
! --.ln~.. (.~.~) (4.4) 
< "Li~lrt I'J 

and it then follows from Theorem 3 that not every function (4.3) of finite R-order has the 
property that inM(o, F) ~ Inu(o, F) as a ~ +~, outside of some set of zero density. But if 
function (4.3) has zero R-order, i.e., if ]an i < exp {--k~ (%,,)}, n~ 0, where ~ L and ~(x)/ 
inx ~ +~ (x ~ +~), then relation (4.4) implies the condition (1.4) and, according to Theorem 
I, inM(o, F) ~ Inu(o, F) as o ~ +~, outside of some set of zero density. Thus we arrive at 
the following theorem. 

THEOREM 4. In order that every function (4.3) of finite R-order o R have the property 
that inM(o, F) ~ inu(c, F) as o ~ +~, outside of some set of zero density, it is necessary 
and sufficient that OR = 0. 

LITERATURE CITED" 

i. M.N. Sheremeta, "Analogs of Wiman's theorem for Dirichlet series," Mat. Sb., ii0, No. 
i, 102-116 (1979). 

2. O.B. Skaskiv, "On the behavior of the maximal term of a Dirichlet series defining an 
entire function," Mat. Zametki, 37, No. i, 41-47 (1985). 

3. A.G. Azpeitia, "A remark on the Ritt order of entire functions defined by Dirichlet 
series," Proc. Am. Math. Soc., 12, 722-723 (1961). 

4. F.I. Geche, "A remark concerning formulas for determining the linear order of an entire 
function represented by a Dirichlet series," Ukr. Mat. Zh., 16, No. 5, 7-42 (1964). 

BASES OF SYMMETRIC FUNCTION SPACES 

A. N. Flichko and E. V. Tokarev 

This paper is devoted to the investigation of the following problem: which symmetric 
Banach spaces of functions have a basis generated by a system of functions, with properties 
close to those of trigonometric functions? 

Besides the orthonormality property a trigonometric system has also the property of the 
uniform integrability, and even the property of the uniform boundedness, but it constitutes 
a basis only in symmetric spaces which have unconditional bases (see [i, pp. 242, 247]). 
This property belongs to only some symmetric spaces among those for which the continuous 
embeddings Lp~_E~--Lq hold for some 1 < p, q < ~. 

A Haar system, which is a basis in every separable symmetric space (see [i]), in dis- 
tribution from a trigonometric system, has the following property: its every subsystem con- 
tains an almost disjoint sequence. Therefore, a Haar system is not uniformly integrable. 

The well-known result of Szarek [2] destroyed all the hopes to find at least one basis 
in the space L~[0, i] with the uniform integrability property. This result, in particular, 
implies several other former negative results on bases in the space LI; for example, L I does 
not have any bounded [3], or even order bounded basis [4]. However, as we shall show in this 
note, in the space L~ there exists a basis generated by a function system without any almost 
disjoint subsystems. 

Before we formulate and prove the results of this paper, we shall recall the definitions 
of several terms. 

A symmetric function space (in short SFS) is (see [I]) a Banach space E (of the classes 
of) measurable functions over the interval [0, i], such that 

a) x (I) ~ E and I~ (t) i ~ Ix(t) I implies y (t) ~ E and I! y]IE < I] XI!E; 

b) z (t) ~= E, and [y(t)l is equimeasurable with Ix(t)l, then y (t) ~ E and II ~liE = j xilE �9 
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In this definition and further on an equality or inequality between elements of an SFS 
is understood in the "almost everywhere" sense. 

A sequence of elements (Yn) of an SFS will be called almost disjoint, if there exists 
a sequence (x n) c E, such that Xn(t)Xm(t) = 0 for arbitrary n ~ m and !I Y, -- x,, !IE/H y, !;~-- 0 
for "n ~ ~. 

Following [5], we shall call a system of elements (Xn) of a Banach space an [s 
(I ~ p< x), if each of its subsequences contains an subsequence equivalent to the standard 

rltf 
basis of the space l;,(l~=co). 

The main result of the present note is the following. 

THEOREM I. There exists an orthonormal function system(g, (1)). t ~ I0, I], n = I, ~, with 
the following properties: 

a) g , , ~  t~  I0,11; sup.!lg~:[~<~; 
b) the system (gn) is a basis of any separable SFS E, for which the continuous embedings 

G ~ E~G* (i) 

hold, where G is the closure of the class L~ in the Orlicz space ~ with M(u) = e u: - 
i, and G* is its adjoint; 

c) (gn) is an [s in the space E and an [s in L~[0, i]. 

In [5] it has been shown that if a separable Banach space X contains a subspace iso- 
morphic to s then X has a complete minimal system, whose every subsystem contains a sub- 
sequence spanning a space isomorphic to s The following theorem is a variant of the above 
statement for bases. 

