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1. Every Banach space E can be allotted a measurable  space s t ruc ture  by defining in it a o-.-a[gebra 
(E), generated by open sets. The elements  of 9~(E) are  called Borel  sets. 

Study of the s t ruc ture  of the set ~ (E) enables cer ta in  proposit ions of functional analysis and prob-  
ability theory to be proved. Fo r  example,  we shall prove the following. 

Proposi t ion 1. The set  of all dist inct  (i.e., nonisometr ic  or nonisomorphic) separable Banach spaces 
has the power of a continuum. 

Proposi t ion 2. Let E be a separable  Banach space,  and ~: a separable  topology in E, matched with 
the s t ruc ture  of the vec tor  space E. Then 9/(E) is identical with the o--algebra 9~ (~) ,  generated by open 
sets of the topology ~;. 

Note 1. Proposi t ion 2 is false if the topology ~ is not matched with the s t ructure  of the vector  space 
E. The proposit ion is likewise false if E is an incomplete l inear normed space [1]. 

Let E' be the space adjoint to the separable Banach space E. It is well known [2] that the o--algebra 
(E) is the same as the o--algebra induced by all the haf t - spaces  

l lx '= {xEE :x'(x)..< c}, x" EE', cER, 

when x' runs over  E ' ;  and c is the set of rea l  numbers.  In See. 2 of the present  ar t ic le  we shall prove a 
s t ronger  asser t ion .  

THEOREM 1. Let E be a separable Banach space; and M a subspace of E ' ,  everywhere  dense in the 
weak topology o-(E', E). Then the o--algebra ~ (E) of space E is the same as ~he or-algebra generated by the 
ha l f - spaces  1I~,, when x' runs over the entire subspace M; and c is the number axis. 

We recal l  that a set T ~_ E' is said to be total in E if, for all x' ~ T, the fact that x' (x) = 0 implies 
x = 0. If we recal l  that the l inear hull L(T) of a total set  T is dense in E'  in the o-(E', E) topology (see [3]) 
and that ~(L(T))----~(T) [~(L(T)), 9~(T) are  the o--algebras generated by the sets lI~., where x' runs over  
L(T) and T,  respect ively] ,  then the following is easi ly proved. 

COROLLARY 1. Theorem 1 remains  in force if M is a set, total in E. 

This proposit ion enables conditions to be established,  under which a ser ies  of independent random 
var iables ,  taking values in Banach space E, is convergent  with probabili ty unity. Let {~, ~ ,  P} be a 
probabil i ty space; by the E-valued random variable (E-v. r. v.) } we shall understand the {}, 9~} measuraMe 
mapping } : ~2 - -  E. 

The E-v. r. v. ~ induces into {E, ~I} the probabili ty measure  

~(A)  = P {co: [(o~)E A}, A E2[, 
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which  we c a l l  the d i s t r i b u t i o n  of  }. We s h a l l  s ay  that  ~ is  a s y m m e t r i c  E -v .  r .  v. i f  p} =/~_}. We def ine  in 

the s t a n d a r d  way  (see ,  e . g . ,  [4]) the i ndepend e nc e  of  a c o l l e c t i o n  of  E -v .  r .  v . ' s .  

Le t  M ~_ E; we s h a l l  s ay  tha t  the s e q u e n c e  of E -v .  r .  v . ' s  {Sn, n _> 1} is  M - w e a k l y  c o n v e r g e n t  to the 
E -v .  r .  v. S wi th  p r o b a b i l i t y  uni ty if ,  fo r  any x '  r M, we have  P { x ' ( S n )  - - x ' ( S ) }  = 1. 

I t  is  w e l l  known tha t ,  in the c a s e  of a n o n r a n d o m  s e q u e n c e  {xn,  n -> 1} m E,  i t s  M - w e a k  c o n v e r g e n c e  
(even i f  M = E ' )  to x ~ M does  not  i m p l y  i t s  s t r o n g  c o n v e r g e n c e .  H o w e v e r ,  in the c a s e  of a s e r i e s  of i n -  
d e p e n d e n t  s y m m e t r i c  E -v .  r .  v . ' s ,  we  have the fo l lowing  t h e o r e m .  

