$$
\begin{equation*}
\sum_{0<i i_{j} \leqslant i_{n}} \frac{1}{1 i_{j}} \sim \ln i_{n} \quad(n \rightarrow \infty) \tag{4.4}
\end{equation*}
$$

and it then follows from Theorem 3 that not every function (4.3) of finite R-order has the property that $\ln M(\sigma, F) \sim \ln \mu(\sigma, F)$ as $\sigma \rightarrow+\infty$, outside of some set of zero density. But if function (4.3) has zero R-order, i.e., if $\left|a_{n}\right| \leqslant \exp \left\{-\lambda_{n} \psi\left(\lambda_{n}\right)\right\}, n \geqslant 0$, where $\psi \equiv L$ and $\psi(x) /$ $\ln x \rightarrow+\infty(x \rightarrow+\infty)$, then relation (4.4) implies the condition (1.4) and, according to Theorem $1, \ln M(\sigma, F) \sim \ln \mu(\sigma, F)$ as $\sigma \rightarrow+\infty$, outside of some set of zero density. Thus we arrive at the following theorem.

THEOREM 4. In order that every function (4.3) of finite R-order or have the property that $\ln M(\sigma, F) \sim \ln \mu(\sigma, F)$ as $\sigma \rightarrow+\infty$, outside of some set of zero density, it is necessary and sufficient that $\rho_{R}=0$.

LITERATURE CITED.

1. M. N. Sheremeta, "Analogs of Wiman's theorem for Dirichlet series," Mat. Sb., 110 , No. 1, 102-116 (1979).
2. O. B. Skaskiv, "On the behavior of the maximal term of a Dirichlet series defining an entire function," Mat. Zametki, 37, No. 1, 41-47 (1985).
3. A. G. Azpeitia, "A remark on the Ritt order of entire functions defined by Dirichlet series," Proc. Am. Math. Soc., 12, 722-723 (1961).
4. F. I. Geche, "A remark concerning formulas for determining the linear order of an entire function represented by a Dirichlet series," Ukr. Mat. Zh., 16, No. 5, 7-42 (1964).

BASES OF SYMMETRIC FUNCTION SPACES

A. N. Flichko and E. V. Tokarev

This paper is devoted to the investigation of the following problem: which symmetric Banach spaces of functions have a basis generated by a system of functions, with properties close to those of trigonometric functions?

Besides the orthonormality property a trigonometric system has also the property of the uniform integrability, and even the property of the uniform boundedness, but it constitutes a basis only in symmetric spaces which have unconditional bases (see [1, pp. 242, 247]). This property belongs to only some symmetric spaces among those for which the continuous embeddings $L_{p} \subseteq E \subseteq L_{q}$ hold for some $1<\mathrm{p}, \mathrm{q}<\infty$.

A Haar system, which is a basis in every separable symmetric space (see [1]), in distribution from a trigonometric system, has the following property: its every subsystem contains an almost disjoint sequence. Therefore, a Haar system is not uniformly integrable.

The well-known result of Szarek [2] destroyed all the hopes to find at least one basis in the space $L_{1}[0,1]$ with the uniform integrability property. This result, in particular, implies several other former negative results on bases in the space L_{1}; for example, L_{1} does not have any bounded [3], or even order bounded basis [4]. However, as we shall show in this note, in the space L_{1} there exists a basis generated by a function system without any almost disjoint subsystems.

Before we formulate and prove the results of this paper, we shall recall the definitions of several terms.

A symmetric function space (in short SFS) is (see [1]) a Banach space E (of the classes of) measurable functions over the interval [0, 1], such that
a) $x(t)=E$ and $|y(t)| \leqslant|x(t)|$ implies $y(t)=E$ and $\|y\|_{E} \leqslant\|x\|_{E}$;
b) $x(t)=E$, and $|y(t)|$ is equimeasurable with $|x(t)|$, then $y(t) \equiv E$ and $\|y\|_{E}=\| x:$.

[^0]In this definition and further on an equality or inequality between elements of an SFS is understood in the "almost everywhere" sense.

