QUASIREFLEXIVE LOCALLY CONVEX SPACES WITHOUT BANACH SUBSPACES
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James' known quasireflexive space, as well as its various Banach variations and gener-
alizations, have been investigated by several authors. In [1] one has considered quasi-
reflexive, locally convex spaces. We give an example of a quasireflexive, locally convex
space, not isomorphic to any Banach space. One can take, for example, the direct sum of some
reflexive topological vector space, not isomorphic to a Banach space (for example, the space
R~ of all sequences with the topology of coordinatewise convergence), and James' quasi-
reflexive space. In connection with this, M. I. Kadets, at the extended session of the
Western Scientific Center of the Academy of Sciences of the Ukrainian SSR, has formulated
the question of the existence of quasireflexive locally convex spaces, not containing any
infinite-dimensional Banach subspaces. In this paper we consider two natural methods for

the construction of such spaces.

We give the definition and some required properties of James spaces. We fix a number

l<p<o. The James space J, consists of all sequences x=(§, ..., &, ,_), converging to

zero and having a finite p-th variation

ety = sup (X7 156 — B, P + 1 8o ), )
where the supremum is taken over all possible increasing finite collections Xy ..., &u. The
elements e =(0, ..., 0, % 0,...), k€N, form a basis of the space J,, while the coordinate

functionals p; , biorthogonal to them, form a basis of the dual space J;: the second dual
Jy¥ consists of sequences of J, withfinite p-th variation (1) and the canonical imbedding
m J, —J,* coincides with the natural imbedding J,'»J,  For p=2 these statements can be
found, for example, in [2]; for an arbitrary 1< p< oo the proof can be carried over word

by word.

LEMMA. Let a=(x)i1€l, let (k)io- be some increasing sequence of indices with k,=1

and let (¥)i=t be a sequence of elements of the form y,-=2:,{_:!nkek with |ly;ls,<<1. Then
the series Z;ajyj converges in the space J, and

I Yremyl,<3lal,

Proof. For the sake of brevity, we denote by S the set of all possible finite increasing

collections s={(sy ..., S») and for a sequence x= (%) and a collection s =()Z0€S we set
% (5 ) = BT 13— L, P+ B P 204 0, (x) = U By (3, ).
€

Obviously, the sequence y = (&N, ..., X Me,ts XMy, - - ., XgMk,—1,...) is the coordinatewise sum of
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the series Y'voy. We estimate the norm of the vector Zn=y— Y,y For an arbitrary

variational sum ¥ (2:;, S} we have an inequality of the form

R R
Up (2ns S) < 21 "Op (ai,yf,' s(r)) + 21 | a/’,’ ﬂk,' - 0‘;',"71,3{" i,

where s”€S, (i»), (ir), (ir) are increasing sequences of indices, greater than n, and, more-

over, jr<jrn while (k) and (k7)) are appropriate increasing sequences of indices,
for which k;; ki <kp,, and kp<k/< k!"+1 for r=1, ..., R,.
Since
Efi Up (afryirv S(r)) = Ef‘ |, o, (yi,y sy <<
<Zf Ia/;’ <El>nla’]|p
2 | —@ ”le” << ((ER" @ "Ik PN+
b (08 P < (el PR
-+ (ZRZIG AN S W lall ,
it follows that u,(2.) << +2°) Yjonl P

In particular, for n=0 we obtain v, (y) <(1 427 V7 1a;lp, fromwhere there follows that
y€Jd, and llyl,<(+27)7lallp<3 lal, In addition,

1y — Xrayll, <3 (Nisala; PIP,
and, therefore, the series 2; o;Y; converges to y in J,.

Proposition 1. Each closed infinite-dimensional subspace X of the space J, contains a

subspace Y that is isomorphic to Ilp-

Proof (compare with [3, pp. 165-167]). From the infinite-dimensionality of X there

follows that for each index N there exists in Xand element x= (%) with lxll5,=1, for which & =
~Ey=0.

