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BASES AND COMPLEMENTS IN NONSEPARABLE B~ACH SPACES 

A. N. Plichko UDC 513.88 

Any Banach space has a total biorthogonal system (see [I, p. 638]). As Bessag noted 
[I, p. 599], a Banach space for which dens*E* = densE has a subspace of weight E with pro- 
jective basis (precise definitions will be given later). The following statement combines 

these results~ 

THEOREM I. Let E be a Banach space and let s0 be the first ordinal of weight dens*E*. 
For any g > 0, the space E has a total biorthogonal system (x~, fe, I ~ ~ < s0), bounded by 
the number 4 + c, and moreover the elements x~ form a projective basis in their closed linear 

hull with basis constant 41 + ~. 

The proof is much shorter and of a more standard form than the known proof of the exis- 
tence of a total biorthogonal system. In the space l~ there is no fundamental and total bi- 
orthogonal system (M-basis) (Johnson [I, p. 692]) and for noncountable r, l~(F) is not iso- 
morphic to a subspaee of a space with an M-basis (Dyer [I, p. 639]). But we do have the fol- 

lowing: 

THEOREM 2. A Banach space with a weakly* separable conjugate (in particular, l=) is iso- 

metric to a complemented subspace of a space with an M-basis. 

This gives an answer to questions of Troyanskii, Distel, lon, Sisler, and Singer [I, pp. 
692, 832, and 837]. Later on we shall study some properties of the Enflo--Rosenthal basis, and 
in particular we show that it is a norming M-basis, and we give an example of a projective 
basis x~ in a Banach space X (which may even be separable), which is not an ordinary basis 
for any permutation of the indices, but for any x~X there exists a permutation o of the 
natural series such that x~E~a~(Ox~(O. This answers a question of Bessag and Singer [I, p. 
575]. Finally we shall be concerned with problems on Borel complements. If X and Y are 
Borel complementary subspaces of a separable Banach space, then they are closed [2]. This 
result follows from the Borel graph theorem and is closely connected with it. In the well- 
known formulations of the Borel graph theorem [3, 4, 2], the condition of separability ap- 
pears in one form or another. Godefroy posed the question [2] of the validity of these state- 
ments for nonseparable spaces. We show that even for other fairly stringent requirements, 
both the Borel complement theorem and the Borel graph theorem are not true unless we stipulate 

separability. 

I~ Total Biorthogonal Systems. Denote by densE the weight, i.eo, the least cardinality 
of the dense subsets, of the space E. For the conjugate space E*, the symbol dens*E* denotes 
the least cardinality of the weakly* dense subsets of E*. The transfinite sequence x~, I 

< ~0 is called a projective basis of length s0 of the space X, if the closed linear hull 

.... Translated from Sibirskii Matematicheskii Zhurnal~-Vol. 25, No. 4, pp. 155-162, July- 
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[x~:~ ~ e < s0] = X and the projectors P~:X § [xB:~ < g] parallel to [• ~ a] exist and are 
jointly bounded by the basis constant x = sup~IIP~II The system x~, /~, i~1, x~E~/~E*~ i~f 

(where i is some set) is called a total biorthogonal system, if fi(xj) = 6ij (where 6 is the 

Kronecker symbol) and the linear hull of [/~:i~I],=E* is weakly* closed. A system for 
which su~II~llli~il ~ c is said to be bounded by the number c. For a projective basis x~, the 

functionals fe exist and are defined uniquely, and (xe, f~) form a bounded total biorthogonai 
system [I, p. 585]. 

LEMM~ ~. In any Banach space E, there exists a subspace of weight dens*E* with a pro- 
jective whose basis constant is --I. 

We note that in the separable case the lemma only guarantees that such a subspace is 
one-dimensional. The proof does not differ in any way from the above-mentioned result of 
Bessag [~, p. 599]. For a subspace X of a Banach space E, we identify X* with the factor- 
space E*/X • Denote by ~ the canonical mapping E* § E*/X • and by cl*M the weak* closure 
of the set M, let B(X) be the unit ball, and let S(X) be a sphere in the space X. 

