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This article is a continuation of the paper [I], and uses the same notation and terminol- 
ogy. We begin with the problem of extensions of the Markushevieh basis. It is known (see 
[I, p. 231]) that in a separable Banach space, any M-basis of a subspace can be extended to 
an M-basis of the whole space. We show that there is no analog of this fact for nonseparable 
spaces. This gives a negative and conditional answer to a problem of Singer [2, p. 832], 
conditional in the sense that in the proof we use the nonseparab!e Shelach space [3], which 
has no uncountable biorthogonal systems. The existence of such a space was established in 
the hypothesis of the constructivity axiom V = L. Countable biorthogonal systems exist in 
any infinite-dimensional Banach space and are fairly good. We show that any Banach space has 
an orthonormal bibasic sequence. This answers one of Terenzi's problems [4]. Without as- 
suming orthonormality, the existence of bounded bibasic systems was established in [4-6]. 
We also note that the natural projective basis of the space of continuous functions on the 
ordinals C[w2], can never be divided into two (or a finite number of) sequences~ each of which 
is a basis with brackets in its closed linear hull. This is an answer to SingerTs problem 
13.4 of [2]. We note an application of M-bases to spaces, which is of interest from the point 
of view of vector measures. We prove that a space with an M-basis is an RNPG-space (Radon:- 
Nikodym property generated). Hence, and from the previous results, it follows that there 
exists an operator from l~ into an ~NPG-space which is not weakly compact; this answers a 
problem of Diestel [7]. We also show that the property of being an RNPG-space is not in- 
herited by complemented subspaees. It is known (see [8, p. 115]) that for any separable sub- 
space X of the WCG-space Y, there exists a separable complemented subspace Z c y, containing 
X. In an arbitrary Banach space, this is not so in general~ It is not known whether for any 
separable subspace X of the Banach space Y, there exists a subspace complemented in Y and of 
continual weight, containing X. We show that this fact holds for spaces with weakly* Angel 
conjugate. 

Therefore, we shall assume that there exists a nonseparable Banach space Sh, which has 
only countable biorthogonal systems. 

Proposition I. There exists a Banach space with an M-basis and a complemented subspace 
U c X also with an M-basis, such that no M-basis of the subspace U can ever be extended to 
an M-basis of the whole space X. 

Proof. The space Sh, like any Banach space, has a total biorthogonal system [I]o It 
can be only countable, since Sh* is weakly* separable. By Theorem 2 of [I], the space Sh 
can be embedded isometrically and complementedly in a space X with an M-basis. Moreover, 
this complement U has an M-basis. Suppose that some M-basis ui, i ~ I, of the subspace U 
can be extended to an M-basis (u~)U(z~) for the whole of X. It is easily seen that the factor- 
images zj form a complete minimal system in the factor-space X/U, i.eo, [zj] = X/U and for 

any j, ~[~h :k=/=j]. The functionals biorthogonal to zj are defined in the natural way: 
fj(zk) = 6jk- The factor-space X/U, which is isometric to Sh, is nonseparable, since the 
system zj, fj is not countable, and this is impossible. [] 

We recall that the biorthogonal sequence (Xn, fn) l is called bibasic, if both (x n) and 
(fn) are bases in their norm-closed linear hulls, and orthonormed, if for any n [IXnll = llfnll = 
I. We introduce another definition. Let X be a Banach space, X* its conjugate and let 0 < 
h ~ I. We say that the subset G of the sphere S(X*) [respectively, y ~ S(X)] %-norms the 
subset z ~ X [respectively, H ~ X*), if for any z ~ Z 

Ilzll ~ ~ - '  sup { g ( z )  : g ~ G} 

[ r e s p e c t i v e l y ,  for  any h~H, Ilhll~%-~sup{h(y): y~Y} ]. 
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LEMMA. A. Let Z and H be finite-dimensional subspaces of X and X*, and let X < I. 
There exist finite subsets G~S(X*) and YcS(X~, which X-norm Z and H, respectively. B. 
Let Z and H be subspaces of X and X*. There exist subsets @~$(X*) and Y~S(X) , of ear- 
dinality not greater than dens Z and densY, respectively, which l-norm Z and H. C. Let Z 
be a closed subspace of X, and let the set G~S(X*) X-norm Z. Then the norm of the projec- 
tor P: Z+G• parallel to the annihilator G • is not greater than h -l. D. If, moreover, 
G is the unit sphere of some weakly* closed subspace, and S(Z) h-norms G, then Z| I=%. 

The proofs are standard and are well known. 

Proposition 2. Let 0 < % < I. Any infinite-dimensional Banach space X has an ortho- 
normal bibasic sequence Xn, fn, and the norms of the natural projectors [xi]~--+[xi]~ and []~]~-->- 
[fi]~ are not greater than k -I. 

