and it then follows from Theorem 3 that not every function (4.3) of finite R-order has the property that ln M(σ, F) ~ ln u(σ, F) as σ → +∞, outside of some set of zero density. But if function (4.3) has zero R-order, i.e., if |a_n| ≤ exp {−λ_n ln (ln n)}, n ≥ 0, where ψ ∈ L and ϕ(x)/ln x → +∞ (x → +∞), then relation (4.4) implies the condition (1.4) and, according to Theorem 1, ln M(σ, F) ~ ln u(σ, F) as σ → +∞, outside of some set of zero density. Thus we arrive at the following theorem.

THEOREM 4. In order that every function (4.3) of finite R-order ρ_R have the property that ln M(σ, F) ~ ln u(σ, F) as σ → +∞, outside of some set of zero density, it is necessary and sufficient that ρ_R = 0.

LITERATURE CITED.

In this definition and further on an equality or inequality between elements of an SFS is understood in the "almost everywhere" sense.

A sequence of elements \((y_n)\) of an SFS will be called almost disjoint, if there exists a sequence \((x_n) \subset E\), such that \(x_n(t)x_m(t) = 0\) for arbitrary \(n \neq m\) and \(\|y_n - x_n\|_E = 0\) for \(n \to \infty\).

Following [5], we shall call a system of elements \((x_n)\) of a Banach space an \([\ell_p]\)-system \((1 \leq p \leq \infty)\), if each of its subsequences contains a subsequence equivalent to the standard basis of the space \(\ell_p(\ell_{m'})\).

The main result of the present note is the following.

Theorem 1. There exists an orthonormal function system \((g_n(t))\), \(t \in [0,1]\), \(n = 1, \infty\), with the following properties:

1. \(g_n \in L^\infty[0,1]\) \(\sup_n \|g_n\|_{L^\infty} < \infty\);
2. the system \((g_n)\) is a system of any separable SFS \(E\), for which the continuous embeddings \(G \subseteq E \subseteq G^*\) hold, where \(G\) is the closure of the class \(L^\infty\) in the Orlicz space \(L_\infty^\Phi\) with \(M(u) = e^{u^2} - 1\), and \(G^*\) is its adjoint;
3. \((g_n)\) is an \([\ell_1]\)-system in the space \(E\) and an \([\ell_1]\)-system in \(L_\infty[0,1]\).

In [5] it has been shown that if a separable Banach space \(X\) contains a subspace isomorphic to \(\ell_p\), then \(X\) has a complete minimal system, whose every subsystem contains a subsequence spanning a space isomorphic to \(\ell_p\). The following theorem is a variant of the above statement for bases.

Theorem 2. Let a Banach space \(X\) contain a complementable subspace \(Y\), isomorphic to \(\ell_p\) \((1 \leq p \leq \infty; \ell_{m'}^* \text{ def } c_0)\), such that its complement \(Z = X \ominus Y\) has a basis. Then the space \(X\) has a basis, which is an \([\ell_p]\)-system.

We shall remark, that the space \(L_1[0,1]\) contains a subspace isomorphic to \(\ell_2\), but no basis of \(L_1\) is an \([\ell_2]\)-system, as it follows from the cited above result of Szarek [2]. The presence of a basis in the complement \(Z = X \ominus Y\) is also necessary. As a counterexample we can take the direct sum \(\ell_p \oplus Z\), where \(Z\) does not have the approximation property.

Theorem 3. The space \(L_1\) has a basis generated by a function system which does not contain any almost disjoint subsystems.

Now we shall turn to the proofs of the formulated results. The following statement, obviously, is well known.

Lemma 1. Let \(X, Y, Z\) be Banach spaces; \(X = Y \oplus Z\); \((y_n)\) is a basis of \(Y\); \((z_m)\) is a basis of \(Z\); then the set \((y_n) \cup (z_m)\) is a basis of the space \(X\), independently of its indexing, provided it preserves the original ordering of the elements of \((y_n)\) and the elements of \((z_m)\).

Proof. According to the projective basis criterion it is enough to verify the boundedness in the family of projections \(P_{nm}\) onto the subspace \([y_i]_n \oplus [z_j]_m\) parallel to \([y_i]_{n-1} \oplus [z_j]_{m-1}\) (the notation \([x]_n\) means the closure of the linear hull of the vectors \((x_r)_{r \leq n}\)). Let \(P\) be a projection from \(X\) onto \(Y\) parallel to \(Z\); \(x = y + z \subseteq X\); \(y \subseteq Y\); \(z \subseteq Z\). Then \(\| P_{nm} x \| = \| P_{nm} (y + z) \| \leq \| P_{nm} y \| + \| P_{nm} z \|\), where \(P_n\) is the projection in \(Y\) onto \([y_i]_n\) parallel to \([y_i]_{n+1}\), and \(P_m\) is the projection in \(Z\) onto \([z_j]_m\) parallel to \([z_j]_{m+1}\).