LEMMA 2. Let E be a Banach space, let X be a subspace of E with projective basis x~ 
I ~ ~ < s0, and let /=~E* be any functionals biorthogonal to x a, Then there exists a sub- 
set G ~ X • of eardinality ~0 (~ is the eardinality of the ordinal ~), for which 

~o ([G, [~, t <~ ~ < ao] , )  = X*o 

Proof. We show that for any ~ there exists a subset G~X j- of cardinality ~<~a-, such 
p* * 

that ~p([Ga~F=],)---~=X , where /z~=(f~:l~<a) and P~ are natural projectors in the space X. 

For ~ = s0 this gives us the statement of the lemma. For ~ = ! Pl - 0, and we may set GI = O. 

If for all B < a the subsets G~ have been chosen and e is not a limiting ordinal, then P~X*= 

~~ q-[~0(f~-1)] and we may set Ge = G~_ I, If the ordinal ~ is limiting, then (see [5]) the 

set U~<aB(P~X*) is weakly* dense in some ball aB(P~X~). In each ball peB(P~X*) we choose 

a weakly* dense set H8 of cardinality not more than ~=, and let fI~B(E*) be some set of repre- 

sentatives of the classes h~H~. Since T([G~F~],)=P~X* , then for any h~ff B there exists 

an element gh~_X -~ such that h = f + gh for some /~[G~FB] , . Set G= U~<~U~s~gh. Then 

cI*((J~<~H~)~[G,G~,F~,~<o;],. By the Banach--Alaog!u theorem, the set c1*(U~<=He) is weakly* 

compact, and therefore its image q0(cl*U~<=H~) is weakly* closed and thus contains the ball 

aB(P=X ). Therefore, for the set G==GUU~<~'G~ 

(tG~, F ~ ] , )  = P~,X ~. 
I t s  c a r d i n a l i t y  is  e a r d G ~ f X ~ X ~ = ~ .  

COROLLARY I~ Let E be a Banach space, let ~0 be the first ordinal of cardinality dens*• 
E*, let X be a subspace of E with projective basis x~: ~, ~< ~ < ~0~ and let ]~=~E* be any 
functionals biorthogonal to x~. Then in X • there exists a subset H of cardinality ~<~0~ such 
that [H, f~ I. ~< ~ < ~0], = E*. 

Proof. Let M be a weakly* dense subset of E* of cardinality ~0 and let G be a subset 
of X • as defined in Lemma 2. For any m~-M , we choose an element h~X=, for which m = f + 
h m for some /~[G,/=:i~=<=0] * . The set f~f=GUU~,v~h,~ satisfies the condition of the 
corollary, m 

Proof of Theorem I~ The following arguments are fairly standard (see [~], p~ 690). Any 
infinite-dimensional Banach sapce has an (ordinary) basis sequence with basis constant less 
than ~ + e [I, p. 49].= If s0 > m, then the cardinality of a projective basis in a space of 
weight a0 is equal to a0. Hence, and from Lemma ~, it follows that in the space E there 
exists a subspace X with projective basis x~, ~<~<ao~ ]Ix~I!=i, whose projective basis con- 
stant is ~<I + g. Let A~E* be functionals biorthogonal to x a with the norm <(~ + e)(2 + 
e) ~ 2 + ~, which, as we have already mentioned, exist [~, p. 585]. We enumerate the se- 

quence (xe, h e ) with the double index (x~,h~: n-----~, co i~a<~) ; for each ~ let h~ be some 

~h~ ~ weakly* limiting point of the set ~ =~n=~. 

Clearly, 7i=~X ~ and llh~ll~sup~llh~I [<2 +e. By Corollary ~, there exists a subset (g~: 
~<~=<ao)~(2-~-e)B(X~'), including (N=:l~<c~<a0), such that [g~,h=:i~a<c%].=E* . For any a, 
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n n 
set /~=h~---h~+eg~. Since eg=-h=~X I , the sequence xa, fa is biorthogonal. The norm Ei!/~ll ~ 

2 + e+ 2+e+e(2+e)~4+e. Since 0 is a weakly* limiting point of the sequence (h~n %~)~=i ~ , 

then ~g~ is a weakly* limiting point of the sequence (/~)n~__~ . Thus (ga:l~a<~ 

co, 1 ~ o~ < a0] ~ , and therefore hl = f~ -5 -h~ -- ega ~ [/~ :n = I, oo, 1 ~ ~ < ~0]~ and the system x me, fan 
is total. Enumerating it again with one index, we obtain the statement of the theorem. [] 