Proof. We construct a sequence of elements x~X, ~X* and finite subsets Y~S(X), 
G~cS(X*) such that for any n 

1 ) I l x J  = [l~ll = ~ ( x ~ ) =  t ;  

2) x~Y~, f=~G~, Y~_~aY~, G~_~G~; 

3) Yn h-norms [fi]~, and G n k-norms [xi]~; 

4) x n + 1 ~ G ~  f n . ~ Y ~  

Take x~S(X)  and f~S(X*)'such t h a t  f l ( x l )  = 1. Se t  Y1 = x l  and G1 = f l .  I f  t h e  o b -  
j e c t s  are constructed for n -- I, then by the Krein--Krasnosel'skii--Mil'man theorem on orthogo- 
nal elements [9], there exists an element xn~S(G~), orthogonal to [Yn-l] (i.e., an element 
for which inf{Hx~,--yIl: y~[Y=_~]} = I), and by the Hahn--Banach theorem, there exists a functional 
~S(X*) with fn(Xn) = I and fn(Yn_l) z 0. Take finite sets Y~=(x~, Y~-~)and G~=(~, ,G~_~), 
which h-norm [fi]~ and [xi]~, respectively. Since for any n [xi]n~+1~G~, and G n X-norms 
[xi] ~ (respectively, [h]$+~Y zn and Yn X-norms [fi]~) , then by part C of the lemma, Xn, fn 
form an orthonormal bibasic sequence, and moreover the norms of the corresponding projectors 

are not greater than h -I. 

An M-basis (Xn) 1 is called a baszs wzth brackets, if there exlsts an increaslng sequence 
. ~ ni 

of natural numbers (ni)i=l, such that the natural projectors Pni: X [Xn] I parallel to 

[Xn]ni+1 are totally bounded. 

Proposition 3. A standard projectional basis xB: I ~ B < w 2 of the space C[~ 2] can 
never be divided into a finite number of sequences, such that each sequence is a basis with 

brackets in its closed linear hull. 

Proof. Let (ik)~ be some partition of the set of ordinals [I, 2]. Clearly, at least 
one of these sets, say il, contains a subset J = (knw + lm), m, n = I, ~, where k n and I m are 
strictly increasing sequences of natural numbers. A subset of a basis with brackets is a 
basis with brackets in its closed linear hull. Thus it is sufficient to show that the set 
x~: ~J is not a basis with brackets in its closed linear hull for any permutation of the 
indices. Since one element does not change anything, we shall assume that ~z~j. The mapping 
x~n~+~ -+x~+m , x~-+x~ defines an isometry from [x~: ~J] to C[~2]. Therefore it is suffi- 

cient to establish that the projective basis x B of the space C[~ 2] can never be made into a 
basis with brackets by any permutation of the indices. Suppose that x n is a permutation of 
(xB) and is a basis with brackets, let Pni be the corresponding projectors, and let fn be 
functions biorthogonal to xn. Since the projectors Pni are totally bounded, then the subspace 
~P~(C[~])*=iin(f~)~C[o ~] is norming (see [2, p. 277]). But this is not so [~0]. �9 

Remark. If the biorthogonal functionals to an M-basis in a separable space span a norm- 
ing subspace, then this M-basis can be divided into 2 bases with brackets (see [2, p. 458]). 

We say that the subset A of the Banach space X is cusped, if for any g > 0 there exists 

x~A, x~eonv(A\{y: l!y--xll<e}). The set A is inherently cusped, if each subset is cusped. A 
Banach space which is the closed linear hull of its closed convex inherently cusped set is 

called an RNPG-space. 

Proposition 4. Any space with an M-basis is an RNPG-space. 

Proof. Let x~, g~f, be an M-basis of the space X, let l[xil[ = I, and let fi be func- 

~ionals biorthogonal to x i. The operator R: /~(i) § X defined by the formula ~(~Ja~e~)=~;aix~ 
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[e i are i:he standard unit vectors of the space ll(i)] is injective, continuous~ and the image 
R(B) of the sphere B of the space $i(i) generates X. Since ~l(i) = c0(i)*, then the sphere 
B is compact in the topology O(ll(I), c0(1)). Since R*(lin(/0)cc0(!)c/i(f)*, then the image 
R(B) is o(X, lin (fi))-compact, and therefore is closed in norm. The space If(i) has the 

Radon--Nikodym property [8, p. 174], i.e., B is an inherently cusped set. A closed set is 
inherently cusped if and only if~any closed subset has an extremal point [11], and therefore 
R(B) is also an inherently cusped set. m 

COROLLARY I. Let X* be weakly* separable and nonreflexive (in particular, X = ~). Then 
there exist an RNPG-space Y and a nonweakly compact operator of embedding T: X § Y~ 

This is a simple combination of Theorem 2 of [I] and Proposition 4. 

COROLLARY 2. The property of being an RNPG-space is not inherited by complemented sub- 
spaces. 