THEOREM 2. Let a Banach space X contain a complementable subspace Y, isomorphic to s 

(I~ p< ~; l~def co), such that its complement Z (X = Y �9 Z) has a basis. Then the space X 
has a basis, which is an [s 

We shall remark, that the space LI[0 , i] contains a subspace isomorphic to s but no 
basis of L I is an [s as it follows from the cited above result of Szarek [2]. The 
presence of a basis in the complement Z = X ~ Y is also necessary. As a counterexample we 
can take the direct sum s �9 Z, where Z does not have the approximation property. 

THEOREM 3. The space L~ has a basis generated by a function system which does not con- 
tain any almost disjoint subsystems. 

Now we shall turn to the proofs of the formulated results. The following statement, 
obviously, is well known. 

LEMMA i. Let X, Y, Z be Banach spaces; X ffi y . Z; (Yn) is a basis of Y; (z m) is a 
basis of Z; then the set (Yn) O (z m) is a basis of the space X, independently of its index- 
ing, provided it preserves the original ordering of the elements of (Yn) and the elements of 
(Zm). 

Proof. According to the projective basis criterion it is enough to verify the bounded" 
ness in the family of projections Pnm onto the subspace [y~]~ ~ [zj]~ parallel to [~i],~[I ~ [zj]~1 
(the notation [Xr] ~ means the closure of the linear hull of the vectors (Xr)~_-m). Let P be 
a projection from X onto the subspace Y parallel to Z; x = y + Z-~_- X; y~---_ Y, z--_--Z, I[ xli = I. 

Then !I P~m x !l = I! P~m (Y ~ z) !j < iJ P, my ll @ I! P,~mZ !! = II PnY ~ @ lJ PmZ ll, where Pn is the projection in 
Y onto [Yi]~ parallel to [Yi]n+l, and Pm is the projection in Z onto [zj] T parallel to 
[Zj]m+1. 

SincelIyii<II P If. IlzIl<!I] - PII, and the projections Pn and Pm are jointly bounded, then 
the numbers IIPnmll are also jointly bounded. The lemma has been proved. 

A sequence (X n) of finite-dimensional subspaces of a Banach space X is called its fi- 
nite-dimensional decomposition, if for every x~ X there exists a unique sequence of elements 

x,.~. Xn (n ffi i, 2 .... ) for which x = ~=ixn. For every basis (x n) of the space X and an arbi- 

trary increasing sequence of indices n m the subspaces [x,,. ...... x ..... ,] constitute a finite- 
dimensional decomposition of the space X. The following lemma is partially converse to this 
fact. 
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LEMMA 2 [6]. Let X n be a finite-dimensional decomposition of a space X, and let 

n ~t each X n have a basis (xi)~=i, whose basic constant is less than a number K. Then the sequence 

(x~, . .., x;r,,l x~, . . ., x~-.,, x~, . . .) is a basis of the space X. 

.. Proof of Theorem i. Let (.r,~),~=, be a Rademacher system r, (t) = sign sin 2'~at, t ~ [0, I]; (h~-)~--i 

is a Hear system: hl---ro, h,".t-~'rn+iXt(t-n.2n.l,.,.n 1 ~  (I-----i...., -~ n-~-~0, i. ...). Consider the ortho- 

normal function system (/~)~_-I, introduced by Olevskii in [7]: /i = ]h; /~'~.t = r'>JL/!l r~§ [I'., (l = 

1 ..... 2n; n = 0, 1 .... ). Obviously, f2n = r n (n = i, 2 .... ). 

Analogously [8, Proposition 1.2], one can show that the system (fk) is a basis of every 
separable s}nnmetric space. If an SFS E satisfies condition (i), then the norms of the spaces 

oo 
E and L= are equivalent on the space [rn]0, because (r n) generates in E a space isomorphic to 
s Moreover, this subspace is complementable in E, and its complement is the closed linear 
hull of the remaining functions fk (see [9, p. 134]). From this it follows, that if an SFS E 
satisfies condition (i), then there exists a constant KE, such that for all k = i, 2 .... and 
any z ~ [rn]n=o, a ~ [l  

K'~ ~ !i x q- aft.~ ][/~ ,1~" [I~' ~< ll: x -r-' a/s. [!L:' ~.. K~ [1 x + al~/  li ra ![~ I[e- (2)  

We shall denumerate the set (/h.)~=: (k ~ 2", n = 0, ~)with an increasing sequence of indices 
(im)~=~: ~i,, P~ ...... ~i,,~,.. �9 preserving the former order, i.e., if /~- = ~i , /~, = ~m. and k < k' , 

then m < m'. The sequence i m will be defined so that i m - im_ l = 2 am, where the integer num- 
ber s m is chosen from the condition 

2 -sm/~" [] Yirn I[L,~to,~] < 2 - "  ( 3 )  

We shall denumerate the functions (l=~)n~=o with the remaining natural numbers preserving the 
previous order: ~, y~ ..... yi~-i, y%+i, .... By Lemma 1 the sequence is a basis in every SFS E, 
which satisfies condition (i). 

