8. V. G. Maz'ya, "On the stationary problem of the small oscillations of a fluid in the presence of an immersed body," Tr. Sem. S. L. Soboleva, No. 2, 57-59 (1977).
9. L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).
10. T. Carleman, Über das Neumann-Poincaresche Problem für ein Gebiet mit Ecken, Almqvist \& Wksell, Upsala (1916).
11. N. G. Kuznetsov and V. G. Maz'ya, "On the unique solvability of the Neumann-Kelvin plane problem," Mat. Sb., 135, No. 4, 440-462 (1988).

KHINCHIN'S INEQUALITY FOR k-FOLD PRODUCTS OF INDEPENDENT

RANDOM VARIABLES

I. K. Matsak and A. N. P1ichko

1. A. Ya. Khinchin [1] proved the following inequality (see also [2; 3. p. 66]). Let $1 \leq p<\infty$. Then there exist constants k_{p}, k_{p} such that for any finite collection of real numbers $\left(a_{i}\right)$ we have

$$
\begin{equation*}
k_{p}\left(\sum a_{1}^{2}\right)^{1 / 2} \leqslant\left(M\left|\sum a_{i} r_{i}\right|^{p}\right)^{1 / p} \leqslant K_{p}\left(\sum a_{i}^{2}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

where r_{i} is a sequence of independent Rademacher variables, $P\left(r_{i}= \pm 1\right)=1 / 2$. As it is known, $k_{p} \geq 1 / \sqrt{2}$ for $p<2, k_{p}=1$ for $p \geq 2, K_{p}=1$ for $p \leq 2, K_{p}=0(\sqrt{p})$ for $p \rightarrow \infty$. Inequality (1) has found wide application in probability theory and analysis. Various generalizations of Khinchin's inequality are known [4-8].

In this paper a relation of the form (1) is established for the case when the terms are k-fold products of independent random variables. We consider its application to the determination of estimates of the moments of random determinants and permanents. We give some results of the type of the law of iterated logarithms.
2. Let ξ_{n} be a sequence of independent, identically distributed random variables in R, $M \xi_{n}=0, \xi_{n} \equiv L_{p}=L_{p}(\Omega, \Sigma, P)$ i.e., $\left\|\xi_{n}\right\|_{p}=\left(M\left|\xi_{n}\right|^{p}\right)^{1 / p}<\infty, 1 \leqslant p<\infty$. For a fixed natural number k we consider the collection of all k-fold products $\eta_{n_{1}} \ldots n_{k}=\xi_{n_{1}} \cdot \xi_{n_{2}} \cdot \xi_{n_{k}}$, where the numbers n_{1}, \ldots, n_{k} are mutually distinct. We enumerate the collection $\left(\eta_{n_{1}} \ldots . . n_{k}\right)$ in an arbitrary manner: $\left(\eta_{n_{1} \ldots n_{k}}\right)=\left(\eta_{i}\right)_{1}^{\infty}$.

THEOREM 1. Let $1<p<\infty, r=\max (p, 2), q=\min (p, 2), p^{*}=\max (p, p /(p-1))-1$, let k be a natural number, and let $\xi_{n} \in L_{2}$. Then for any finite collection of real numbers (a_{i}) we have

$$
\begin{equation*}
\left(\left\|\xi_{1}\right\|_{q} \cdot k_{p} / p^{*}\right)^{k}\left(\sum a_{i}^{a}\right)^{1 / 2} \leqslant\left\|\sum a_{i} \eta_{i}\right\|_{p} \leqslant\left(\left\|\xi_{1}\right\|_{r} K_{p} p^{*}\right)^{k}\left(\sum a_{i}^{\mathrm{i}}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

Clearly, for $p \leq 2$ the right-hand inequality and for $p \geq 2$ the left-hand inequality are obvious. Before proceeding to the proof, we recall that by the unconditional constant of a sequence of nonzero elements x_{n} of a Banach space X we mean the smallest of the numbers K for which for any finite collection of real numbers $\left(a_{n}\right)$ and any collection of signs $\varepsilon_{n}= \pm 1$ we have

$$
\left\|\Sigma \varepsilon_{n} a_{n} x_{n}\right\| \leqslant K\left\|\sum a_{n} x_{n}\right\|
$$