THEOREM 2. Le t  {}k,  k _> 1} be a s e q u e n c e  of i ndependen t  s y m m e t r i c  E-v .  r .  v . ' s ,  and M a s e t ,  to ta l  

in E. The  n e c e s s a r y  and su f f i c i en t  cond i t i on  f o r  the s e r i e s  ~ }k to be s t r o n g l y  ( i .e . ,  in the n o r m  of s p a c e  

E) c o n v e r g e n t  wi th  p r o b a b i l i t y  uni ty is  tha t  i t  be  M - w e a k l y  c o n v e r g e n t  w i th  p r o b a b i l i t y  unity to an E -v .  r .  v. 
S. 

The  e x a m p l e  of n o n r a n d o m  s e q u e n c e s  shows  tha t  the cond i t ion  of T h e o r e m  2 that  the E-v .  r .  v . ' s  be 
s y m m e t r i c  is  e s s e n t i a l  and canno t  be d ropped .  We g ive  the p r o o f  of  T h e o r e m  2 in Sec.  3, w h e r e  an e x a m p l e  
w i l l  be found, showing  that  the cond i t i on  tha t  M be to t a l  l i k e w i s e  canno t  in g e n e r a l  be weakened .  We do not  
know if  T h e o r e m  2 can  be ex tended  to the n o n s e p a r a b l e  c a s e .  No t i ce  that  T h e o r e m  2 w a s  p r o v e d  by Ito and 
N i s i o  in [5] f o r  the c a s e  M = E ' .  

2. The p roo f  of P r o p o s i t i o n  1 is  ba sed  on the fo l lowing  c o n s i d e r a t i o n s .  We know ([6], Chap.  2, Sec.  
30, ~J III) that  the s e t  7[ (E) has  the p o w e r  of a con t inuum.  The  f a m i l y  of a l l  c l o sed  s u b s p a c e s  of the s p a c e  
C[0,  1] t h e r e f o r e  has  a p o w e r  _<c ' s i n c e  e v e r y  c l o s e d  s u b s p a c e  is  a B o r e [  se t .  Since s p a c e  C[0, 1] is  u n i -  
v e r s a l ,  the p o w e r  of the s e t  :7~ of a l l  d i s t i n c t  s e p a r a b l e  Banach  s p a c e s  does  not exceed  that  of the c o n -  
t inuum.  Oil the o t h e r  hand ,  the s p a c e s  lp ,  lq (1 < p r q > 1) have d i f f e r e n t  l i n e a r  d i m e n s i o n a l [ t i e s ,  so  that  
they  a r e  not  i s o m o r p h i c  (see [7]). Hence  t h e r e  e x i s t s  a con t inua l  f a m i l y  of n o n i s o m o r p h i c  ]3anach s p a c e s  
~p (1 < p < ~)  s o  that  the p o w e r  of ~/~ is  equa l  to c. 

To p r o v e  P r o p o s i t i o n  2, we c o n s i d e r  the c l o s u r e  SI(E) of  the uni t  s p h e r e  SI(E) of s p a c e  E in t h e  
topo logy  ~ .  By P r o p o s i t i o n  14 of ([3], Chap.  II ,  Sec.  2), i t  i s  convex  and ba l anced .  Le t  us show tha t  SI(E) 
does  not  con ta in  a s t r a i g h t  l ine .  In f ac t ,  s i n c e  ~ i s  s e p a r a b l e ,  t h e r e  e x i s t ,  fo r  e v e r y  x ~ 0, open s e t s  
V 1, V 2 E ~ such  that  0 ~V1, x EV z, and V1 N V2 = (~. S ince  ~ i s  w e a k e r  than  the i n i t i a l  topology  of  s p a c e  
E, we have  Vl ~ Sa (E)  fo r  s o m e  a .  By h y p o t h e s i s ,  the  topo logy  ~ i s  m a t c h e d  wi th  the s t r u c t u r e  of the 

v e c t o r  s p a c e  E, so  tha t  

1 [ i v ,  1 i v  

so  tha t  the c l o s u r e  of Si(E) in the  topology  ~: w i l l  not  con ta in  x / a  and h e n c e  wi l l  not  con ta in  the e n t i r e  
l ine  {Lx}. The  gauge  funct ion  of the s e t  SI(E) i s  the n o r m  !1. II* de f ined  in the v e c t o r  s p a c e  E, w h e r e  [Ixll* 
-< Ilxl}, and in this  n o r m  I1" I1" the s e t  SI(E) i s  the unit  s p h e r e .  By S u s l i n ' s  t h e o r e m  ([6], Chap.  3, Sec.  39), 
92 (E) i s  the s a m e  as  the ~ r -a lgebra  92 (E*) of s p a c e  E, equ ipped  wi th  the n o r m  II" I1". Le t  us show that  
92 (E*) ~ 92 (2). We denote  by G o the c o l l e c t i o n  of a l l  open s e t s  of s p a c e  E*. I t  i s  e a s i l y  s e e n  tha t  G o ~ 92 (2).  
F o r ,  the open s p h e r e  {x : Ilxll* < 1}, a s  the coun tab le  union of c l o s e d  s p h e r e s  San  = {x : [Ixll* -< a n} as  a n 