In fact, the James tree JT [12] is separable and does not contain a subspace isomorphic 
to ll, but the conjugate space Y = JT* is not separable. A space Y with such properties is 
not RNPG [13]. The conjugate Y* is weakly* separable, and therefore by Theorem 2 of [I] the 
space Y can~,be embedded complementedly in the space X with an M-basis, which by Proposition 4 
is an R~PG-space. 

Remark. The classes of Banach spaces, generated by closed inherently cusped and closed 
convex inherently cusped sets are distinct. Since any minimal system is an inherently cusped 
set, then any space with a complete minimal system is generated by an inherently cusped set. 
Any Banach space with a Hilbert factor-space of the same weight [6], for example l~ or JT* 
[12], has a complete minimal system. JT* is not generated by a closed convex inherently 
cusped set. In particular, the closed convex hull of an inherently cusped set is not always 
inherently cusped. 

The Banach space X has a weakly* Angel conjugate, if the weak* and weak* sequential 
closures of each bounded subset of X* coincide. 

X* Proposition 5. Let be weakly* Angel. For any subspace Y c X, there exist a subspace 
Y ~ Z ~ X of weight not greater than m = max(densY, c) and a projector P: X-~Z with 

4] P I] = I. 

Proof. We construct a transfinite sequence of subspaces Z=~X, F=cX*, ~ < ~  of 
weight not greater than m, such that for any 

1) Z , = Y ,  Z~cZs ,  f ~ f ~  f o r  ~ < B; 

2) Fa ~-norms Z~ and Zu+ 1 1-norms F~; 

3) Za i s  n o r m - c l o s e d ,  cl*B(F~)~F~+~. 

Let GI be a subset of the sphere S(X*) of cardinality not greater than m, 1-norming 
Zl = Y; this exists in view of part B of the lemma. Set F l = [GI]~ If for all B < c the sub- 
spaces ZB and FB have been constructed and e is a nonlimiting ordinal, then by part B of the 
lemma we can choose a subset Y=_~cS(X) of cardinality not greater than m, which l-norms the 
subspace F~-l, and set Ze = [Z~-l, Y~-I]. Clearly, the weight of the subspace Z~ is not 
greater than m • m = m. Take a set G~cS{X*) of cardinality not greater than m, !-norming 
Z~, and set F==,[cl*B(F~_~), G=]. Since X* is weakly* Angel, then each element of the closure 
cl*B(F~_~) is the limit of a sequence in the sphere B(F~.~), and therefore dens(cl*B(F~_1))~ 

(densf=-1)~~176 Thus densF~ ~ m. If moreover a is a limiting ordinal, then set Z~ = 
[Z;: ~ < a ]  and F~=[F~:  ~ < a ] .  

Thus we have cons t ruc ted= a sequence  of  s p a c e s  w i t h  the  p r o p e r t i e s  1-3,  Le t  Z = U ~ < ~ Z ~ ,  

F=U~<~f~. Then densZ~o~Nm=m. The s u b s p a c e s  Z and F ~-norm each  o t h e r .  I f  x n i s  a 

f u n d a m e n t a l  sequence  in  Z, x~:Z~ , t h e n  f o r  ~ = s u p ~  x=~Z~=[Z~] and x=limz~Z. Thus 

the  subspace  Z i s  c l o s e d .  I n  e x a c t l y  the  same way, u s i n g  c o n d i t i o n  3, we can show t h a t  the  
u n i t  sphe re  B(F) i s  weakly*  s e q u e n t i a l l y  c l o s e d .  T h e r e f o r e  i t  i s  weakly*  c l o s e d ,  and the  
subspace  F i s  weak ly*  c l o s e d .  A l l  t he  c o n d i t i o n s  of  the  le~ma a r e  s a t i s f i e d ,  and t h e r e f o r e  
the projector P: X § Z parallel to the annihilator F • exists, and its norm is equal to ~. m 

Remark. As an example of a space X with weakly* Angel conjugate and separable subspace 
YcX , for which there is no complemented separable subspace ~Y~Z~X, consider the conjugate 
of the James tree [14]. 
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Remark. Proposition 5 is false for arbitrary Banach spaces. Let F be a set with the 
cardinality of the continuum, and let m0(F) be the subspace of m(F) consisting of all the 
bounded functions on F with countable carrier. The weight of the subspace m(F) is equal to 
c. If we assume that the continuum hypothesis is valid, then m0(F) is the set of functions 
with carriers of cardinality less than cardF. It was in fact noted in [15] that then, from 
a set-theoretical result of Serpinskii, it follows that m(F)/m0(F) contains a subspaee iso- 
metric to c0(A), CardA > CardF. Suppose that there exists a closed subspace ~0(r)cZc~(P), 
which has closed complement U in m(F). The factor-space m(F)/m0(F) is isomorphic to U@Z/ 
m0(F). Since U is a subspace of m(F), and dens Z/m0(F) ~ c, then on m(F)/m0(F), and therefore 
also on c0(F), there exists a total set of linear continuous functionals of cardinality not 
greater than c. But this is impossible. 
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