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KHINCHIN'S INEQUALITY FOR k-FOLD PRODUCTS OF INDEPENDENT 

RANDOM VARIABLES 

I. K. Matsak and A. N. Plichko 

i. A. Ya. Khinchin [i] proved the following inequality (see also [2; 3. p. 66]). Let 
1 ~ p < ~. Then there exist constants kp, Kp such that for any finite collection of real num- 
bers (a i) we have 

(i) 

where r i is a sequence of independent Rademacher variables, P (r i = • I) = 1/2. As it is 
known, kp ~ i/v~ for p < 2, kp = 1 for p ~ 2, Kp = 1 for p ! 2, Kp = O(v~) for p + ~. In- 
equality (i) has found wide application in probability theory and-analysis. Various generali- 
zations of Khinchin's inequality are known [4-8]. 

In this paper a relation of the form (i) is established for the case when the terms are 
k-fold products of independent random variables. We consider its application to the deter- 
mination of estimates of the moments of random determinants and permanents. We give some re- 
sults of the type of the law of iterated logarithms. 

2. Let ~n be a sequence of independent, identically distributed random variables in R, 
M~ n = 0, ~a--~_Lp = Lp(fl, Z,P), i.e. , il~nllp = (M l~nv ]P)I/P< 00, i..~.p<oo.... For a fixed natural 
number k we consider the collection of all k-fold products N,h ..... ~ = ~,,,'~,,'~n~, where the num- 
bers nl, .... n k are mutually distinct. We enumerate the collection (Nn I .... nk) in an arbi- 
trary manner: 0],% ..... ~) = (~]i)~. 

THEOREM i. Let 1 < p < =, r = max (p, 2), q = min (p, 2), p* = max (p, p/(p -- I)) -- i, 
let k be a natural number, and let Sne L=. Then for any finite collection of real numbers 
(a i) we have 

2 1 ; 2 /  
([f ~., tiq "kp/p*) h ( ~ a~ ) ' -~ I] 2 a~'l~ lip < (it ~-, [ir K~P*) ~ ( ~, a~) '/2. (2) 

Clearly, for p E 2 the right-hand inequality and for p ~ 2 the left-hand inequality are 
obvious. Before proceeding to the proof, we recall that by the unconditional constant of 
a sequence of nonzero elements x n of a Banach space X we mean the smallest of the numbers K for 
which for any finite collection of real numbers (a n ) and any collection of signs E n = • 1 we 
have 

Proof of Theorem i. For each n let x n be an arbitrary nonzero element of the linear hull 
fin (Nnl...nk: n I < n 2 < ... < nk_ l < n k = n). It is easy to verify that (~'xi),~_-I is a 

Martingale with respect to the sequence of o-algebras Fn, generated by the random variables 
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~i, $2 ..... Sn [9, Chap. 2, Sec. 8] and, consequently, (x n) is a sequence of Martingale- 
difference sequence in the space Lp does not exceed the number p* [i0]. By the known Orlicz 
and Kadets estimates (see, for example, [8]), for each N we have 

(k;p*)(~.=, l l .%,.q <l tY.,x. l lp < KpP*(~=lllXn ( 3 )  

The proof of the theorem will be carried out by induction on k. For k = i we have ~i = 
gi and (2) follows from the inequalities (3) if we set there x n = an~ n. 

Assume that the theorem has been proved for k -- i. We represent the finite sum k -- i 
in the form 

~ i  aiili = ~3% :era, ( 4 )  . 

where 

xm__~rn~ j (,0 (,>0 (-.) aj vj , v~ : ~ 1  ......... ,,~_,, n ~ = n  i ( j , m ) ~ m .  

By the induction hypothesis, for each m we have 

(,.) ],,),/~ (-.) (,.) I (If rh IIq k,lp*) ~-' (~'j l a7 < I1~ < (1f h Ih. Kpp*) <-' (~sl aJ "~ [2)1i:~ aj v i p (s) 

From the independence of the sequence {$m}z there follows [9, Chap. 2] 

Ilu~.j-<'~>-'~>ll,:<~ -,.~ = i l~l l , , l lE~,~ <'')',,~ <'>', I1,:. (6) 

The application of the relations (3), (5), and (6) to the equality (4) yields 

(hi) I1 ~, llq kdp*)" (Y,.,,s I aS "') I<') '/2 < I I~  <,,,1, H,, < (li ~., iir ~.p*)~" (E.,.~ I <'~ is) ' ':, 

i.e., inequality (2) is proved. 

