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We consider a sequence (~n)~ of independent identically distributed random variables 

(i.i.d.r.v.) with values in a separable Banach space B with norm ll'II satisfying M~I = 0. 

We will say that the central limit theorem (CLT) holds for the sequence (~n)~ if the distri- 

bution Sn/~n converges weakly to the Gaussian distribution in B, where Sn =~k. In If] there 
I 

is an extensive bibliography on this topic. 

In the present 'article we consider the CLT in Banach spaces with an unconditional basis. 
Using a known result [2], we construct an example of a sequence of i.i.d.r.v.'s which are 
bounded and have a Gaussian correlation operator, for which the variables IISJV"~I are uni- 
formly stochastically bounded, but the CLT does not hold. 

|. CLT in a Banach Space with Unconditional Basis. Let co be the Banach space of 
sequences which converge to O: ~ = {x= (xi)~: limx~ 0}i llx[[0 = suplxr], ~6r A4~= 0, ~ = 

(~xiln-l/2(i+ I))~, x= (xi)~6co, where ni are r.v.'s satisfying 

M II (%)? [l~ = K < oo. ( 1 ) 

it was proved in [3-5] that if (~n)~ are independent copies of ~ and (I) is satisfied, then 

the CLT holds in co for the sequence (~n)~- We prove below that an analogous result holds 
in any Banach space with an unconditional basis. All the definitions and results that we 
use from the theory of Banach spaces can be found in [6]. 

THEOREM I. Let B be a Banach space with an unconditional basis (ei)~, ~=E~,xiln-I/~(i+ l)el 
6B, MNi = 0, i~ I, (xi)~ where (xi)i is a given sequence in R z, such that l IxieisB. Let (~n)i 

be independent copies of ~. If the condition (l) holds, then the CLT is valid for the se- 
quence (~n)?" 

Remark. The condition (I) holds, in particular, if INiI~C almost surely (a.s.), for 
some C < =. 

For the proof of'the theorem we need the following results. 

LEMMA 1. Let (ei)i be an unconditional basis for the space B, E~xleiEB and 0 < L < ~. 

Then the set Z= {z = E~cixiei:Ic~]<~i} is compact. 
Proof. There exists a constant K e depending On the unconditional basis, such that if 

X=Zlaie~6B and Icil ~ Jail for all i~ l, then X~c~e, EB and I[X, ciel]]<Ke][xll. Let E > 0 be 
arbitrary, and choose j large enough in order that [IZi x~e~tI<e/2K~L Cover the compact set {z = 

Z(-Ic,xiei:Ic~l<L} with a finite set e/2-net z~ ..... Zn. Let z = ~(?*c~xie~+X~cixie~EZ. Then 
iIX/clxiei[l<KeLllXixieiil<e/2 and we can find z k in the z/2-net zz, .., Zn, such that II ~i-i ~ , ~ 1  C i X i e i  

--Z~l]<e/2. It follows that l]z--zhll<e. Therefore, for any E > 0, the set Z can be 

covered by a finite E-net. Clearly Z is closed and hence compact. 

We denote by R the covariance operator of the variable ~ [7]. The covariance operator 
R is called Gaussian if there is a Gaussian r.v. in B whose covariance operator is R. 

LEMMA 2. Let ~ he a rov. in a Banach space B with a basis (ei)~. Suppose that A411~]l~< 

~, M~ = 0 and that ~ has a Gaussian covariance operator. Let (~n)~ be independent copies of 
~. Denote by Vm:B § B the operator Vm~E~xiei) = m+~Xiei. The following statements are 
equivalent: 

a) u lira supP~IV~(SJK~)ll>O=o; 
m ~  n ~ l  
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b) lim supM t1 V,~ (Sn)ll/Vn = O; 
m ~ t ~  n~>l 

c)  lira supM [I Vm (Sn) [[~/n = O; 
m ~  n>~l 

oo 
d) The CLT holds for the sequence (~n) 1- 

Proof. The implications c)=> b) =>a) are obvious. It is also clear that c) implies 
that supM]ISn/]/nIl<oo. This inequality, the fact that R is Gaussian, and condition a) en- 

sure that the CLT holds ([8, 7, p. 54]) If condition d) is satisfied, then, for all e > 0, 

P(IIVm(S#V~II>e)~P(IIvm(v)II>~) as n + =, since llVm(x)ll is a continuous functional on B, 

where y is a Gaussian variable in B. Consequently lim limPIIVm(Sn)/~n[l>e)'----lirnP(JlV~(?)Ii>e)=0, 
m-+~ n~ m-~ 

which is equivalent to condition a). For the proof of the lemma it now suffices to Show that 
a) => c). We will use the inequalities 