?n . 
According to Lemma 1 in [i0] for every m there exists an orthogonal matrix (a~,i. im-i < k, 

< ira) , such that for 

and 

~-  ~ 2irn_l<i<~int a m ~, iYi, 
rn ~ 9-Sml.3 

t2 ;; , in t 

II n- [IL~ < (t + l f ~ )  max I] Yi [lz~ + 2 'sm'~" II//ira []L~ < (1 + l / ~ )  + 2 -m. ) 
im-l<i<int 

The last inequality in (5) follows from the fact that llYilll~ = 1 for i ~ i m, m = i, ~, and 
from (3). 

oo 
For the sequence (gk)k=1 condition a) follows from (5). If an SFS E satisfies condition 

(I), i.e., if (2) is satisfied, then by virtue of the orthogonality of the matrices (a~,i)the 
basic constants of the system (g~.: i,n-1 "~ k~ ir~) are jointly bounded. Therefore, by Lemma 2, 
the sequence (gk)~=l is a basis of the space E, and condition b) is satisfied. 

At last, we shall verify condition c). Let (gnm)m~=l be a subsequence of the system (gn)" 
We shall choose from it a subsequence (gn(j))~_-1 , such that g,~o) ~ {gn : imj-1 < n ~ ~mj} (ml  < 

m. 
m~< . . . < m i< . . .). Put zj=~,i an(~).~y ~. Then by (4) and (3) 

;nj--l<Z <Z~i ) 

[I g~ o) - zj lie < tl g,~ (~) - -  z j  llL~ < 2-mj" ( 6 ) 
m .  

By t h e  o r t h o g o n a l i t y  o f  t h e  m a t r i x  (a~,{)and b y  i n e q u a l i t y  ( 2 ) ,  f o r  s u f f i c i e n t l y  b ig  j ' s  

II "i I[~ > K ~  ~ > -~ "~ " " j  t U :J IlL= ~ KE 2~%_~<,<% ta,,o), ,1% '~" > - r -  ( 7 )  

The system (zj) is a block-basis of the Rademacher system, which in the space E is equivalent 
to the standard basis of the space s Since the inequalities (6) and (7) are satisfied, 
then by the theorem on the stability of bases (see, e.g., [ii, p. 5]) the system (g,,(j~)j~=l is 
also equivalent in E to the standard basis of the space s The fact, that the functions 
(gn) create an [s in the space L=, follows, for instance, from Corollary 4 in [i0]. 
Theorem i has been proved. 
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Proof of Theorem 2. Let (y,),~=, be a normalized system, being a basis of the space Y, 
equivalent to the standard basis of the space s let (zm),,=,=1 be a normalized basis of the 
space Z, and i k an increasing sequence of natural numbers k =-, 2,..�9 i I = i; i k - ik- I = 2 k 
for k > i. We shall denumerate the elements of (z m) with the indices i k preserving the pre- 
vious order, and the elements Yn with the remaining (except for i k) natural numbers, also 
preserving the previous order�9 According to Lemma 2 we obtain a basis (e.i)7= I of the space 

i i~ " e,-.: 
X F o r  e v e r y  f i x e d  k we p u t  u~. - ~  e G ~ " ~ q : r  x i , : =  ; x i  --~ el; i~: / i < i , . ~  1, 

�9 , - - ~ b , < i < ;  . _ 1  �9 1 . .  c;:  , i T i , ] i  c:: " " "  

$ KqO~./q; * where the constants c k have the form c:. I.~ e~ l] > e~ are functionais biorthogonal . = ' i ~ . < i  < . /  ..+1 . - -  

to el; p-~ + q-~ = i; Kq is some positive number. By Proposition 2.1 from [12] and Lemma 2 
the system (xi)i= ~ is a basis of the space X. We will show that it is an [s 

Every subsequence (xi) contains either an infinite subsequence (x,~))2=~, i~.s < i(s)~ ~i~-,, 

k~ < k2 <... < k s < .... or an infinite subsequence (xb:)~:,<~ (x~:). 