A sequence of elements (y_{n}) of an SFS will be called almost disjoint, if there exists a sequence $\left(x_{n}\right) \subset E$, such that $x_{n}(t) x_{m}(t)=0$ for arbitrary $n \neq m$ and $\left\|y_{n}-x_{n}: E /\right\| y_{n}: E-0$ for $n \rightarrow \infty$.

Following [5], we shall call a system of elements (x_{n}) of a Banach space an [ℓ_{p}]-system $(1<p \leqslant 心)$, if each of its subsequences contains an subsequence equivalent to the standard basis of the space $l_{l}\left(l_{x} \stackrel{\text { dict }}{=} c_{1}\right)$.

The main result of the present note is the following.
THEOREM 1. There exists an orthonormal function $\operatorname{system}\left(g_{n}(t)\right), t \equiv[0.1], n=1$, v, with the following properties:
a) $g_{n} \equiv L_{\mathbf{x}}[0,1]: \sup _{n}: g_{n} g_{n} l_{x_{x}}<\infty$;
b) the system (g_{n}) is a basis of any separable SFS E, for which the continuous embedings

$$
\begin{equation*}
G \cong E \cong G^{*} \tag{1}
\end{equation*}
$$

hold, where G is the closure of the class L_{∞} in the Orlicz space L_{M}^{*} with $M(u)=e^{u^{2}}-$ 1 , and G^{*} is its adjoint;
c) $\left(g_{n}\right)$ is an $\left[\ell_{2}\right]$-system in the space E and an $\left[\ell_{1}\right]$-system in $L_{\infty}[0,1]$.

In [5] it has been shown that if a separable Banach space X contains a subspace isomorphic to ℓp, then X has a complete minimal system, whose every subsystem contains a subsequence spanning a space isomorphic to ℓ_{p}. The following theorem is a variant of the above statement for bases.

THEOREM 2. Let a Banach space X contain a complementable subspace Y, isomorphic to ℓ_{p} $\left(1 \leqslant p \leqslant \infty ; l_{\infty} \stackrel{\text { def }}{=} c_{0}\right)$, such that its complement $Z(X=Y \oplus Z)$ has a basis. Then the space X has a basis, which is an [$\left.\ell_{\mathrm{p}}\right]$-system.

We shall remark, that the space $L_{1}[0,1]$ contains a subspace isomorphic to ℓ_{2}, but no basis of L_{1} is an $\left[\ell_{2}\right]$-system, as it follows from the cited above result of Szarek [2]. The presence of a basis in the complement $Z=X \ominus Y$ is also necessary. As a counterexample we can take the direct sum $\ell_{p} \quad Z$, where Z does not have the approximation property.

THEOREM 3. The space L_{1} has a basis generated by a function system which does not contain any almost disjoint subsystems.

Now we shall turn to the proofs of the formulated results. The following statement, obviously, is well known.

LEMMA 1. Let X, Y, Z be Banach spaces; $X=Y \bullet Z ;\left(y_{n}\right)$ is a basis of Y; $\left(z_{m}\right)$ is a basis of Z; then the set $\left(y_{n}\right) \cup\left(z_{m}\right)$ is a basis of the space X, independently of its indexing, provided it preserves the original ordering of the elements of (y_{n}) and the elements of (z_{m}).

Proof. According to the projective basis criterion it is enough to verify the boundedness in the family of projections $P_{n m}$ onto the subspace $\left[\left.y_{i}\right|_{1} ^{n} \Theta\left[z_{j}\right]_{1}^{m}\right.$ parallel to $\left[y_{i} l_{n-1}^{\infty} \simeq\left[z_{j}\right]_{m-1}^{\infty}\right.$ (the notation $\left[x_{r}\right]_{m}^{n}$ means the closure of the linear hull of the vectors $\left.\left(x_{r}\right)_{r=m}^{n}\right)$. Let P be a projection from X onto the subspace Y parallel to $Z ; x=y+z \equiv X ; y \equiv Y, z \cong Z,\|x\|=1$. Then $\left\|P_{n m} x\right\|=\left\|P_{n m}(y-z)\right\| \leqslant\left\|P_{n m} y\right\| \div\left\|P_{n m} z\right\|=\left\|P_{n} y\right\|+\left\|P_{m} z\right\|$, where P_{n} is the projection in Y onto $\left[y_{i}\right]_{1}^{n}$ parallel to $\left[y_{i}\right]_{n+1}^{\infty}$, and P_{m} is the projection in Z onto $\left[z_{j}\right]_{1}^{m}$ parallel to $\left[z_{j}\right]_{m+1}^{\infty}$.