Proof of Theorem 1. For each n let x_{n} be an arbitrary nonzero element of the linear hull $\operatorname{lin}\left(n_{n_{1}} \ldots n_{k}: n_{1}<n_{2}<\ldots<n_{k-1}<n_{k}=n\right)$. It is easy to verify that $\left(\Sigma_{1}^{n} x_{i}\right)_{n=1}^{\infty}$ is a Martingale with respect to the sequence of σ-algebras F_{n}, generated by the random variables
T. G. Shevchenko Kiev State University. Translated from Matematicheskie Zametki, Vol. 44, No. 3, pp. 378-384, September, 1988. Original article submitted July 8, 1985.
$\xi_{1}, \xi_{2}, \ldots, \xi_{n}\left[9\right.$, Chap. 2, Sec. 8] and, consequently, $\left(x_{n}\right)$ is a sequence of Martingaledifference sequence in the space L_{p} does not exceed the number p^{*} [10]. By the known Orlicz and Kadets estimates (see, for example, [8]), for each N we have

$$
\begin{equation*}
\left(k_{p} / p^{*}\right)\left(\sum_{n=1}^{N}\left\|x_{n}\right\|_{q}^{2}\right)^{1 / 2} \leqslant\left\|\sum_{1}^{N} x_{n}\right\|_{p} \leqslant K_{p} p^{*}\left(\sum_{n=1}^{N}\left\|x_{n}\right\|_{r}^{2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

The proof of the theorem will be carried out by induction on k. For $k=1$ we have $\eta_{i}=$ ξ_{i} and (2) follows from the inequalities (3) if we set there $x_{n}=a_{n} \xi_{n}$.

Assume that the theorem has been proved for $k-1$. We represent the finite sum $k-1$ in the form

$$
\begin{equation*}
\sum_{i} a_{i} \eta_{i}=\sum_{m} x_{m} \tag{4}
\end{equation*}
$$

where

$$
x_{m}=\xi_{m} \sum_{j} a_{j}^{(m)} v_{j}^{(m)}, \quad v_{j}^{(m i n)}=\eta_{n_{1} n_{2}, \ldots \mu_{k-1}}, \quad n_{i}=n_{i}(j, m)<m
$$

By the induction hypothesis, for each m we have

$$
\begin{equation*}
\left(\left\|\xi_{1}\right\|_{q} k_{p} / p^{*}\right)^{k-1}\left(\sum_{j}\left|a_{j}^{(m)}\right|^{2}\right)^{1 / 2} \leqslant\left\|\sum_{j} a_{j}^{(m)} v_{j}^{(m)}\right\|_{p} \leqslant\left(\left\|\xi_{1}\right\|_{r} K_{p} p^{*}\right)^{k-1}\left(\sum_{j}\left|a_{j}^{(m)}\right|^{2}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

From the independence of the sequence $\left\{\xi_{m}\right\}_{1}^{\infty}$ there follows [9, Chap. 2]

$$
\begin{equation*}
\left\|\xi_{m} \sum_{j} a_{j}^{(m)} v_{j}^{(m)}\right\|_{p}=\left\|\xi_{m}\right\|_{p}\left\|\sum_{j} a_{j}^{(m)} v_{j}^{(m)}\right\|_{p} \tag{6}
\end{equation*}
$$

The application of the relations (3), (5), and (6) to the equality (4) yields

$$
\left.\left\|\xi_{1}\right\|_{q} k_{p} / p^{*}\right)^{k}\left(\Sigma_{m, j}\left|a_{j}^{(m)}\right|^{2}\right)^{1 / 2} \leqslant\left\|\sum_{i} a_{i} \eta_{i}\right\|_{p} \leqslant\left(\left\|\xi_{1}\right\|_{r} K_{p} p^{*}\right)^{k}\left(\Sigma_{m, j}\left|a_{j}^{(m)}\right|^{2}\right)^{1 / 2}
$$

i.e., inequality (2) is proved.

Remark 1. The left-hand estimate in (2) for p close to 1 is very coarse. We refine it under the assumption of the existence of the fourth moment.