Since \(\| y \| \leq \| P\|\), \(\| z \| \leq \| I - P\|\), and the projections \(P_n\) and \(P_m\) are jointly bounded, then the numbers \(\| P_{nm}\|\) are also jointly bounded. The lemma has been proved.

A sequence \((X_n)\) of finite-dimensional subspaces of a Banach space \(X\) is called its finite-dimensional decomposition, if for every \(x \in X\) there exists a unique sequence of elements \(x_n \equiv X_n\) \((n = 1, 2, \ldots)\) for which \(x = \sum X_n x_n\). For every basis \((x_n)\) of the space \(X\) and an arbitrary increasing sequence of indices \(n_m\) the subspaces \([x_n]_{n_m}, \ldots, [x_n]_{n_m-1}\) constitute a finite-dimensional decomposition of the space \(X\). The following lemma is partially converse to this fact.

631
LEMMA 2 [6]. Let X_n be a finite-dimensional decomposition of a space X, and let each X_n have a basis $(x^*_n)_{n=1}^k$, whose basis constant is less than a number K. Then the sequence $(x^*_1, x^*_2, x^*_3, \ldots)$ is a basis of the space X.

Proof of Theorem 1. Let $(r_n)_{n=1}^\infty$ be a Haar system: $r_1 = 0, r_{n+1} = r_n + 2^{n-1}, n = 1, \ldots, 2^n - 1$. Consider the orthonormal function system $(f_n)_{n=1}^\infty$, introduced by Olevskii in [7]: $f_n = r_n; f_{n+1} = r_{n+1}/2^n; f_{n+2} = f_n$ ($l = 1, \ldots, 2^n; n = 0, 1, \ldots$). Obviously, $f_{2^n} = r_n$ ($n = 1, 2, \ldots$).

Analogously [8, Proposition 1.2], one can show that the system (f_k) is a basis of every separable symmetric space. If an SFS E satisfies condition (1), then the norms of the spaces E and L_2 are equivalent on the space $[r_n]_n$, because (r_n) generates in E a space isomorphic to l_2. Moreover, this subspace is complementable in E, and its complement is the closed linear hull of the remaining functions f_k (see [9, p. 134]). From this it follows, that if an SFS E satisfies condition (1), then there exists a constant K_E, such that for all $k = 1, 2, \ldots$ and any $x \in [r_n]_n$, $a \in R$

$$K_E^{-1} \| x + af_k \|_{L_2} \leq \| x \|_{E} \leq K_E \| x + af_k \|_{L_2}.$$

(2)

We shall decompose the set $(f_k)_{k=1}^\infty (k = 2^n, n = 0, \infty)$ with an increasing sequence of indices $(r_n)_{n=1}^\infty: y_1, y_2, y_3, \ldots, y_n$, \ldots, preserving the former order, i.e., if $k = y_m$, then $k < k'$, then $m < m'$. The sequence (r_m) will be defined so that $r_m - r_{m-1} = 2^m$, where the integer number s_m is chosen from the condition

$$2^{s_m} \| y_{r_m} \|_{L_2} < 2^{-m}.$$

(3)

We shall decompose the functions $(f_k)_{k=1}^\infty$ with the remaining natural numbers preserving the previous order: $y_1, y_2, \ldots, y_{r_2}, y_{r_3}, \ldots$. By Lemma 1 the sequence is a basis in every SFS E, which satisfies condition (1).

According to Lemma 1 in [10] for every m there exists an orthogonal matrix $(a^m_{n,i}; i_{m-1} < k < i_m)$, such that for

$$g_k = \sum_{i_{m-1} < k < i_m} a^m_{n,i} y_i; i_{m-1} < k < i_m; a^m_{n,i} = 2^{-s_m/2}$$

and

$$\| g_k \|_{L_2} \leq (1 + \sqrt{2}) \max_{i_{m-1} < k < i_m} \| y_i \|_{L_\infty} + 2^{-s_m/2} \| y_{i_m} \|_{L_\infty} \leq (1 + \sqrt{2}) + 2^{-m}.$$

(4)

The last inequality in (5) follows from the fact that $\| y_i \|_{L_\infty} = 1$ for $i = i_m$, $m = 1, \infty$, and from (3).