Since $\|y\| \leqslant\|P\|,\|z\| \leqslant\|I-P\|$, and the projections P_{n} and P_{m} are jointly bounded, then the numbers $\left\|P_{n m}\right\|$ are also jointly bounded. The lemma has been proved.

A sequence (X_{n}) of finite-dimensional subspaces of a Banach space X is called its fi-nite-dimensional decomposition, if for every $x \equiv X$ there exists a unique sequence of elements $x_{n}=X_{n}(n=1,2, \ldots)$ for which $x=\sum_{n=1}^{*} x_{n}$. For every basis (x_{n}) of the space X and an arbitrary increasing sequence of indices n_{m} the subspaces $\left\{x_{n_{n}+\cdots}, \ldots, x_{m_{m+1}}\right]$ constitute a finitedimensional decomposition of the space X. The following lemma is partially converse to this fact.

LEMMA 2 [6]. Let X_{n} be a finite-dimensional decomposition of a space X, and let each X_{n} have a basis $\left(x_{i}^{n}\right)_{i=1}^{k_{n}^{n}}$, whose basic constant is less than a number K. Then the sequence $\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}, x_{1}, \ldots, x_{k_{2}}^{n}, x_{1}^{3}, \ldots\right.$) is a basis of the space X .
. Proof of Theorem 1. Let $\left(r_{n}\right)_{n=0}^{\infty}$ be a Rademacher system $r_{n}(t)=\operatorname{sign} \sin 2^{n} \pi t, t \in[0,1] ;\left(h_{k}\right)_{k=1}^{x}$ is a Haar system: $h_{1}=r_{0}, h_{2^{n}+l}=r_{n+1} \chi_{\left[(l-1) / 2^{n}, l 2^{n}\right]}\left(l=1 \ldots, 2^{n}: n=0,1, \ldots\right)$. Consider the orthonormal function system $\left(f_{k}\right)_{k=1}^{\infty}$, introduced by Olevskii in [7]: $f_{1}=h_{1} ; f_{2^{n+l}}=r_{n+1} h_{i} /\left\|_{1 / n+1} \cdot h_{l}\right\| \cdot . .(l=$ $\left.1, \ldots, 2^{n} ; n=0,1, \ldots\right)$. Obviously, $f_{2} n=r_{n}(n=1,2, \ldots)$.

Analogously [8, Proposition 1.2], one can show that the system (f_{k}) is a basis of every separable symmetric space. If an SFS E satisfies condition (1), then the norms of the spaces E and L_{2} are equivalent on the space $\left[r_{n}\right]_{0}^{\infty}$, because (r_{n}) generates in E a space isomorphic to ℓ_{2}. Moreover, this subspace is complementable in E, and its complement is the closed linear hull of the remaining functions f_{k} (see [9, p. 134]). From this it follows, that if an SFS E satisfies condition (1), then there exists a constant K_{E}, such that for all $k=1,2, \ldots$ and any $x \in\left[r_{n}\right]_{n=0}^{\infty}, a \doteq R$

$$
\begin{equation*}
K_{E}^{-1}\left\|x+a f_{k} /\right\| f_{k}\left\|_{E}\right\|_{E} \leqslant\left\|x+a f_{k}\right\|_{L_{2}} \leqslant K_{E}\left\|x+a f_{k} /\right\| f_{k}\left\|_{E}\right\|_{E} \tag{2}
\end{equation*}
$$