Let k,=1 and let x;= (&) €X be an arbitrary element with |l %15 =1 and E;,=0.
We select an index &; >k, such that the norm of the element 2, = Zk>k1§1kek in the space Jp
is less than 1/4 and we select in X a vector X, = (Ex) with | x,|ls, =1, for which &x=0 for
kE=1,..., k. Then we find ky, > ki, such that the norm of the element 2, = Zk>/k2§2kek in the
space Jp is less than 1/16 and a vector x;=(Ex)€X with [[ x5y, = I, for which &:=0
for k=1,...,k,. Continuing this process indefinitely, we obtain an increasing sequence of
indices (k)70 with k,=1 and a corresponding sequence of vectors x;= (§z)€X, such that

for arbitrary j=1,2, ... one has

Nxills,=1, Ep=0for k=1, ..., ki

and the norm of the element 2z;= 2k>ki§;kek in the space J, is less than 1/4/.

kil
We set Y;=Xj—2j== 24_14—1 Eiser. For an arbitrary sequence a=(2)€l, we have

X5 izl <ET Naslllzllss yaly, B 47 =37 ay,,
and, by virtue of the lemma,

135 i o, < 3Nay,
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On the other hand, for each j=1,2, ... we have llg;lls;,=> %, — U2l =21 —1/4/ >1/2, and,

therefore, there exists a variational sum #{y; s, larger than 1/2°. For every m, the
number 2'1"0,, (g, 87) does not exceed some variational sum Us(y, s) of the sequence y= 2{" oy;.

Therefore,

U () > X7 U (g sD) = 25 |y o, (g, sP) =22 35 Ly,

from where ll¥l,==2"lall,.  Then
12— 18 al, <[ X7 i 1, < B + 1/3) llaf,

Consequently, by the formula VY(a)= 2;’ a;%; one defines a continuous, linear mapping of the
space ! into X, bounded from below. This mapping is an isomorphism of % onto the sub-

space Y =v([) S X, which is necessarily closed.

We recall that a separated locally convex space X is said to be quasireflexive if it is a
closed subspace of finite deficiency in its second dual X*¥*, endowed with the strong topology

B(X**, X*, and the topology B(X,X"™ coincides with the initial topology of the space X,
For 1<<p< oo we set :ip.,_oz ﬂq>pfq, while for l<p<Coo we define ]p_o= U;<q<;p§,,. We

provide the space ]p+0 with the projective topology relative to the family of imbeddings

jp+0"’-7<z (g >p), vhile the space jp_(, with the inductive topology relative to the family of

imbeddings jq\-'jp—o (1< g<p). Since the spaces -74 increase with the increase of ¢, and their
norms decrease, it follows that the space ~7p+o (resp. fp_.o) can be considered as a projec-

tive (resp. inductive) limit of the sequence of spaces jqn where ¢, | p (resp. 9. 1 p).

The space jp+0 is a Fréchet space, while Jp—o is a barreled Mackey space.

We also set Jppo=Ngoply, for 1<Kp< oo and Jpoo = Uicyepd, fFor 1< p<Loo. The space
Jpt0(Jp—0) is provided with the topology induced from jﬂ.g (.7;,;0), which coincides with the
natural projective (inductive) limit topology on Jeio (Jp—0). The space Jpto (resp. J,_o)
is a closed subspace of deficiency 1 of the space fp+o (resp. .7,,_0). Indeed, as one can
easily see, both spaces jp+o and jp.g are continuously imbedded in the space ¢ of all
convergent sequences with the uniform convergence topology and, consequently, the functional
l(x)=’aliT Ex is continuous on ,7,,.;_0 and on J‘;,_o. The spaces Jpi0 and J,_ o are exactly the
kernels of the functinal in the corresponding spaces. We also mention that the elements
=0, ..., 0 ;3’ 0,...) (k=12 ..)) formabasis in both spaces J,0 and J, while the
coordinate functionals p, are continuous on Jpy0 and J,0 and, together with € form a

biorthogonal system of vectors and functionals.

Proposition 2. The mapping @:F—(F(p:))i—1 is an isomorphism of the space J;“io‘ with
the strong topology B(/oto,Js) (resp. of JXy with the topology B(/i%,, Ji_g)) onto the

space jp.;_o (resp. }p_o), and, moreover, the diagram

J p+0 J, p—0
/N respectively **"‘/ NS
Toto 5 Joto JoroEadpg
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is commutative.
(Here & is the canonical while j is the natural imbedding of the corresponding spaces.)
Proof .
1) For the space Jypo.