P (~q ~ ~M~I) ~ ( 1 - -  ~)" (Mn)2/Mn 2, ( 2 ) 

where q is a real r.v. with finite variance, 0 < ~ < 1 [9] and 

M [I S~ II ~ - -  (M [I S~ II) ~ ~<E~'M tl ~ II ~ (3)  

[ 1 0 ] .  Suppose  t h a t  

li--m- sup M [1V~ (S~)][2/n = d >  0. (4)  
m ~  n~> 1 

I t  i s  w e l l  known [6] t h a t  sup[IV~[t<oo and [[V~(x)[[--~0 as  m § ~ f o r  a n y x  C B. A p p l y i n g  
m ~ t  

L e b e s g u e ' s  bounded  c o n v e r g e n c e  t h e o r e m ,  u n d e r  t h e  h y p o t h e s e s  o f  Lemma 2 ,  we h a v e  

l imM ]l V~ (~)I] 2 --- 0. (5)  
m ~ o o  

In (2), put rl=llVm(S~)/V'nl]. Then 

P (11 v~  ( s . / I / n ) I i  > ~M II vm (S.ll/n) II) ~> 0 - -  X)" (M l] Vm (S~) lip (6) 
M II V~ (S~)II ~ " 

In inequality (3), replace ~k by Vm(~k) and apply the Eqs. (4) and (5). We deduce that there 
exist subsequences mk, n k + = as k + ~, such that 

lim (M IJ V~k (S~k) [[)~-/nh = l imM I[ Vm~ (S,,k) IF-/nh = d > O. 
k-*ao ~ o o  

Hence, on account of (6), we arrive at a contradiction to condition a), i.e., Lemma 2 is 
proved. 

LEMMA 3. If (I) is satisfied, thenMII~[12<oo. 

Proof. In fact, under the hypotheses of Theorem I, we have [6, Lemma 1.4] 

-< - i I[~l[~ll(~0~ IIo sup I[ 0 ix~ ln- ' /2 ( i+  Oe, . 
O i l " l -  1 I' 

and the variable sup [[~0ix~ In-I/2(iq - l)etl I is bounded [6, p. 120], since the series E~x i in -I/2 
0i=ll 

(i + 1)e i is unconditionally convergent. 

LEMNA 4. The r.v. ~ has a Gaussian covariance operator. 

Proof. Consider a Gaussian sequence Yi E R I such that 

M?, = O, A.I?~?~ = M~li~li = rij, i, ]>~ 1. (7) 

The fact that (I0) is satisfied ensures that MT~ is bounded in i. It is well known [7, p. 

255] that this implies P(supIyiJln-t/2(i+ I)<oo)-2"I Consequently y=Y~y~xiln-i/2(iq-l)eiEB, since 
~>~I 

co 
S ixie i is unconditionally convergent in B. 

From this, together with (7), we have, for all x*, y* E B, 
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=o 
Mx* (?) y* (v) = ~ r~xix, [In (i + 1)In (1 + l)l-t/ 'x* (e3 y * (e~) =Mx* (~) y* (~). 

i,]=l 

The latter inequalities ensure [7, p. 139] that the covariance operators of ~ and ~ co- 
incide. 

Proof of Theorem I. It follows from Lenanas 3 and 4 that the finite-dimensional distri- 
butions Sn/C~n converge to finite-dimensional distributions y [I]. It remains to prove the 
density of the measures Pn corresponding to the r.v.'s Sn/C~n. First of all we consider the 

case when the ~k are symmetrically distributed. Let ~ =Y~=~x~In-t/'~(i +lle, kl-I; then Sn/ 

r = ~=x(n in (i + l))-x/a(X~=x~ki)xie i. We shall show that 

lim sup P ~up ,n ln (i + 1 ) ) - ' ' 1 ~  ~ , ] > L ) = O .  (8) 

The d e n s i t y  o f  t h e  f a m i l y  o f  m e a s u r e s  Pn w i l l  t h e n  f o l l o w  f r o m  Lemma 1 and ( 8 ) .  