We shall denumerate the set $\left(f_{k}\right)_{k=1}^{\infty}\left(k \neq 2^{n}, n=0, \infty\right)$ with an increasing sequence of indices $\left(i_{m}\right)_{m=1}^{\infty}: y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{m}}, \ldots$ preserving the former order, i.e., if $f_{k}=y_{i_{m}}, f_{k^{\prime}}=y_{i_{m}}$ and $\mathrm{k}<\mathrm{k}^{\prime}$, then $m<m^{\prime}$. The sequence i_{m} will be defined so that $i_{m}-i_{m-1}=2^{s} m$, where the integer number s_{m} is chosen from the condition

$$
\begin{equation*}
2^{-s_{m} / 2}\left\|y_{i_{m}}\right\|_{L_{\infty}[0,1]}<2^{-m} \tag{3}
\end{equation*}
$$

We shall denumerate the functions $\left(f_{2}\right)_{n=0}^{\infty}$ with the remaining natural numbers preserving the previous order: $y_{1}, y_{2}, \ldots, y_{i_{1}-1}, y_{i_{1}+1}, \ldots$. By Lemma 1 the sequence is a basis in every $S F S E$, which satisfies condition (1).

According to Lemma 1 in [10] for every m there exists an orthogonal matrix $\left(a_{h, i}^{m}: i_{m-1}<k\right.$, $i \leqslant i_{m}$), such that for

$$
\begin{align*}
& g_{k}=\sum_{i_{m-1}<i \leqslant i_{m}} a_{k, i}^{m} y_{i}, \quad i_{m-1}<k \leqslant i_{m}, \tag{4}\\
& a_{i, i_{n t}}^{m}=2^{-s} / 2
\end{align*}
$$

and

$$
\left\|g_{k}\right\|_{L_{\infty}} \leqslant(1+\sqrt{2}) \max _{i_{m-1}<i<i_{n t}}\left\|y_{i}\right\|_{L_{\infty}}+2^{-s_{m} / 2}\left\|y_{i_{m}}\right\|_{L_{\infty}} \leqslant(1+\sqrt{2})+2^{-m}
$$

The last inequality in (5) follows from the fact that $\left\|y_{i}\right\| L_{\infty}=1$ for $i \neq i_{m}, m=1$, ∞, and from (3).

For the sequence $\left(g_{k}\right)_{k=1}^{\infty}$ condition a) follows from (5). If an SFS E satisfies condition (1), i.e., if (2) is satisfied, then by virtue of the orthogonality of the matrices ($a_{k, i}^{m}$) the basic constants of the system ($g_{k}: i_{m-1}<k \leqslant i_{m}$) are jointly bounded. Therefore, by Lemma 2 , the sequence $\left(g_{k}\right)_{k=1}^{\infty}$ is a basis of the space E, and condition b) is satisfied.

At last, we shall verify condition c). Let $\left(g_{n_{m}}\right)_{m=1}^{\infty}$ be a subsequence of the system (g_{n}). We shall choose from it a subsequence $\left(g_{n(j)}\right)_{j=1}^{\infty}$, such that $g_{n(j)} \in\left\{g_{n}: i_{m_{j}-1}<n \leqslant i_{m_{j}}\right\}\left(m_{1}<\right.$ $m_{2}<\ldots<m_{j}<\ldots$). Put $z_{j}=\sum_{i_{m_{j}-1}<i<i_{m_{j}}} a_{n(j), i}^{m} y_{i}$. Then by (4) and (3)

$$
\begin{equation*}
\left\|g_{n(j)}-z_{j}\right\|_{E} \leqslant\left\|g_{n(j)}-z_{j}\right\|_{L_{\infty}}<2^{-m_{j}} \tag{6}
\end{equation*}
$$

By the orthogonality of the matrix $\left(a_{k}^{m}, j\right)$ and by inequality (2), for sufficiently big $j^{\prime} s$

$$
\begin{equation*}
\left\|z_{j}\right\|_{E}>K_{E}^{-1}\left\|z_{j}\right\|_{L_{2}} \geqslant K_{E}^{-1}\left(\sum_{i_{m_{j}-1}<i<i_{m_{j}}}\left[a_{n(j), i}^{m_{j}}\right]^{2}\right)^{1 / 2}>\frac{1}{2} \tag{7}
\end{equation*}
$$