LEMMA $1 \quad[3, \mathrm{p} .66]$. Let $\mathrm{x} \in \mathrm{L}_{4}$ and assume that $\|\mathrm{x}\|_{4} \leq \mathrm{B}\|\mathrm{x}\|_{2}$. Then $\|x\|_{1} \geqslant B^{-2}\|x\|_{2}$.
COROLLARY 1. Let x_{n} be an orthonormal system in the space $\mathrm{L}_{2}, \mathrm{x}_{\mathrm{n}} \in \mathrm{L}_{4}$ and assume that there exists a constant B such that $\left\|\Sigma_{i} a_{i} x_{i}\right\|_{4} \leqslant B\left(\Sigma_{i} a_{i}^{2}\right)^{1 / 2}$ for any finite collection of scalars (a_{i}). Then

$$
\int \sum_{i} a_{i} x_{i} \|_{1} \geqslant B^{-2}\left(\sum_{i} a_{i}^{2}\right)^{1 / 2}
$$

As one can easily see, the system $\left(\eta_{i}\right)_{i=1}^{\infty}$ is orthogonal. Therefore, combining this corollary and the right-hand inequality in (2) for ${ }^{1} r=4$, we obtain: if $1 \leq p<2$, then

$$
\left\|\sum a_{i} \eta_{i}\right\|_{p} \geqslant\left\|\eta_{i}\right\|_{2}\left\|_{i} \frac{\eta_{i}}{\left\|\eta_{i}\right\|_{2}}\right\|_{1} \geqslant\left(\frac{\left\|\xi_{1}\right\|_{2}}{\left\|\xi_{1}\right\|_{4} K_{4} 4^{*}}\right)^{2 k}\left\|\xi_{1}\right\|_{2}^{k}\left(\sum a_{i}^{2}\right)^{1 / 2}
$$

Taking into account that $K_{4} \leq 3^{\frac{1}{4}}$ [2], we obtain

$$
\begin{equation*}
\left\|a_{i} \eta_{i}\right\|_{p} \geqslant \frac{\left\|\xi_{5}^{\xi_{1}}\right\|_{2}^{3 k}}{\left\|\xi_{1}\right\|_{4}^{2 k} 3^{5 k / 2}}\left(\sum a_{i}^{2}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

Remark 2. An inequality, similar to the estimates (2), is valid also for nonidentically distributed random variables. For the right-hand inequality it is sufficient to require that $\sup _{n}\left\|\xi_{n}\right\|_{r}<\infty$, while for the left-hand inequality $\inf _{n}\left\|\xi_{n}\right\|_{q}>0$. Moreover, in (2) instead of $\left\|\xi_{1}\right\|_{q}$ and $\left\|\xi_{1}\right\|_{r}$ one has to set the infimum and the supremum, respectively.
3. We apply the inequalities (2) and (7) to the determination of estimates of the moments of the permanent and the determinant of a random matrix [11, 12]. Let $A=\left(a_{i, j}\right)_{i, j=1}^{n}$ be a real matrix, let per A, det A be the permanent and the determinant of the matrix A, let $A, A\left(\xi_{i j}\right)=$ $\left(a_{i j} \cdot \xi_{i j}\right)_{i, j=1}^{n}, A^{(2)}=\left(a_{i j}^{2}\right)_{i, j=1}^{n}$. We recall that by the permanent of a matrix A we mean the sum $\Sigma a_{1 i_{1}} a_{2 i_{2}} \ldots a_{n i_{n}}$, taken over all permutations $\left\langle i_{1}, \ldots, i_{n}\right\rangle$ of the numbers $1,2, \ldots, n$.

COROLLARY 2 (of Theorem 1 and Remark 1). Let $\left(\xi_{i j}\right)_{i, j=1}^{n}$ be independent, identically distributed random variables, $M \xi_{i j}=0$. If $1<p<\infty$ and $\bar{\xi}_{i j}{ }_{j} \in L_{r}$, then

$$
\begin{aligned}
& \left(\frac{\left\|\xi_{11}\right\|_{q} k_{p}}{p^{*}}\right)^{n}\left(\operatorname{per} A^{(2)}\right)^{1 / 2} \leqslant\left(\mathcal{M} \mid \operatorname{det} A\left(\xi_{i j}\right)^{p}\right)^{1 / p} \leqslant\left(\left\|\xi_{11}\right\|_{r} K_{p} p^{*}\right)^{n}\left(\operatorname{per} A^{(2)}\right)^{1 / 2}, \\
& \left(\frac{\left\|\xi_{11}\right\|_{q} k_{p}}{p^{*}}\right)^{n}\left(\text { per } A^{(2)}\right)^{1 / 2} \leqslant\left(M\left|\operatorname{per} A\left(\xi_{i j}\right)\right|^{p}\right)^{1 / p} \leqslant\left(\left\|\xi_{11}\right\|_{r} K_{p} p^{*}\right)^{n}\left(\operatorname{per} A^{(2)}\right)^{1 / 2}
\end{aligned}
$$

