there exists a V6U, such that V+V+...+V~U; then there exists a 

nU 

6 > 0 such that for any ~, [g[ < ~ we have ex~uEV. Next let us select gbET*Y* such  that 
][~u(X)--giu(x)[<8 for any xEP. Hence 

nu 

V ff~, (x) - -  e~  (x)) x b 6 u. 
..-2 

nu 

Let us write Buy= Eh~u(Y)xb, where 96Y, hbE(T*)-ls Hence BUy + T-ly for any yET(P). 
i=! 

I n d e e d ,  i f  y = T x ,  x E P ,  t h e n  
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n U "u "u nU 
8 . y  = ( r x )  = (x) xb = + ix>-  x, 

~ 1  ~ 1  i ~ i  t ~ l  

where the first term converges to x, and the second term to zero. 

Definition 5. A mapping T "~ is said to be boundedly (linearly or finite-dimensionally) 
regularizable if the image T(P) of each bounded set P c X has its regula!izer , i.e., there 
exists a family {Ru} such that vx6P, vV6 ~(X), x6 V, ~Uo6q~, yU6~, U c Uo:Ru (Axe- U) ~ V. 

From Theorem 2 and the results of [4] we obtain the following theorem. 

THEOREM 3. Let X be a metrizable semireflexive space with the property of bounded 
approximation in a base ~, and let Y be a metrizable LCS in a base ~. Then for any linear 

compactification t: X + Y the mapping T -I is boundedly finite-dimensionally linearly regular- 
izable in the base ~. 

Remark. in the case of metrizable spaces it is possible not to refer to a base ~, since 
according to [4] regularizability does not depend in this case on a base. Hence it also 
follows that for linear metric spaces the above definition of regularizability is equivalent 
to the conventional definition of regularizability in metric spaces [I, p. 178]. 

COROLLARY. Any linear compactification T :~-+Y (T : ~-+Y), where ~ is the space of all 
infinitely differentiable functions on the real axis, ~ a space of infinitely differentiable 
fast decreasing functions, and Y a metrizable LCS, has a boundedly finite-dimensionally lin- 
early regularizable inverse T -l 

This corollary follows from the fact that the spaces ~ and ~ have bases and they are 
reflexive [5, 6]. 

Prior to presenting an example of a reflexive Fr~chet space on which there exists a 
linear compactification with a nonregularizable inverse, let us formulate an extension of a 
well-known result for Banach spaces. 

Assertion I~ Let X be a Fr~chet space whose topology is determined by a countable set 
of norms II IIk , k = I, ~, and B k ={x6X :IIx[Ik< I}. Let T: X + Y be a linear compactifica- 
tion, and Y a normed space. On the space X let us introduce a norm ~Ix~l 0 = IITxlly. If for any 
k > 0 the closure B k of the sphere B k in the norm II II 0 is a 11 Ill-unbounded set, then the 
operator T -l is not regularizable. 

Proof. Indeed, if the operator T -l would be regularizable, then it would be a mapping of 
first Borel class [i, p. 184], i.e., the sphere B l would have to be a union of a countable 
number of II II0-closed sets Vi, i = i, =. But according to our condition none of the sets V i 
can contain shifts of homothetic images of B k. According to Baire's theorem on categories, 
the sets B l are not neighborhoods of the origin. We have arrived at a contradition. 

Let X be a "Slovikovskii space" (a Montel space, i.e., a separable and reflexive space 
which is not a Schwarz space) [7, p. 258]. It consists of double sequences x=(xmn)~n=~, for 
which ]Ixllk~ =SUPm.nahlm,]Xmnl<oO, ~,!= ],CO, where a~mn=m ~max(l,n t-m) with a set of norms II Uks 
The unit vectors constitute a base of this space. It can be naturally embedded in a contin- 
uous manner in the Banach spaces Z=c0(N x~). For a fixed m 0 let us denote by Zm0 a subspace 
of Z that consists of the sequences x = (Xmn:Xmn = 0 for m ~ m0). The space Zm0 (which is 
isometric to c o ) is nonquasireflexive. Therefore we can define on it a weaker norm II llm0 
such that the closure of the unit sphere of the space Zm0 in the norm II Iim0 would be unbounded 

original norm [i, p. 80]. On the space Z let us define a norm IlxIl0= ~2-mIIxmIlm, in the 
~=} 

where x m is a natural projection of the element x on the subspace Z m. Let us fix k and Z. 
Then for m = s the norm II Ilks will be equivalent (even proportional) to the norm of the space 
Z, and X N Z m is compact in Z m. Therefore the ~I Ii0-ciosure of the sphere B~ = {x 6 X : Ilx!l ~l} 
is unbounded in the norm of Z. 

For completing the construction of the example, let us take as Y a space Z with a norm 
II I; 0, and as T the identity embedding of X in Y. It hence follows from Assertion 1 (where 
the role of the norms II 11 k, k > 1 is played by the norms I~ l]ki, numbered by natural numbers 
in any order, whereas the role of II I;~ is played by the restriction of the norm of the space 
Z to X) that the inverse operator T -~ cannot be regularized. 

Let us formulate a simple sufficient condition of regularizability in Frechet spaces. 
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Assertion 2. Let T: X + Y be a linear continuous injective operator, let X and Y be 
separable Fr4chet spaces, with the topology in X being defined by a sequence of no17ms lJ H n, 
n = i, ~, and for any n the mapping T -l is regularizable with respect to Y in (X, 11 lln). 
Then T -l is regularizable with respect to Y in X. 

Proof. It is sufficient to prove that for any n the sphere B~ = {x T xII~<1} is a union 
of a countable number of sets which are closed in the topology of preimages of open sets Y 
under a mapping T [i, p. 182]. But since T-I: Y-+IX, II II~)is regularizable, it follows that 
this is indeed so [I, p. 184]. 

COROLLARY. Let D be an open circle of finite or infinite radius and which is centered 
at the origin in the complex plane, and let A(D) be a space of functions which are analytic 
in D and which have a topology defined by a set of norms lIx[In = m a x j x ( z )  r, where D n c D is a 

z6D n 

closed circle centered at the origin, UnD n =D. Let F be a compact subset of D that con- 
sists of infinitely many points. Then the operator T: A(D) ~ C(F) [C(F) being a space of 
functions which are continuous on F and have maximum norm] which assigns to a function x(z) e 
A(D) its restriction to F will be linear, continuous, and injective, whereas the operator 
T -I is regularizable. 

Proof. Beginning with some n o we have F c Dn. Hence for n > n o the operator T -I will 
be regularizable with respect to C(F) in (A (O), II lln) [i, p. 200]. According to Assertion 2 
it is regularizable with respect to C(F) in A(D). 
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*Translator's Note to Editor. The Ukrainian equivalent of the Russian first name Nikolai is 
Mykola. Therefore the first-name initials of the co-author Plichko are different in the title 
of this article (A. M. in Ukrainian) and in reference 1 (A. N. in Russian). 
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