1, a n < 1, be longs  to 92(2}. F r o m  th is  and T h e o r e m  2 of ([6], Chap.  2, Sec.  21, ~111), i t  fo l lows  that  any 
s e t ,  open wi th  r e s p e c t  to the n o r m  I1" II*, be longs  to 92(2). Hence  the m i n i m a l  o r -a lgebra  92 (E*), con ta in ing  

Go, is  the s u b s e t  9.1(~). 

In s h o r t ,  

92 (E) = 92 (E*) ~ 92 (2) ~ 92 (D,  

and hence  92(E) = 92 (2) . 

A s  an e x a m p l e  of a topology 2 , ,  not  m a t c h e d  wi th  the s t r u c t u r e  of the v e c t o r  s p a c e  in R l,  we  can  
quote  the c o l l e c t i o n  of open s e t s  s y m m e t r i c  wi th  r e s p e c t  to z e r o .  T h i s  i s  a s e p a r a b l e  topo logy ,  but i t  is  
c l e a r  tha t  the c l a s s  9) (%1), c o n s i s t i n g  of open s e t s  s y m m e t r i c  abou t  z e r o ,  i s  in f ac t  the c l a s s  of a l l  B o r e l  

s e t s .  

L e t  us p r o v e  T h e o r e m  1. We f i r s t  i n t r o d u c e  the fo l lowing  no ta t ion :  ~ s  is  the w e a k  s e q u e n t i a l  c l o s u r e  
of the s e t  M ( i .e . ,  the l i m i t s  of a l l  s e q u e n c e s  of  M, c o n v e r g e n t  in a w e a k  topology) ;  Mf i s  the s t r o n g  c l o s u r e  
of M; and 92 (M) i s  the ~ - a l g e b r a  g e n e r a t e d  by the h a l f - s p a c e s  , x '  ~ M. 
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Obvious  [y, 

since M ~ Mf ~ ~I s. We shall show that 9/ (M) -- 9/ (M~) . Let x' E MS; then there exists a sequence x~i <~ M 

which is weakly convergent to x'. We have 

and hence  lIx~ E~(M) and g[(M)= 91(M~). It fo l lows  f r o m  this  and the i n c l u s i o n s  (1) that  N ( M ) =  ~[(~I)) o 

We c o n s i d e r  the M a c k e y  t o p o l o g y z ( E ,  ~if) ,  g e n e r a t e d  by the s t r o n g l y  c l o s e d  s u b s p a c e  Mf (see [3]). 
By L e m m a  2 of [8], th is  topo logy  r(E, Mr) m a j o r i z e s  s o m e  n o r m e d  topology  ~:. It is  e a s y  to s ee  that  the 
a - a l g e b r a  92r g e n e r a t e d  by the topology  @, i s  the s a m e  as  9;[ . F o r ,  le t  [lxll ~: be the  n o r m  which  induces  
the topo logy ,  g ; and E ~: the  l i n e a r  s p a c e  E, equ ipped  wi th  the n o r m  llxN ~:. The  o p e r a t o r  j of n a t u r a l  i m -  
bedd ing  of Banach  s p a c e  g in to  the l i n e a r  n o r m e d  s p a c e  E~; is  con t inuous ,  s i n c e  the topo logy  3: i s  w e a k e r  
than the i n i t i a l  topo logy  of  s p a c e  E. By S u s l i n ' s  t h e o r e m  (see [6], Chap.  3, See.  39), any o n e - t o - o n e  c o n -  
t inuous  i m a g e  of  a B o r e l  s e t  B E ~ i s  a B e t e l  s e t ,  so tha t  9] c 91 (g ) .  Since  ~ ( ~ ) c  ~ , i t  fo l lows  f r o m  the 
p r e v i o u s  i n c l u s i o n  tha t  91 =g((%).  By h y p o t h e s i s ,  the topology  g is  m a j o r i z e d  by the M a e k e y  topology r ( E ,  

He nc e ' , ad jo in [  to the l i t*ear n o r m e d  s p a c e  E ~:,  i s  i m b e d d e d  in the s p a c e  Mf. Mr),  so tha t  the s p a c e  g ~  

We thus have  ~ = 9I (3;) ~ 9[ (Mj) = 91 (M) ~ ?.I , whence  i t  fo l lows  that  ~I = ~ (M) . QED. 