In the first case for p > 1 the inequality 

][ Xits ) - -  eiis) I[ = [[ eil: s [[ /e&" s < t / K q  "2~''''q 

is satisfied, so that by the theorem on stability of bases (xi(~))~ is equivalent to the standard 
basis of the space s If, however, p = i, then for any finite choice of real numbers (a s ) 
we have 

~Z', a~x,(,,l< ~,I a,l(!1%.., III% + iI ~,(.~) II) < (Z.,I,,~I)(~IK~, + ~) 
and 

B Z, Ii h < !II P I!)!)~, =s, (,)II > K, L I ~, I, 

where P is the projection from X onto Y parallel to Z, and K z is a constant depending on the 
norm lIPl], and on the equivalence constant of the basis (Yn) with respect to the standard 
basis of the space s Therefore (Xi(s)) is equivalent to the basis of s 

In the second case 

i x% "':--' I! = Jl %, li I 
~i.~,., , I c , . ~ - r r  = li%,, ~_%,%, <(%11 u~.~ll- J.)-' < ~,/(K~2':-, ~K,~2 '.~" - -  ~), 

where Kp is the constant of the equivalence between the basis (Yn) and the standard basis of 
s By the theorem on the bases stability the system (Xiks) and (Uks) are equivalent. The 

sequence Uks,;l!Yi%ll is a block-basis with respect to a system equivalent to the standard basis 

of s Moreover, I u~s/]I xi~, I] II -~ 1 for s ~ ~. Therefore it is equivalent to the standard 

basis of the space s [Ii, p. 53]. Consequently, the same is true also for (Xiks). Theorem 
2 has been proved�9 

Proof of Theorem 3. Let hn(i) be a subsystem of the normalized in L i Haar system (hn) 
nO such that ~,~i) ~,(j) = 0 and {t: ~,(n ~ 0} ~ [0, L,.]. We shall consider a function system (x n)1, where 

xi = ~,,~i)q-rixI1.~a]~ It is easy to verify that [xi] ~ is isomorphic to the space s and it has 
a complement in L I, generated by the closed linear hull of those Haar functions, which do 
not belong to the system hn(i) [and which will be denoted further by (Zn) with preservation 
of the initial order of the Haar system]�9 

For each k = i, 2,..�9 we put 

Ys!:-~ ---- ~ + x:  :_1 + x=,;; 
r 

,t . . . . . .  F x ,~: ,  (i = 0 .  t).  

w h e r e  c~. I[ * * * = x.,.,_,--X.._~: !I"; X,.~._i a r e  f u n c t i o n a l s  b i o r t h o g o n a l  t o  X2k_ i ( i  = 0,  1 ) ,  a n d  t h e  norm 
I1"11 k i s  t a k e n  i n  t h e  s p a c e  ([x~.,:-i]u) . A n a l o g o u s  t o  t h e  p r o o f  o f  Theorem 2 a n d  a p p l y i n g  

co  
P r o p o s i t i o n  2 . 1  f rom [ 1 2 ]  we c a n  e a s i l y  show t h a t  t h e  s y s t e m  ( Y k ) l  i s  a b a s i s  o f  t h e  s p a c e  
L 1. O b v i o u s l y ,  ( Y k ) ~  d o e s  n o t  c o n t a i n  a n y  a l m o s t  d i s j o i n t  s u b s y s t e m s .  
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PROPERTIES OF SOLUTIONS OF CONJUGACY PROBLEMS FOR CERTAIN 

IRREGULAR EQUATIONS 

N. Kh. Agakhanov 

We study the differential properties of solutions of a certain class of weakly irregular 
equations (see [I]). We establish the dependence of the smoothness of the solutions on the 
spectral properties of the differential operators that occur in the equation. 

In the cylinder V = [-Tl, T2] • Q, where T s > 0 for s = i, 2 and Q = {x~ R n : 0 / 
r = i, n}, we consider 

Lu  (t, x) ----- D~u (t, z) - -  A (t, -iDx) u (t, x) = / (t, x), ( 1 )  

A, (-- iD~). t ~ (-- T,, O), 
A ( t ,  iDx) A., ( - -  iD,,), t - - ( 0 ,  T~), 

where As(-iDx), s = I, 2, are differential operations of arbitrary order in the variable x 
with constant complex coefficients. Let u = (ul, u2), f = (fl, f=), where ul, u 2 and fl, f2 
are the restrictions of the functions u(t, x) and f(t, x) to V l = [-T l, 0] x Q and V 2 = [0, 
T2] • Q, respectively. To Eq. (i) let us adjoint the periodicity conr with respect to 

each variable Xr, r = I, n, 

u ( t , : r  1 . . . . .  z ,  + 2 ~  . . . . .  x ~ )  = u ( t .  z l  . . . . .  z . . . . . .  x . ) .  (2) 

boundary conditions with respect to t of the form 

"p=o~" It-,p't~(m)DPut , ~--' T, ,  x) + , ~ D~u= (T.,, x)] = 0 ( 3 ) 

( m = t ,  2, 3) x :--_- Q, 
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