Let FEJfg-o- Then there exists a bounded set B in Jp40 and a constant >0, such
that |F()1<y for all fE€B°, where the polar is taken with respect to the duality (Joto, Jpio).
We denote by By the closed unit ball of the space J¢o For each ¢>p there exists y,>0
such that BSy,B,. Then B'Oy,' (B, N Jow0)’ and, therefore, |F(H)|<vv» for all [ €(B, N Joro).
Since the closure of the set B; (1 Jpo+0 in the space J; coincides with the ball B, it
follows that the polar (By Nl Jp+0)° consists of all possible restrictions of the functionals
from the closed unit ball of the space J: on the space Jp40. Consequently, the functional
F is continuous on J: (we identify the functionals from f: with their restrictions).
Then from the description of J;° there follows that (F(pig)rucJ,  Since ¢>p is arbitrary,
this proves that ¢(F) €Jos0.

Let x=(E)€Jpro. Then au(x)(pe) =pp(¥) =8k 1i.e, ((x)) = x. Thus, j=9¢on and im@>Jpt0.
For the proof of the surjectivity of @ we show that the vector e=(l, 1, ..., 1, ..) is in
ime.

Let f€Jsi0. Then f is continuous on Jp+o as on a subspace of J, for some g>p.
Since equ, the series 2; fs, where fr=[(ex), converges and, consequently, the functional
Fo(h= Y'rfe 1is defined on J:-{-(). We show that F, is continuous in the strong topology of
the space Jp4o.

We set B= [14>pBs From a consequence of the bipolar theorem [4] we obtain that the
polar B° 1is the weak closure of the union Usp(B;s () Jp40°. We fix an index n and a func-

tional f€(By N Jpp0)° for some ¢>p. We have Yk =Ff(Xe), and, therefore, Ifok|<HfHJ’;

HZ:ek“qul. Thus, for each n=1,2, ... and for an arbitrary f€ Uer(B¢ 0l Jp+0)’  we have the
inequality | Y1fe|<<1. Taking in this inequality the limit, first with respect to f and then

with respect to n, we obtain that |21°°ka<1 for all f€B? from here we obtain that
FOEJ:_T_O. Clearly, ®(F,)=e, and, therefore, @ is surjective. Since the linearity and the

injectivity of @ are obvious, it follows that ¢ is an algebraic isomorphism.

In order to prove that J:f‘;.o and }p-l-o coincide topologically, first we mention that,
since Jpto is bornological, the canonical imbedding Jp+o—>J:io is an isomorphism [4,
p. 125 of the Russian edition]. The space Jpio is closed in the in the strong topology of
the space Jrto as well as in the space Jy0 since the strong topology on Jyi, majorizes

its uniform topology, induced from the space c.
Indeed, the set U —=|{F¢Jyfo:sup|F(ps)|<1} 1is absolutely convex and 0 (Jpto, Jpro)is closed;
k

therefore, U =U, where the polars are taken with respect to the duality (J3%o, Jpyo), and,
in addition, U (1 J, is a neighborhood of zero in Jpto, consequently, the polar U° con-

tained in (U N J,y40)° is compact relative to o(Jpis, Jpi0) and, thus, also a strongly bounded set.
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Further, the codimension of the space Jo+0 in the spaces JZ_T_G and .7p+c is equal to 1.
Consequently, each of the spaces J,’f_to and is topologically isomorphic to the direct
sum of the space Jp+0 and a one-dimensional space £, with basis vector ¢, and the iso-
morphisms of Jrro@E, onto Jyio  and onto Jeis are the mappings @ (%, fe) =n(x)+¢F; and
Py (%, tey) = x+1fe, respectively. Since @(9;(x, fe))) = @ (n (%) +1F) = x4+ fe = @, (x, fe,), we have

(p—_-(pzo(pl_l, and, therefore, ® is a topological isomorphism.
2) For the space Jp—o-