3. P r o o f  of  T h e o r e m  2. The n e c e s s i t y  is  obv ious .  Le t  us p r o v e  the su f f i c i ency .  

Le t  the s e r i e s  ~ ~k be M - w e a k l y  c o n v e r g e n t  wi th  p r o b a b i l i t y  uni ty  to the g - v .  r .  v. S, and le t  x[0 
k=--I 

. . . .  Xq q -> 1) be any f in i t e  c o l l e c t i o n  of func t iona l s  of M; then the s e q u e n c e  of r a n d o m  v e c t o r s  ~n = (xi(Sn), 

2 . . . .  xq(Sn)) ,  n ~ 1, w h e r e  S n = . ~k is  c o n v e r g e n t  wi th  p r o b a b i l i t y  uni ty  to the r a n d o m  v e c t o r - ~  = (x[(S), 

T . . . ,Xq(S)) .  In view of th i s ,  and the f ac t  t h a t ~ m - ~ n a n d  ~ n a r e  i ndependen t  fo r  a n y m  >n_> 1, ate have 

P { &  E C.  S - -  S~ E Q}  = P {S~ E C~} p {s - -  s,~ E c~}, (2) 

I (z ! 
which holds for any CI, C 2 ~ C M, where C M is the collection of sets of the form -ix E : (x~(x) ..... xp(x)) 

B( p)}, wherex I,' . . . ,Xp' [ M, p ~ I, and B(P) is a Bore[ set inRP. Since the ~-algebra generated by C M 

is the same as 91(M), and, by Corollary 1 to Theorem i (we recall that M is a total set), 9[ (M) is the same 

as 91, we can easily show that Eq. (2) holds for any Bore[ sets Ci, C 2 ~ E. Consequently, the E-v. r.v.'s 

S-S n, and S n, are independent for any n -> I. It is easily shown by similar arguments that the E-v. re v.'s 

S-S n (n _> I) have a symmetric distribution. We write 

S (~) = S~ (co) + [S (~) - -  S~ (co)I, co E ~, 

and put  

(~) = S ,  (~) - -  [S (~) - -  & (c0)], co E a.  

S ince ,  g iven  any n _> 1, the E -v .  r .  v . ' s  S, S - S  n a r e  i ndependen t  and the S - S  n have  a s y m m e t r i c  d i s t r i b u -  
t ion,  i t  can  e a s i l y  be s e e n  that  the E-v .  r . v . ' s  S and S a r e  e q u i d i s t r i b u t e d .  No t i ce  that ,  g iven  any convex  
s e t  B c E, and any n _> 1, 

{~o : S .  (co) ~ B} c {co : S (co) E B} lJ {~ : S (co) { B}. 

If, a t  the s a m e  t i m e ,  B i s  a B o r e l  s e t ,  then 

sup P {S= ~ B} 4 2P {S ~ B}. (3) 

S ince  S is  an g - v .  r .  v . ,  t h e r e  e x i s t s ,  fo r  any  e > 0 (see ,  e . g . ,  [2D, a c o m p a c t  s e t  K a c E such  that  P { S  
K e} < e / 2. If we r e c a l l  tha t  the convex  hul l  of a c o m p a c t u m  is  a c o m p a e t u m ,  and use  the i ne qua l i t y  (3), 

i t  i s  c l e a r  tha t ,  g iven  any e > 0, t h e r e  e x i s t s  a c o m p a c t  s e t  f(e (Ke is  the convex  hul l  of Ke) such  that ,  fo r  

a l l  n _> 1, P { S  n E ~e} -> 1 - e .  In s h o r t ,  the d i s t r i b u t i o n s  of the p a r t i a l  s u m s  of the s e r i e s  2 ~k a r e  
g=--I 
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uniformLy compact ,  and this fact is sufficient (see [5, 9]) for the ser ies  ~_~ }k to be strongly convergent  with 
k = l  

probabili ty unity. The sufficiency, and hence Theorem 2, is proved. 

The following example shows that the condition in Theorem 2 that the set  M be total is essential  and 
cannot be weakened. 