We w i l l  need  the  f o l l o w i n g  i n e q u a l i t y  [11,  p .  70] : 

I 1 

where  a~ER l, P(e h = z f f l ) =  1/2, and ~k a r e  i n d e p e n d e n t ,  k = 1, . . . ,  n .  A s e q u e n c e  ( n k ) ~  o f  i n -  
dependent symmetric variables is equivalent to a sequence (~knk)~, where (~k)~ does not de- 

pend on (qk)~" Therefore we obtain from (9) that p(Iz?9~l~z(E~]~)~/2)<.~2exp(--z~/2). From this 
it follows that, for all i~ I, 

" ~ ~ .1/2. I)~,/2 ) + (10) 
k=l k=l 

On the other hand, applying the strong law of large numbers in R z together with condition 
(I), we have 

l ~-, 2 1 ~ 2 a - s .  

Cons equent ly, 

sup sup ~" ~l~/n = ~ < oo a . s .  (11~ 

Now the bounds (I0), (II) give 

n 

P ['SUp (n 11] (~ -~ 111-1/2 S ~]hi [ >  Z~] 1/2) ~'~ E 2/(i --~ 1) z'/2 = ~ (Z)--~ 0, Z'-~ 00~ 
k~l 1 

(12) 

Since the function f(z) in (12) does not depend on n, we deduce from (11) the equality (8). 
We have thus proved the theorem in the symmetric case. 

t 

Let $ be any r.v. in B satisfying the conditions of Theorem I. Put ~ = ~k - ~k, 

where (~k, ~k) are independent copies of $ for k 91, and let S s = X~=x~. Clearly the ~ 

are symmetrically distributed and satisfy the conditions of Theorem I. It follows that the 
S co 

CLT holds for the sequences ($n)n=i and so does condition c) of Lemma 2, i.e., lirn supM ' 
rJ V,,, (S~) Jl"/n = O. , ~ =  ,~>~t 

I t  i s  w e l l  known [1] t h a t  M I [ X + Y I [  2~M[IY[J2  i f  X and Y a r e  i n d e p e n d e n t  and MX = 0. 
T h e r e f o r e  M[]Vm(S~)][2~MI[Vm(Sn)I] 2 and c o n d i t i o n  c ) o f  Lemma 2 h o l d s  f o r  t he  s e q u e n c e  ($n)~ .  

oo 
Now the  CLT h o l d s  f o r  (~n)~ .  Theorem 1 has  been  p r o v e d .  

2. C o u n t e r e x a m p l e  to  t he  CLT in  t h e  Space Co. In  [2] t h e r e  was c o n s t r u c t e d ,  f o r  any  
s e p a r a b l e  Banach s p a c e  u n i f o r m l y  c o n t a i n i n g  i n  a r . v .  ~ in  B such  t h a t  

I]~lJ ~ 1 a . s . ,  (]3) 
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has Gaussian covariance operator (14)  
oo  

but the CLT does not hold for (~n)~ (where ~n, n ~ I, are independent copies of ~ ) .  We con- 
struct an example of a r.v. $ in the space Co such that the conditions (13), (14) are satis- 
fied, as well as 

supM II S.  I]=/n < ~ ,  (15) 
r t ~ l  

but there exist e > O, B > 0, for which 

li--m sup P ( II Vm (SJl/n)]l > e) > ~. (16) 

=o 
It follows from Lemma 2 that the CLT does not hold for (~n)~- 

oo 

L e t  ( e i ) ~  be  t h e  n a t u r a l  b a s i s  f o r  t h e  space  co ,  ( n k i ) k , i = 1  i n d e p e n d e n t  r . v . ' s ,  P ( ~ m =  
l)=P(Bki=--l)=ln--l(i+7), P(1]ki ----0) ----- I - -21n-~( i  +7 ) ,  xi=(lnln(i+7)/ln(i+7)/1~, ~n-=Y'~=lTIniXiei, n, 
i > ~ l .  

c o  

THEOREM 2. C o n d i t i o n s  ( 1 3 ) - ( 1 6 )  a r e  s a t i s f i e d  f o r  the  s e q u e n c e  ( ~ n ) : "  

P r o o f .  I t  i s  n o t  ha rd  to  see  t h a t  t he  g i v e n  v a r i a b l e s  ~n s a t i s f y  c o n d i t i o n s  (1 3 ) ,  ( 1 4 )  
n Nn 

[2]. We prove the inequality (16 ) .  Put A~i=f-l(~hi= 1), N~=[exp(nlnn+Inlnn)] and A ~ = UAn~- 
Nn Nn /~=1 i=n 

Then P(An)= I--P(~]X~,)= I--~ (l -- ln-n (i + 7)). We will write a n ~ b n if a n / b  n § 1 as n § ~. 
i=n i=rt 