If $\xi_{i j} \in L_{4}$, then for $1 \leq p<2$ we have

$$
\left(M\left|\operatorname{det} A\left(\xi_{i j}\right)\right|^{p}\right)^{1 / p}=\frac{\left\|\xi_{11}\right\|_{2}^{3 n}}{\left\|\xi_{11}\right\|_{4}^{2 / 1} 3^{51 / 2}}\left(\text { per } A^{(2)}\right)^{1 / 2}
$$

A similar inequality holds also for per $A\left(\xi_{i j}\right)$.
4. We consider the question on the limiting behavior of the variables $S_{n}=\sum_{i=1}^{n} a_{i} \eta_{i}$. It is known (see, for example, [13]), that from (2) for $p>2$ there follows the convergence of S_{n} almost surely (a.s.) for $\sum_{i=1}^{\infty} a_{i}^{2}<\infty$, i.e., (η_{i}) is a convergence system. Below we shall assume that

$$
A_{n}^{2}=\Sigma_{1}^{n} a_{i}^{2} \uparrow \infty, A_{n} / A_{n+1} \rightarrow 1 \text { for } n \rightarrow \infty, M \xi_{n}^{2}=1
$$

THEOREM 2. A. Let $\left|\xi_{n}\right| \leqslant L, L<\infty$. Then almost surely we have

$$
\overline{\lim }_{n \rightarrow \infty}\left|S_{n}\right| /\left(A_{n}^{2}\left(\ln \ln A_{n}\right)^{3 h}\right)^{1 / 2} \leqslant M_{k}<\infty
$$

B. There exists an enumeration of the sequence $\left(\eta_{i}\right)=\left(\eta_{n_{1}} n_{2} \ldots n_{k}\right)$ such that a.s.

$$
\overline{\lim }_{n \rightarrow \infty}\left|\sum_{i=1}^{n} \eta_{i}\right| /\left(n(\ln \ln n)^{k}\right)^{1 / 2} \geqslant m_{k}>0
$$

The numbers L, M_{k}, m_{k} are nonrandom.
For the proof of this theorem we need the following auxiliary statements. We set $S_{n}{ }^{*}=$ $\sup _{m \leqslant 1}\left|\sum_{i=1}^{m} a_{i} \eta_{i}\right|$.

LEMMA 2. If $\xi_{n} \in L_{p}, p>2$, then

$$
\begin{equation*}
\left\|S_{n}^{*}\right\|_{p} \leqslant C_{\mathrm{e}}\left(K_{p} p^{*}\left\|\xi_{\mathrm{I}}\right\|_{p}\right)^{k} A_{n}, \tag{8}
\end{equation*}
$$

where C_{ε} does not depend on $\mathrm{p} ; \mathrm{p} \geq 2+\varepsilon, \varepsilon>0$.
The estimate (8) follows from the right-hand inequality of (2) and Lemma 2 of [14].
LEMMA 3. If $\left|\xi_{n}\right| \leq L$, then

$$
\begin{equation*}
M \exp \left(\lambda\left|S_{n}^{*} / A_{n}\right|^{1 / 3 k}\right) \leqslant 2 \exp \left(\lambda^{2} B_{k} L^{2 / 3}\right) \tag{9}
\end{equation*}
$$

where B_{k} is a constant depending only on k.
Proof of Lemma 3. The known estimate $\exp t \leqslant 2 \sum_{p=0}^{\infty} t^{2 p} /(2 p)$! gives the inequality

$$
M \exp \left(\lambda\left|S_{n}^{*} / A_{n}\right|\right)^{1 / 3 i} \leqslant 2 \sum_{p=0}^{\infty} \frac{\lambda^{2 p}}{(2 p) .} M\left|S_{n}^{*} / A_{n}\right|^{(2 p) /(3 k)}=2 R_{0}
$$