Example. Let M c E ' ,  and let the set M be not total in E. There  then exists an element x E E such 
that, for all  x' E M, we have x' (x) = 0 but x ;~ 0. Let {~k, k _> 1} be a sequence of independent random va r i -  
ables,  where ~-k takes the values • with probability 1 / 2. We put ~k = }k x. It is easi ly seen that { ~k, k 

> 1} is a sequence of independent symmet r i c  E-v. r. v. 'so and that, for  every  x' E M, ~ x'(~k) = 0 with 

probabil i ty unity. Hence the ser ies  Y'~k is M-weakly convergent  to ze ro  with probability unity. But 

II;ull = ,~ll xl l -+ ~ ,  (4)  

i .e. ,  the se r i e s  ~ ~k is divergent  with probabili ty unity in the sense of the norm of space E. 

Note 2. If M is a countable set,  total in E (notice that, since E is separable,  such a set  always exists 

exists) ,  then the fact  that the se r ies  ~ }-k, where ~k are  independent and symmetr ic  E-v. r . v . ' s ,  is M- 
k ~ l  

a . s .  
weakly convergent  to S with probability unity, implies that ~k = S. 

F o r ,  Let us number the elements of M, M = {x~, k ~ 1}. Then 

I > P  

r n ~ l  

i .e. ,  P ~=  =1 .  

4. In this section we shall give some coro l la r ies  to Theorem 2. 

THEOREM 3. Given in E a norm II. II1 which is weaker  than the natural  norm of E. Fur ther ,  let 
{~k, k >_ 1} be a sequence of independent symmet r i c  E-v. r. v . ' s .  

Then, if the ser ies  ~ ~k is convergent  with probability unity to the E-v. r. v. S in the norm I1" ill, then 
k = l  

it converges  to S in the norm H. li E also,  with probability unity. 
! ! 

The proof follows readily f rom Theorem 2 and Note 2, if we also observe that E1 c E ' ,  where E1 is 
the space adjoint to E i (E i is the space E equipped with the norm ]1. ill), that E1 is a separable normed space, 
and that E~ is a set total in E (this last follows from the Hahn - B a n a c h  theorem on the continuation of l inear 
functionals in a normed space). 

Let  S be a compact  topological space. We consider  the space C(S) of all real-valued functions x(s), 
continuous in S. Notice that C (S) is a separable  Banach space with uniform norm. We define the Linear 
functional 5 s E C'(S), s E S, as follows: 5s(X) = x(s). It is easi ly seen that the set {Ss, s E Q} is total in C(S), 
if the set  Q is dense in S. We consider  the stochastic field {~(s), s E S}. If the field ~(s) is s ample -wise  
continuous with probabili ty unity, it can be regarded as a C(S)-v. r .v .  We shall say that the field ~ (s) is 
symnaetric if its distr ibution in C(S) is a symmet r i c  measure  (see Sec. 1). Fo r  the field ~ (s) to be s y m -  
met r i c ,  it is sufficient that every  f ini te-dimensional  distribution of it be symmet r i c  in the relevant  f inite-  
dimensional  space. In the present  case ,  Theorem 2 can be stated as follows. 

THEOREM 4. Let { (}k(S), s E S), k -> 1} be a sequence of independent symmetr ic  random fields, 
sampLe-wise conti~uous with probabili ty unity, and let the field } (s) be also sample-wise  continuous with 
probabili ty unity. If, for every  s E S, 
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a . $ .  ~o 

(s) --- ~ ~ (s), 

2 then the se r i e s  ~k(S) must  be uniformly convergent  to ~ (s) with probability unity. 
k = !  

Note 3. It can be required in Theorem 4 that the condition (4) be satisfied only for s belonging to a 
countable set ,  everywhere  dense in S. 

It can easi ly be seen that a trivia[ consequence of Theorem 4 is the uniform convergence,  with prob-  
ability unity, of the K a r h u n e n -  Loeve expansion of a Gaussian field ~ (s), continuous with probability unity 
(M~ (s) = 0). This fact  has been proved [10, 11] by a variety of methods. 