For the sequence $(g_k)_{k=1}^\infty$ condition (a) follows from (5). If an SFS E satisfies condition (1), i.e., if (2) is satisfied, then by virtue of the orthonormality of the matrices $(a^m_{n,i})$ the basic constants of the system $(g_k; i_{m-1} < k < i_m)$ are jointly bounded. Therefore, by Lemma 2, the sequence $(g_k)_{k=1}^\infty$ is a basis of the space E, and condition b) is satisfied.

At last, we shall verify condition c). Let $(g_m)_{m=1}^\infty$ be a subsequence of the system (g_n). We shall choose from it a subsequence $(g_n(k))_{k=1}^\infty$, such that $g_n(k) \in \{g_n: m_{j-1} < n < m_j\}$. Then by (4) and (3)

$$\| g_n(k) - z_j \|_{E} \leq \| g_n(k) - z_j \|_{L_\infty} < 2^{-m_j}.$$

(6)

By the orthogonality of the matrix $(a^m_{n,i})$ and by inequality (2), for sufficiently big j's

$$\| z_j \|_{E} > K_E^{1/2} \| z_j \|_{L_2} \geq K_E^{1/2} \| g_n(k) - \sum_{m_{j-1} < n < m_j} [a^m_{n,i}(1/2)]^{1/2} \|_2 \geq \frac{1}{2}.$$

(7)

The system (z_j) is a block-basis of the Rademacher system, which in the space E is equivalent to the standard basis of the space l_2. Since the inequalities (6) and (7) are satisfied, then by the theorem on the stability of bases (see, e.g., [11, p. 5]) the system $(g_n(k))_{k=1}^\infty$ is also equivalent in E to the standard basis of the space l_2. The fact, that the functions (g_n) create an (l_1)-system in the space L_∞, follows, for instance, from Corollary 4 in [10]. Theorem 1 has been proved.
Proof of Theorem 2. Let \((y_n)_{n=1}^{\infty}\) be a normalized system, being a basis of the space \(Y\), equivalent to the standard basis of the space \(\ell_p\); let \((z_m)_{m=1}^{\infty}\) be a normalized basis of the space \(Z\), and \(i_k\) an increasing sequence of natural numbers \(k = 1, 2, \ldots; i_1 = 1; i_k - i_{k-1} = 2^k\) for \(k > 1\). We shall enumerate the elements of \((z_m)\) with the indices \(i_k\) preserving the previous order, and the elements \(y_n\) with the remaining (except for \(i_k\)) natural numbers, also preserving the previous order. According to Lemma 2 we obtain a basis \((e_i)_{i=1}^{\infty}\) of the space \(X\). For every fixed \(k\) we put

\[
u_k = \sum_{i < i_k} e_i; \quad \nu_k = \tfrac{e_i}{c_i} + \nu_k; \quad x_k = \frac{x_{i_k}}{c_k}; \quad x_i = \frac{x_{i_k}}{c_i}; \quad y_k = \nu_k \quad (i = 1)\]
LITERATURE CITED

PROPERTIES OF SOLUTIONS OF CONJUGACY PROBLEMS FOR CERTAIN IRREGULAR EQUATIONS

N. Kh. Agakhanov

We study the differential properties of solutions of a certain class of weakly irregular equations (see [1]). We establish the dependence of the smoothness of the solutions on the spectral properties of the differential operators that occur in the equation.

In the cylinder V = [-T_1, T_2] \times Q, where T_s > 0 for s = 1, 2 and Q = \{x \in \mathbb{R}^n : 0 \leq x_r \leq 2\pi, r = 1, n\}, we consider

\[Lu(t, x) \equiv D_x^2 u(t, x) - A(t, -iD_x) u(t, x) = f(t, x), \]

(1)

\[A(t, -iD_x) = \begin{cases} A_1(-iD_x), & t \equiv (-T_1, t), \\ A_2(-iD_x), & t \equiv (0, T_2), \end{cases} \]

where A_s(-iD_x), s = 1, 2, are differential operations of arbitrary order in the variable x with constant complex coefficients. Let u = (u_1, u_2), f = (f_1, f_2), where u_1, u_2 and f_1, f_2 are the restrictions of the functions u(t, x) and f(t, x) to V_1 = [-T_1, 0] \times Q and V_2 = [0, T_2] \times Q, respectively. To Eq. (1) let us adjoint the periodicity condition with respect to each variable x_r, r = 1, n,

\[u(t, x_1, \ldots, x_r + 2\pi, \ldots, x_n) = u(t, x_1, \ldots, x_r, \ldots, x_n), \]

(2)

boundary conditions with respect to t of the form

\[\sum_{p=0}^{2} [P_0^{(m)} D_p^0 u_1(-T_1, x) + P_0^{(m)} D_p^0 u_2(T_2, x)] = 0 \]

(3)

(m = 1, 2, 3, x \equiv Q,