The system (z_{j}) is a block-basis of the Rademacher system, which in the space E is equivalent to the standard basis of the space ℓ_{2}. Since the inequalities (6) and (7) are satisfied, then by the theorem on the stability of bases (see, e.g., [11, p. 5]) the system $\left(g_{n(j)}\right)_{j=1}^{\infty}$ is also equivalent in E to the standard basis of the space ℓ_{2}. The fact, that the functions $\left(g_{n}\right)$ create an $\left[\ell_{1}\right]$-system in the space L_{∞}, follows, for instance, from Corollary 4 in [10]. Theorem 1 has been proved.

Proof of Theorem 2. Let $\left(y_{n}\right)_{n=1}^{\infty}$ be a normalized system, being a basis of the space Y, equivalent to the standard basis of the space ℓ_{p}; let $\left(z_{m}\right)_{m=1}^{\infty}$ be a normalized basis of the space Z, and i_{k} an increasing sequence of natural numbers $k=1,2, \ldots ; i_{i}=1 ; i_{k}-i_{k-1}=2^{k}$ for $k>1$. We shall denumerate the elements of (z_{m}) with the indices i_{k} preserving the previous order, and the elements y_{n} with the remaining (except for i_{k}) natural numbers, also preserving the previous order. According to Lemma 2 we obtain a basis ($\left.e_{j}\right)_{i=1}^{\infty}$ of the space
 where the constants c_{k} have the form $c_{i:}=\sum_{i_{i}<i<i ;+1} e_{i}^{*} \| \geqslant K_{q} 2^{k / q} ; e_{i}^{*}$ are functionais biorthogonal to $e_{i} ; p^{-1}+q^{-1}=1 ; K_{q}$ is some positive number. By Proposition 2.1 from [12] and Lemma 2 the system $\left(x_{i}\right)_{i=1}^{\infty}$ is a basis of the space X. We will show that it is an $\left[\ell \ell_{p}\right]$.

Every subsequence $\left(\mathrm{x}_{\mathrm{i}}\right)$ contains either an infinite subsequence $\left(x_{i(3)}\right)_{s=1}^{\mathrm{x}}, i_{k_{s}}<i(s)<i_{:_{-}-1}$, $k_{1}<k_{2}<\ldots<k_{s}<\ldots$, or an infinite subsequence $\left(x_{i_{k_{s}}}\right)_{i=1}^{r}=\left(x_{i_{k}}\right)$.

In the first case for $p>1$ the inequality

$$
\left\|x_{i(s)}-e_{i(s)}\right\|=\left\|e_{i r_{s}}\right\| i c_{k_{s}}<1 / K_{q} \cdot 2^{k_{i} ; q}
$$

is satisfied, so that by the theorem on stability of bases $\left(x_{i(s)}\right)_{1}^{\infty}$ is equivalent to the standard basis of the space ℓ_{p}. If, however, $p=1$, then for any finite choice of real numbers (a_{s}) we have

$$
\left\|\Sigma_{s} a_{s} x_{i(s)}\right\| \leqslant \sum_{s}\left|a_{n}\right|\left(\left\|e_{i_{1}, s}\right\| / c_{i_{s}}+\left\|e_{i(s)}\right\|\right) \leqslant\left(\sum_{s} \mid a_{s} \|\right)\left(1 / K_{\infty}+1\right)
$$

and

$$
\left\|\sum_{s} a_{s} x_{i(s)}\right\| \geqslant\left(1 /\|P\|\left|\left\|\sum_{s} a_{s} e_{i(i)}\right\| \geqslant K_{1} \sum_{s}\right| a_{s} \mid .\right.
$$

where P is the projection from X onto Y parallel to Z, and K_{1} is a constant depending on the norm $\|P\|$, and on the equivalence constant of the basis (y_{n}) with respect to the standard basis of the space ℓ_{1}. Therefore $\left(x_{i}(s)\right.$) is equivalent to the basis of ℓ_{2}.