Remark I. The left-hand estimate in (2) for p close to i is very coarse. We refine it 
under the assumption of the existence of the fourth moment. 

LEMMA i [3, p. 66]. Let x e L 4 and assume that nxi [~  ~ BIIxll2. Then I l x l l , ~ B - ~ l l x l l = .  

COROLLARY 1. L e t  x n be an o r t h o n o r m a l  s y s t e m  i n  t h e  s p a c e  L2,  x n e L4 and a s s u m e  t h a t  
there exists a constant B such that il Ziaixill4< B (Eia~) Ij2 for any finite collection of scalars 
(ai). Then 

As one can easily see, the system (Ni)~ is orthogonal. Therefore, combining this corol- 
lary and the right-hand inequality in (2) f~ir = 4, we obtain: if 1 5 p < 2, then 

! ? lt:(Zo,) 

Taking into account that K~ ~ 3~ [2], we obtain 

II ~ I1~ ~ ; ~ 2',1/-" 
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Remark 2. An inequality, similar to the estimates (2), is valid also for nonidentically 
distributed random variables. For the' right-hand inequality it is sufficient to require that 
sup II ~, llr < oo, while for the left-hand inequality inf I[ ~nllq ~ O. Moreover, in (2) instead 
n 

of [[$~llq and II~][r one has to set the infimum and the supremum, respectively. 

3. We apply the inequalities (2) and (7) to the determination of estimates of the moments 
of the permanent and the determinant of a random matrix [ii, 12]. Let A = (a~,~)~.~=, be a real 
matrix, let per A, det A be the permanent and the determinant of the matrix A, let A, A (~u) = 
(a~.~j)~,j=~, '~ A ('~) = (a~-)~,~=~.~ n . We recall that by the permanent of a matrix A we mean the sum 

Ea,ha2~,... am n, taken over all permutations <i~, ..., in> of the numbers i, 2, ..., n. 

� 9 n COROLLARY 2 (of Theorem 1 and Remark i). Let ($xJ)i,j=~ be independent, identically dis- 
tribut-~d ra--~om'va--r[ab--ieses, ~i 7 - 0. If 1 < p < = and $ij e Lr, then 

, II ~,x IIq kp ) ~ (per A(2)) ~/e ~ ( ~  ] det A (~i) [~) ~/p ~ (If ~n lfr Kpp*)" (per A(:))~% 
l O *  " 

~nllqkp)~ p, (perA~2))ln~(M Jper A (~.ij) [P)~/P ~(II ~n HrK~p*)n(P er A(2)) 1/~, 

If $ij e L4, then for 1 i p < 2 we have 

(M I det A (~u)[~) I/p >~ 
II ~ II~" 

li ~,~ II~" 3~,,z2 (per A(:)) 1/~ 

A similar inequality holds also for per A ($ij)" 

4. We consider the question on the limiting behavior of the variables S n = E~=lai~. It 
is known (see, for example, [13]), that from (2) for p > 2 there follows the convergence of 

2 S n almost surely (a.s.) for Zi=lai<oo, i.e., (Di) is a convergence system. Below we shall 
assume that 

A ~  ~ .11 2 Exa i ~ oo, An~An+ 1-§ i for n -*  oo, M ~  = 1. 

THEOREM 2. A. Let I ~, I ~<~ L, L < oo. Then almost surely we have 

lira I Sn I / ( A ~  (ln In An)a~) 1/-' < 3.i~ < ~o, 
n ~ o o  

B. T h e r e  e x i s t s  an  e n u m e r a t i o n  o f  t h e  s e q u e n c e  ( H i )  = ( ~ n l n 2 . . . n  k )  s u c h  t h a t  a . s .  

The numbers  L,  M k ,  m k a r e  n o n r a n d o m .  

Fo r  t h e  p r o o f  o f  t h i s  t h e o r e m  we n e e d  t h e  f o l l o w i n g  a u x i l i a r y  s t a t e m e n t s .  We s e t  Sn* = 

I Z i ,  =,,1, I 
LEMMA 2. I f  ~,, ~ L ~ ,  p ~  2, then 

I1 S* IIv < C, (Kvp* ]1 ~1 llp) ~ An, ( 8 ) 

where Ce does not depend on p; p ~ 2 + e, ~ > 0. 