For large values of n, we have 

Nn--7 
n Nn--7 17 ( l - - ln ,"( i+ 7))<~(1--1n- N~) ~(1--(nlnn+lnlnn)-~) x~ 

i = 1  

1 lnln n ,~'~N. + e-'  
= ( l - - e x p ( - - n l n ( n l n n + l n l n n ) ) >  N" (1--'~Texp(--nln(1-'k nlnn ]] ] 

( (' lnln n ~  { In lnn~  ~) ,, 
as n + o=, since exp nln 1 4  nlnn/j~exp~)-f2-g 1. In  addition H~=,(1--1n-"(i§ 

l n - n 8 )  n § 1 as n + ~.  C o n s e q u e n t l y ,  l imP(A,)~l- -e-k  I f  m 6 An, t h e n  
n-+oo 

llV.(S.(o~)/l/n)l]~rnax [ xi ~ ] nlnlnIt2N,., lnl/2(nlnn§ lnlnn) 
.<~i<~lv. -~n k=l ~lki (OJ) .~ nl/21ni/~N ~ (In n + (ln In n)/n//2 .-~--~ 1. 

lira supP(llVm(Sn/l/-n)ll>l/2)~limP(An)~l--e -1, i.e., inequality (16) is proved. Therefore 

We will show that 

lim supP([]S,JV-nll > C )  = O. (17) 
C ~  n~> 1 

We obtain the bound (15) from this by using arguments analogous to those in the proof of 

Lemma 2'. We have P([[S~/I-nI]>C) =P(sup[E~='Vlhi[xi/]/'n>C)~ZV-;~,>cP(lY'~.=l~]m]>C]/'n/xi)~-IiC,n ). In 
i>~ 1 ' ~  

o r d e r  to  e v a l u a t e  I (C ,  n ) ,  we need  the  f o l l o w i n g  i n e q u a l i t i e s  [11 ,  p. 76, 12] :  

n 

P ( I E  Yh > x l / n ) ~ 2 e x p ( _ 2 - ' x l / n a r s h ( x / 2 ~  2gn) ,  x > 0 ,  (18) 

and 

l x 

k = l  

2 f o r  x > o2/nn [11,  p .  73] ,  where  (Yk) n a r e  symmet r i c  i . i . d . r . v . ' s ,  MY. k = c a ,  and 

The f u n c t i o n  a r c s i n h  ( z )  s a t i s f i e s  the  f o l l o w i n g  i n e q u a l i t i e s  [13,  p.  5 2 ] :  

(19) 

]Ykl ~ 1. 
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arsh(z)>~z--z3/6, l z l <  1; arsh(z)>~ln2z, Izl~> 1. (20) 

Put 

A, = {i >f 1 : c <.  V-7,x. c < 2 d  V-7,x,}, A,  = {i >1 1 : C ~ VT, x~, 

C >  2~  ]/-nx,, o~ V'n<-~ l}, A3 = {i > 1 : C < V'~x,, C t> 2a~ ]/Tzx,, 

o~ = M~lke = 2/In (i + 7), P (i, C, n) = P ( ] Y'~=,?h0 > C V"nlx O, 

l$(C,n) -----ElEalP(i, C,n), ] = I, 2, 3. 
Then I(C, n) = ~;=zIj  (C, n) .  For  large  C we have from (18) and (20), 

~2~ 
iEA, iEA~ lEA.. 

In the range A~ we apply (19): 

13(C'n)<2 2 exp( C---V-n~<~2e2~l'~e-cK'VT'=2e-@~cK'-" 
4xi / 

tEA, 

I~(C,n)~2 2 exp( CI/~ 5C = E 24a~xi ) 
iEA, IF.A~ 

~ ~  ~ 2 2 ( i +  (21) 
iEAt lEA, 

i2(C,n)~22exp( Cg'n2x, l n ( ~ ) ~ 2 2 e x p (  -!V'~ln(C/x~))zx, / 
iEAI iEAt 

ln lnW2 (i + 7)]] + l--n-~ [i-'+ 7) ,]/ <~ 2 E (i +7) -K'c~. (22) 

(23) 

In the estimates (21)-(23), KI > 0, K2 > 0, and Ka > 0 are absolute constants. Therefore 
3 

I(C, n) = Ej=IIj(C, n) § 0 as C + ~, uniformly in n, i.e., (17) is proved. 

l 

2 

3 

4 

5 

6 

7 

8 

9 

I0 

1] 
12. 

]3. 
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