Let H be a Hilbert  space with sca la r  product ( , ) ,  and [et L be a i sonormal  Gaussian l inear  functional 
in H (see, e.g, ,  [12]), i .e. ,  L is a l inear mapping of tt into a set of real  Gaussian random variables with 

ML (x) = 0, ML (x) L (y) = (x, y) 

for  any x, y E H. If {~0n, n -> 1} is a basis or thonormalized in H, then, given any x ~ H, we have L(x) 

= ~ L(q:h)(x, ~ ) ,  and {L(q:h), n ~> 1} is a sequence of independent standard Gaussian random variables.  
n = l  

It can easi ly be seen that, given any x ~H, the ser ies  ~ L(.q-t)(x, ~a) is convergent  to L(x) with p:cobability 

unity, g we regard  ~ as a continuous l inear functional, ~.~(x) ~ (x, ~n), then formally,  L = ~ 

and { L((Pn)~n, n ~> 1} is a sequence of independent Gaussian H~-v. r.v.~s. But L is not an H-v. r. v., since 

MI[ L(gh)~l]~{, = ~ M[L(~n)] 2 = ~o, and hence the series ~ L(~n)~n is divergent in the norm of :space H' 
n = l  n.~l  

with probabili ty unity. Now let K be a topological compaetum in H. We shall say that K has the GC property 
if L, contracted into K, is continuous with probability unity. 

COROLLARY 2. The compactum K has the GC property if and only if, given any orthonormalized 

basis {~n, n -> I} c H, the series ~ L(~Pn)~Pn(x) is convergent uniformly with respect to x ~ K with prob- 

ability unity. 

This proposit ion is a tr ivial  consequence of Theorem 4, if we note that { L(~on)<&(x), n -> 1) is a 
sequence of independent symmet r i c  C(K)-v. r. v . ' s ,  and use the previous arguments.  

Notice that this coro l la ry  was obtained in [12]. The number  of examples could be extended, i l lus-  
tratir~g how proposit ions which previously had to be strengthened in various ways,  follow readily f rom 
Theorem 2. However,  instead of doing this, we shall quote a new resul t  concerning the nature of the con-  
vergence  of the expansion of a Wiener process .  

Let {w(t), t r [0, 1]} be a standard Wiener process .  It is easily shown by the previous arguments  that, 
given any or thonormal ized basis {(n(t), n -> 1} in ~ [0, 1] 

w (t) = ~ L % ('0 d~, (5) 
n ~ l  0 

1 

where in = ~ w(t)r n _> 1 are independent standard Gaussian random variables,  and the ser ies  on the 
0 

right side of (5) is uniformly convergent  with respec t  to t ~ [0, 1] with probability unity. This asser t ion  was 
f i r s t  proved in [5]. Let us show that, under cer ta in  conditions, a s t ronger  type of convergence holds. For  
this, we take the space A(~ [0, 1] of continuous rea l  functions x(t), t E [0, 1], satisfying a Lipsehitz condition with 
exponent c~ (0 < ~ _< 1), i.e.,  Ix(t) - x ( t ' ) l  = O ( I t - t  ~ t ~) uniformly with respec t  to all t, t ~ ~ [0, 1]. A~[0, 1] 
is a separable  Banach space with respec t  to the norm 

t x (t) - -  x (t') I Jl x I[~ - sup I x (0 I+  sup 
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COROLLARY 3. Let  {r n } 1} be an or thonormal ized basis in ~ [0, 1] such that, for  all n _> 1, 
t 

< ~; then the s e r i e s  ~ ~n ~ Cn( ~)d~- is convergent  to w(t) in the Lipschitz norm with exponent s u p  ] Cn(t) 1 
te l0 ,1]  ,~.-..~ 1 ~ 0 

,J 

< 1 / 2 with probabil i ty unity. 

Proof .  It is well  known that, with probabil i ty unity, 

1 lw(0--w(t')I--o(It--t'l~), 0<~<~-, 

uniformly with respect to all t, t' E [0, 1]. Using this fact, it can easily be shown that w(t), t ~ [0, 1], is an 
Am[0, 1]-v.r.v. (0 < c~ < 1/2). On the other hand, by hypothesis 

I! *n(')d~-- i *~(~)d~l=O(lt,--t'), 
$ 

i .e . ,  yn(t) = ~ Cn('r)dy belongs to Ac~[O, 1] for  any 0 < ~ -< 1. 
O 

The series ~ }nYn thus consists of independent symmetric Am[0, l]-v. r. v.'s (0 < ~ -< i) and con- 
n~-I 

verges  to w with probabili ty unity in the norm [I. [IC[0,t ]. The norm ll" IIC[0,t] is weaker  than the norm II- IIc~, 

and hence,  by Theorem 3, the se r i e s  ~ ~nYn converges  to w in the norm II-IIc~ (0 < o~ < 1 / 2 )  also,  with 

probabil i ty unity. 
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