We estimate the quantity $R_{1}=\sum_{p=[\theta k / 2]+1}^{\infty} \frac{\lambda^{2 p}}{(2 p)!} M\left|S_{n}^{*} / A_{n}\right|^{(2 p) /(3 i)}$. We apply the inequality (8) and the estimate $K_{p} \leq C p^{\frac{1}{2}}$:

$$
\begin{gather*}
R_{1} \leqslant \sum_{p=[9 k / 2]+1}^{\infty} \frac{\lambda^{2 p}}{(2 p)!}\left(K_{2 p / 3 k}\left(\frac{2^{p}}{3 k}\right)^{*} L\right)^{2 p / 3} C_{1}^{2 p / 3 k} \leqslant \\
\leqslant \sum_{p=[9 k / 2] /+1}^{\infty} \frac{\lambda^{2 p}}{(2 p)!} C_{1}^{2 p / 3 k}\left(C L\left(\frac{2 p}{3 k}\right)^{3 / 2}\right)^{2 p / 3} \leqslant \sum_{p=[9 k / 2]+1}^{\infty} \frac{\lambda^{2 p}}{(2 p)!} p^{p}\left(2 C_{1}^{2 / 3 k}(C L)^{2 / 3} 3 k\right)^{p} \tag{10}
\end{gather*}
$$

Let $R_{2}=R_{0}-R_{1}$. Then

$$
\begin{gather*}
R_{2} \leqslant \sum_{p=0}^{[9 k / 2]} \frac{\lambda^{2 p}}{(2 p)!}\left\|S_{n}^{*} / A_{n}\right\|_{3}^{2 p / 3 k} \leqslant \\
\leqslant 1+\sum_{p=1}^{[9 k / 2]} \frac{\lambda^{2 p}}{(2 p)!}\left(C_{1}\left(K_{3} 3^{*} L\right)^{k}\right)^{2 p / 3 k} \leqslant 1+\sum_{p=1}^{[9 k / 2]} \frac{\lambda^{2 p}}{(2 p)!}\left(C_{1}^{2 / 3 k}(4 L)^{2 / 3}\right)^{p} . \tag{11}
\end{gather*}
$$

We set $B_{k}=\max \left(4^{2 / 3}, 2 C^{2 / 3} / 3 k\right) c_{1}^{2 / 3 k}$. Then the inequality (9) follows directly from the estimates (10), (11).

Proof of Theorem 2. A. For $\lambda>0$ and $d>0$ we have

$$
\begin{gathered}
\mathrm{P}\left\{\left|S_{n}^{*}\right|>d^{3 k}\left(A_{n}^{2}\left(\ln \ln A_{n}\right)^{3 k}\right)^{1 / 2}\right\}= \\
=\mathrm{P}\left\{\lambda\left|S_{n}^{*} / A_{n}\right|^{1 / 3 k} \geqslant d \lambda\left(\ln \ln A_{n}\right)^{1 / 2}\right\} \leqslant M \exp \left(\lambda\left|S_{n}^{*} / A_{n}\right|^{1 / 3 k}\right) \exp \left(-d \lambda\left(\ln \ln A_{n}\right)^{1 / 2}\right)
\end{gathered}
$$

We apply the estimate (9) to the last inequality for $\lambda=\left(\ln \ln A_{n}\right)^{1 / 2}, d=\gamma+B_{k} L^{2 / 3}, \gamma>1$;
B_{k} and L are defined in Lemma 3. We obtain

$$
\begin{equation*}
\mathrm{P}\left\{\left|S_{n}^{*}\right|>d^{3 k}\left(A_{n}^{2}\left(\ln \ln A_{n}\right)^{3 k}\right)^{1 / 2}\right\} \leqslant 2 \ln ^{-\gamma} A_{n} \tag{12}
\end{equation*}
$$

In order to conclude the proof of Part A of Theorem 2 we need
LEMMA 4 [15]. Let Y_{n} be a random sequence, $a_{n}>0, a_{n} \uparrow \infty{ }_{\infty}^{\infty} a_{n+1} / a_{n} \rightarrow 1$ for $\mathrm{n} \rightarrow \infty, \mathrm{x} \in$ $(1,1+\beta), \beta>0, \psi(\mathrm{x})$ is a positive nondecreasing function, $\sum_{n=1}^{\infty} 1 / n \psi(n)<\infty$ and $\mathrm{P}\left(\max _{1 \leqslant k \leqslant n} Y_{k}>x a_{n}\right) \leqslant B / \psi\left(a_{n}\right)$ for all sufficiently large n. Then a.s. $\prod_{n \rightarrow \infty} Y_{n} / a_{n} \leqslant 1$.