In the second case

$$
\left\|x_{i_{k_{s}}}-\frac{u_{i_{s}}}{\left\|\tilde{x}_{i_{s}}\right\|}\right\|=\frac{\left\|e_{i_{s}}\right\|}{c_{i_{s}}\left\|\tilde{x}_{i_{s}}\right\|}=\frac{1}{\left\|e_{i_{i_{s}}}+c_{k_{s}} u_{k_{s}}\right\|} \leqslant\left(c_{k_{s}}\left\|u_{k_{s}}\right\|-1\right)^{-1} \leqslant 1 /\left(K_{q} 2^{i_{s} q} K_{p} 2^{v^{\prime}{ }^{p} p}-1\right)
$$

where K_{p} is the constant of the equivalence between the basis (y_{n}) and the standard basis of
 sequence $u_{k_{s}}\left\|_{\|} \tilde{i}_{i_{s}}\right\|$ is a block-basis with respect to a system equivalent to the standard basis of ℓ_{p}. Moreover, $\left\|u_{k_{s}}\right\| x_{i_{k}}\| \| \rightarrow 1$ for $s \rightarrow \infty$. Therefore it is equivalent to the standard basis of the space $\ell_{p}[11, \mathrm{p} .53]$. Consequently, the same is true also for (xi_{i}). Theorem 2 has been proved.

Proof of Theorem 3. Let $\bar{h}_{n}(i)$ be a subsystem of the normalized in L_{1} Haar system (\bar{h}_{n}) such that $\hbar_{n(i)} \hbar_{n(j)}=0$ and $\left\{t: h_{n(i)} \neq 0\right\}=[0,1 / 2\}$. We shall consider a function system $\left(x_{n}\right)_{1}^{\infty}$, where $x_{i}=\Pi_{n(i)}+r_{i} \chi_{[1,3]}$. It is easy to verify that $\left[\mathrm{x}_{\mathrm{i}}\right]_{1}^{\infty}$ is isomorphic to the space ℓ_{1}, and it has a complement in L_{1}, generated by the closed linear hull of those Haar functions, which do not belong to the system \bar{h}_{n} (i) [and which will be denoted further by (z_{n}) with preservation of the initial order of the Haar system].

For each $k=1,2, \ldots$ we put

$$
\begin{gathered}
y_{3 n-2}=\frac{z_{k}}{c_{1}}+x_{2-1}+x_{2 ;} \\
y_{i}=\frac{z_{k}}{c_{i}}+x_{2,} \quad(i=0.1)
\end{gathered}
$$

where $c_{k}=\left\|x_{2 k-1}^{*}-x_{i k}^{*}\right\|_{1} ; \quad x_{2 k-i}^{*}$ are functionals biorthogonal to $x_{2 k-i}(i=0,1)$, and the norm $\|\cdot\|_{k}$ is taken in the space $\left(\left|x_{2 k-i}\right|_{0}^{1}\right)^{*}$. Analogous to the proof of Theorem 2 and applying Proposition 2.1 from [12] we can easily show that the system $\left(y_{k}\right)_{1}^{\infty}$ is a basis of the space L_{1}. Obviously, $\left(y_{k}\right)_{1}^{\infty}$ does not contain any almost disjoint subsystems.