As it follows from the properties of the inductive topology, a linear functional f is
continuous on the space Jp—o if and only if its restriction to each space J,(1<g<p)is
continuous. Therefore, identifying each functional f€Jo— with all of its restrictions to
the spaces J,(l <g<p), we can write Jpo= ﬂl<q<pfs. It is easy to see that the ball
of the space J,(1<g<p} is a closed set in the space Jpo—o (it is even closed in the
topology of coordinatewise convergence). Consequently, as this follows from a result of
B. M. Makarov [5], the inductive limit Jp—0 1is regular, i.e., each bounded set in Jy0
lies and it is bounded in some J/; with 1< ¢<p. From here we obtain easily that the
strong topclogy on the space Jp—o coincides with the topology defined by the family of
norms |- Hjj I<g<p-

Assume now that F¢J}®;. Then F is continuous with respect to at least onenorm - il
(1<qg<p on o consequently, there exists its extension FE€Jy. Then (F (et =

(F (ps))ie1€Js,  from where there follows that ¢ (F) € Jp—o.

Conversely, if x¢ '7p-—01 then there exist a number 1< ¢<p and a functional FEJ:’*,
such that (F(p))e=1 = %. Then the restriction F of the functional F to the space Jas belongs
to the space Jote and satisfies the equality @{F)=x.

The remaining statements in this case are proved in the same way as in the previous case.

THEOREM. The spaces Jo40 and Jp—0 are quasireflexive, locally convex spaces, not

containing infinite-dimensional Banach spaces.

Proof. The quasireflexivity of the spaces Jp+o and Jp-o is a direct consequence of

Proposition 2. We prove their second property, formulated in the theorem.

1) For the space Jpto.

Let X be an infinite-dimensional subspace of Jp+0,  such that the topology induced on
X from oo, is generated by some Banach norm - lix- There exists 91>/ and a constant Ti
such that Il xlx<<villxlls,,  for all x€X. We select P<¢;< g, For it one can find ¥» such
that | xll;, <v,llxllx. In addition, llxlls, <l xlls, . Consequently, on the space X all the norms
I < lx, 11+ H.fqu - ”Jqo are equivalent. Then X is a closed subspace of both Jq, and J,. From
Proposition 1 thére follows that in X one can select a subspace Y, isomorphic to ley and in
it, in turn, a subspace Z, isomorphic to /.  The composition of the isomorphism ls,—~Z, the
imbedding Z'+Y , and the isomorphism Y-+, is an isomorphismof [/, onto some subspace of
l,-  But, as it is known [6, p. 115}, each operator acting from /%, into /l, with 1<{g, <

g1 < oo is compact and, therefore, such an isomorphism cannot exist.
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2) For the space Jpo-

Let X be an infinite-dimensional subspace of J,0. From category considerations or from
the regularity of the inductive 1limit J,—»  there follows that there exists I<g,<p, such
that X< J,,. Let g2 <¢: <P Since X=Jy, from the closed graph theorem there follows that
the imbedding X'+ J,, 1is continuous; therefore, there exists Vs such that hxlls, <vell#lix for
all x€X. On the other hand, the topology of the norm ”'“J,,1 on the space X major-
izes the topology of the norm l-lx, in fact, the latter is the trace of the inductive
topology. Consequently, there exists VY1 such that Ix”x$§Y1”x”J%- Then one applies exactly

the same arguments as in the previous case.
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SOLUTION OF A SINGULAR INTEGRAL EQUATION ON A SYSTEM OF INTERVALS
T. S. Polyanskaya UDC 517.968

1. A series of mixed boundary value problems of mathematical physics lead to the fol-

lowing singular integral equation on a system of intervals {1]:

F
(19 4y + (K F@dy= 1), x€E, (1)
3 E
where E = G (@, be)y, —oo<ag,<b<- - <ay < bp< oo, [f(x), x€ Ep times continuously dif-
k=1

ferentiable and ﬂ”(x)Efitw,U(x)EC%YL K(x,y)EC%’T with respect to each of the variables,
uniformly with respect to the other variable.

The solution F(y), y€E is sought in the class of functions that can be represented

in the form

F(y)=®(y);]1%bk—yi“kzy—akiﬂk, yEE,

1 1 . -
where ap=+ 5, k=25, (k=1 ..., m are givennumbers, ®(y)¢H, ycE. We denote by

%= (%, ..., %m) the index of equation (1). If % =1, then we require that condition
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