We apply Lemma 4, setting $a_{12}=d^{3 k}\left(A_{n}^{2} \ln \ln { }^{3 k} A_{n}\right)^{1 / 2}$. From the estimate (12) we obtain that a.s.

$$
\overline{\lim }_{n \rightarrow \infty}\left|S_{n}\right| /\left(A_{n}^{2} \ln \ln ^{3 k} A_{n}\right)^{1 / 2} \leqslant M_{k}
$$

where $M_{k} \leqslant\left(1+B_{k} L^{2 / 3}\right)^{3 / t}$.
Part B of Theorem 2 follows from the equality obtained in [16]:

$$
\overline{\lim }_{n \rightarrow \infty} U_{k, n} /\left(M U_{k, n}^{2}\left(\ln \ln M U_{k, n}^{2}\right)^{k}\right)^{1 / 2}=\left(2^{k} / k!\right)^{1 / 2} \text { a.s. }
$$

where

$$
U_{k, n}=\sum_{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n} \eta_{i_{1} \ldots i_{h}}
$$

This concludes the proof of Theorem 2.

We note that there remains open the problem of the liquidation of the gap between the exponents $3 k$ and k in parts A and B of Theorem 2. There are reasons to believe that the exponent $3 k$ in part A can be reduced to k.

The authors are grateful to V. F. Gaposhkin for useful consultations.

LITERATURE CITED

1. A. Khintchine, "Über dyadische Brüche," Math. Z., 18, 109-116 (1923).
2. A. Zygmund, Trigonometric Series. Vol. I, Cambridge Univ. Press (1959).
3. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, Springer, Berlin (1977).
4. H. P. Rosenthal, "On the subspaces of $L P$ ($p>2$) spanned by sequences of independent random variables," Israel J. Math., 8, No. 3, 273-303 (1970).
5. S. M. Newman, "An extension of Khintchine's inequality," Bull. Am. Math. Soc., 81, No. 5, 913-915 (1975).
6. J.-P. Kahane, Some Random Series of Functions, Heath, Lexington, Mass. (1968).
7. D. L. Burkholder, "Distribution function inequalities for Martingales, " Ann. Probab., 1, No. 1, 19-42 (1973).
8. L. E. Dor and T. Starbird, "Projections of L_{p} onto subspaces spanned by independent random variables," Compositio Math., 39, No. 2, 141-175 (1979).
9. A. V. Skorokhod, Foundations of Probability Theory and Random Processes [in Ukrainian], Vishcha Shkola (1975).
10. D. L. Burkholder, "Boundary-value problems and sharp inequalities for Martingale transforms," Ann. Probab., 12, No. 3, 647-702 (1984).
11. V. L. Girko, Theory of Random Determinants [in Russian], Vishcha Shkola, Kiev (1980).
12. V. N. Sachkov, Probability Methods in Combinatorial Analysis [in Russian], Nauka, Moscow (1978).
13. V. F. Gaposhkin, "Lacunary series and independent functions," Usp. Mat. Nauk, 21, No. 6 (132), 3-82 (1966).
14. V. F. Gaposhkin, "On the law of the iterated logarithm for strongly multiplicative systems," Teor. Veroyatn. Primen., 14, No. 3, 511-516 (1969).
15. V. V. Petrov, "On the law of the iterated logarithm for sequences of dependent random variables," J. Sov. Math., No. 5 (1984).
16. L. T. Fernholz and H. Teicher, "Stability of random variables and iterated logarithm laws for Martingales and quadratic forms," Ann. Probab., 8, No. 4, 765-774 (1980).

COMPONENTWISE SPLITTING MIXED ABELIAN GROUPS

V. I. Myshkin

We consider mixed abelian groups and some of their p-mixed quotient groups. These quotient groups are assumed to be splitting. We study the connection of the groups of the class under consideration with the homomorphisms of their quotient groups modulo the periodic parts into the direct product of the primary components of these periodic parts.

We use the following notation:
\bar{G} is the quotient group of the mixed abelian group G modulo its maximal periodic subgroup $T=T(G)$;
$\overline{\mathrm{g}}$ is the coset $\mathrm{g}+\mathrm{T}(\mathrm{g} \in \mathrm{G})$;
π_{α} is the epic projection $\Pi_{\alpha} A_{\alpha} \rightarrow A_{\alpha}$;
P is the set of all prime numbers.
J is an index set that contains the symbol 0 . Other notation and terminology are used in the sense of [1].

Sevastopol Instrument-Making Institute. Translated from Matematicheskie Zametki, Vol. 44, No. 3, pp. 385-392, September, 1988. Original article submitted May 7, 1985.