1. S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators [in Russian], Nauka, Moscow (1978).
2. S. J. Szarek, "Bases and biorthogonal systems in the spaces C and L_{1} " Ark. Mat., 17, No. 2, 255-277 (1979).
3. A. M. Olevskii, Fourier Series with Respect to General Orthonormal Systems, SpringerVerlag, Berlin (1975).
4. S. Kwapien and S. J. Szarek, "An estimation of the Lebesgue functions of biorthogonal systems with an application to the nonexistence of some basis in C and L", "Stud. Math., 66, 185-200 (1975).
5. $\bar{B} . V$. Godun, "Complete biorthogonal systems in Banach spaces," Funkts..Anal. Prilozhen., 17, No. 1, 1-7 (1983).
6. W. B. Johnson, H. P. Rosenthal, and M. Zippin, "On bases, finite-dimensional decompositions and weaker structures in Banach spaces," Israel J. Math., 9, 488-506 (1971).
7. A. M. Olevskii, "On certain orthonormal system," Mat. Sb., 71, No. 3, 297-336 (1966).
8. T. Ketonen, "On unconditionality in I_{p} spaces," Ann. Acad. Sci. Fenn. Ser. A. Diss., 35, 1-42 (1981).
9. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin (1979).
10. R. I. Ovsepian and A. Petczynski, "On the existence of a fundamental total and bounded biorthogonal sequences in every separable Banach space, and related construction of uniformly bounded biorthogonal systems in L^{2}," Stud. Math., 54, 149-159 (1975).
11. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Springer-Verlag, Berlin (1977).
12. P. Wojtaszczyk, "Existence of some special bases in Banach spaces," Stud. Math., 47, 83-93 (1973).

PROPERTIES OF SOLUTIONS OF CONJUGACY PROBLEMS FOR CERTAIN

IRREGULAR EQUATIONS

N. Kh. Agakhanov

We study the differential properties of solutions of a certain class of weakly irregular equations (see [1]). We establish the dependence of the smoothness of the solutions on the spectral properties of the differential operators that occur in the equation.

In the cylinder $V=\left[-T_{1}, T_{2}\right] \times Q$, where $T_{S}>0$ for $s=1,2$ and $Q=\left\{x \in R^{n}: 0 \leqslant x_{\tau} \leqslant 2 \pi\right.$, $r=\overline{1, n}\}$, we consider

$$
\begin{gather*}
L u(t, x) \equiv D_{i}^{3} u(t, x)-A\left(t,-i D_{x}\right) u(t, x)=f(t, x), \tag{1}\\
A\left(t,-i D_{x}\right)= \begin{cases}A_{1}\left(-i D_{x}\right) . & t \equiv\left(-T_{1}, 0\right), \\
A_{2}\left(-i D_{x}\right), & t \equiv\left(0, T_{2}\right) .\end{cases}
\end{gather*}
$$

where $A_{s}\left(-i D_{x}\right), s=1,2$, are differential operations of arbitrary order in the variable x with constant complex coefficients. Let $u=\left(u_{1}, u_{2}\right), f=\left(f_{1}, f_{2}\right)$, where u_{1}, u_{2} and f_{i}, f_{2} are the restrictions of the functions $u(t, x)$ and $f(t, x)$ to $V_{1}=\left[-T_{1}, 0\right] \times Q$ and $V_{2}=[0$, $\left.T_{2}\right] \times Q$, respectively. To Eq. (1) let us adjoint the periodicity condition with respect to each variable $\mathrm{x}_{\mathrm{r}}, \mathrm{r}=\overline{1, \mathrm{n}}$,

$$
\begin{equation*}
u\left(t, x_{1}, \ldots, x_{r}+2 \pi, \ldots, x_{n}\right)=u\left(t, x_{1}, \ldots, x_{r}, \ldots, x_{n}\right) \tag{2}
\end{equation*}
$$

boundary conditions with respect to t of the form

$$
\begin{gather*}
\sum_{p=0}^{2}\left[\beta_{p}^{(m)} D_{t}^{p} u_{1}\left(-T_{1}, x\right)+\eta_{\mu}^{(m)} D_{i}^{p} u_{2}\left(T_{2}, x\right)\right]=0 \tag{3}\\
(m=1,2,3) \quad x=Q
\end{gather*}
$$

Moscow Physicotechnical Institute. Translated from Matematicheskie Zametki, Vol. 42, No. 2, pp. 235-243, August, 1987. Original article submitted June 16, 1986.

[^0]: Institute of Applied Problems in Mechanics and Mathematics, Academy of Sciences of the USSR. Translated from Matematicheskie Zametki, Vol. 42, No. 2, pp. 227-234, August, 1987. Original article submitted June 26, 1985.