The estimate (8) follows from the right-hand inequality of (2) and Le[~a 2 of 

LEMMA 3. If [$nl E L, then 

M exp (~. [ S*/A~ p,13~,,).~ 2 exp (k2B~.L2/3), 

[14]. 

(9) 
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where B k is a constant depending only on k. 

Proof of Lemma 3. The known estimate exp t ~<. 2~=ot2~/(2p) ! gives the inequality 

M exp (~l  S,~/A,~ I),/~ ~ ~ 2 / ,  - -  M I S*/A,, i(*)/~.',~) = 2Ro. "" p=o (2p). 

We estimate the quantity Rl--~ V,  ~ 2"':'P 
, ~-~v=[9~/21+~ (2p)! 

the estimate Kp <_ Cp~: 

= .  (2p), (K2p/3~ ( - '~ )  ) 

(2,), \ ~ 2  2 "~ 2~_[9~/,]+~_ (2p)r pv (2C~/3~ (CL)~/~/3k).. 

--M[S*/AnI(2~ We apply the inequality (8) and 

(I0) 

Let R 2 = R 0 -- R i. Then 

B2 < (2p)--., lI S*/An [1~ v/3~ < 

I + (2p)! (C~ (K33*L)~)2v/3 ~ < t + ~t,~/:~] (2p)! (C~/~ (4L)2/3F" (ii) 

We set B e = max (421a, 2C~/a/3k)~/~. Then the inequality ( 9 )  follows directly from the esti- 
mates (i0), (ii). 

Proof of Theorem 2. A. For I > 0 and d > 0 we have 

P {I S~[ > d 3~ (A~ (In In A~)3~) '/2} = 

~--- P {~ [ S~/ An [1/s~ ~ d~ (ln ]n An) 1/~} < M exp (~ [ S~/ An ]~/3k) exp ( - -  d~ (ln In An)'/2). 

We a p p l y  t h e  e s t i m a t e  ( 9 )  t o  t h e  l a s t  i n e q u a l i t y  f o r  k = (In In An)I/% d ~ V ~ B~ L~/3, y > t ;  
B k and L a r e  d e f i n e d  i n  Lemma 3. We o b t a i n  

P {I S~*[ > d a~" (A~ (ln In An)a~') '/z} ~< 2 ln-V An. (i2) 

In order to conclude the proof of Part A of Theorem 2 we need 

LEMMA 4 [15]. Let Yn be a random sequence, a n ~ O, a n ~ oo, an+i/an-+ I for n ~ ~, x e 
(i, 1 + 8), ~ > 0, ~(x) is a positive nondecreasing function, ~,?=11/ntp (n)< c~ and 

P ( max Yk > Xan)< B/ib (an) for all sufficiently large n. Then a.s. lira Yn/an < I. 

We apply Lemma 4, setting a,~ = d au (A~ hi In aUAn)I/~. From the estimate (12) we obtain that 
a.s. 

lira [ Sn ]/(A~, in In 3k A,~) '/2 ~< M~, 

where M~<(i + B~L~/3) 3'~ 

Part B of Theorem 2 follows from the equality obtained in [16]: 

where 

, M o lira U~.,/( U[. r,.(ln In MU~.~,)h')l/"-.=(2k/k!)l/'- a .s .  

Uk,n ~--- El~il<...<ih.~n l]il...ih.. 

This concludes the proof of Theorem 2. 
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We note that there remains open the problem of the liquidation of the gap between the 
exponents 3k and k in parts A and B of Theorem 2. There are reasons to believe that the ex- 
ponent 3k in part A can be reduced to k. 

The authors are grateful to V. F. Gaposhkin for useful consultations. 
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COMPONENTWISE SPLITTING MIXED ABELIAN GROUPS 

V. I. Myshkin 

We consider mixed abelian groups and some of their p-mixed quotient groups. These 
quotient groups are assumed to be splitting. We study the connection of the groups of the 
class under consideration with the homomorphisms of their quotient groups modulo the periodic 
parts into the direct product of the primary components of these periodic parts. 

We use the following notation: 

is the quotient group of the mixed abelian group G modulo its maximal periodic sub- 
group T = T(G); 

g is the coset g + T (g ~ G); 

~a is the epic projection H~A~-+A~; 

P is the set of all prime numbers. 

J is an index set that contains the symbol 0. Other notation and terminology are used 
in the sense of [i]. 
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