2. M-Bases. An M-basis is a total biorthogonal system for which [=i=i~]] mE. 

Proof of Theorem 2. Let the space Y have a weakly* separable conjugate. Denote by U 
�9 the direct ll-sum of decay copies of the space co: U=~gEi~jc o, card f = dens Y, where c01 is the 

/I 

i-th copy of the space e0. The conjugate U* consists of sequences (a~i~, i~f, n = I, oo), for 

which max~E~la~I<co �9 Set x=u@Y with the norm li~+gII=IIulI-sIlylI, g~Y, u~U. The con- 

jugates U*, Y* are now identified with the annihilators Y• and U • in X*. Let u~n~U be an. 
element with all coordinates zero except the n-th coordinate in the subspace c~, and let (fn I) 
be funetionals biorthogonal to (Unl). Let f, i~f be a dense subset of the unit sphere of the 
space Y, and let (em, gm)~ be a total biorthogonal system in the space Y, bounded by the num- 

n i i i 
ber 4 + ~, which exists in view of Theorem I. Set y~=yi--~.~ gm(yi) em and x n = u n + Yn- 

For fixed m and each i, gm(y i) = 0 for n I> m and Igm(yin) l <4-5 ~ for n < m. Therefore the 
! 

element h m with coordinates (gm(y~n), /~I, n=l, co) belongs to U*. Setting gm = gm- hm, we 

show that the set (x~n,/i minI, n= ~,co) U(em, g~, m= I,oo) is an M-basis of the space X. 

, i ~ h u ~ Since n)= O, this  system is  b ior thogonal .  

n �9 i 
T he  e l e m e n t s  u~ ~ -5 yi= x~i -5~, gm(gl) em b e l o n g  t o  t h e  l i n e a r  h u l l  l l n ( x  m, e m) . S i n c e  

IE~(~n yi'll i i X~n--y~ [X~n,,ern]i,n,m and  + y~)/k-- ---~ I/k--+O, then yi ~ [x~,em]i,n,~n , and therefore un = 

[Xnl , em] = X. 
i The annihilator of the set fn is a subspace of Y, and the functionals gm, which coincide 

with the functionals gm on Y, are total on the subspace Y. Thus there exists an M-basis in 

the space X. [] 

The M-basis x~, ~, i~],  is called norming, if the subspace F=[f~:i~[] is norming, i.e., 
the norm IHxlll=sup{/{x):/~f, tl/lt~<l} is equivalent to the original norm II II of the space X. 
If the subspace {/~X*:supp/ is countable} is norming, where supp/={i~/f:/(x~)=/=O} , then the 
M-basis is called countably norming. Any norming M-basis is eountably norming. If for any 
subset Jc2 the subspace [x~:]c]] coincides with the annihilator (/~:i~])~ , the M-basis is 
called strong. We say that the norm of the space x is strictly convex, if for any linearly 
independent x, y~XIlx§ , and if it follows from the relations, [ txl l ---- t lxJt=i  and 
{Ix~ + x t l - +  2 that lIx~--xll-+0 , then the norm is called locally uniformly convex. 

THEOREM 3. There exists a Banach space X with the following properties: 

I) it has an M-basis and a complementary subspace (isometric to l=) without an M-basis; 

2) it has no equivalent uniformly convex norm, nor a countably norming or strong M-basis. 

Proof. Take the space X constructed in the proof of Theorem 2 with Y = l~. Condition 

~) is satisfied since l~ has no M-basis. 

The space l= has no equivalent locally uniformly convex norm [6, p. 93], and therefore 
neither has X. If the Banach space X has a countable norming M-basis, then for each separable 
subspace ZcX there exists a separable complementary space Z'~Z [7]. Take as Z the sub- 
space co~y , and construct the corresponding subspace Z'. The restriction of the (separable- 
valued) projector X + Z' on Y is identical on Z, and therefore is not weakly compact, which 
by Grothendieck [8] is impossible. 

Suppose that the space X has a strong M-basis xi, fi, i ~ i. Then there exists a 
countable subset ']~f, such that the closed linear hull X~=[x~:]~J] contains the subspace 

c0~Y. In the factor-space Xj/c0, choose an M-basis (ym, gm)~, gm~C~ and denote by ~, i~], 
the images of the corresponding elements under the factor-mapping X § X/c0. Since Xj = (fi: 
i~J) • the elements (x~, /~:i g~ J)[J(Y~,gm)F form an M-basis of the space X/c0. Therefore 
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X/c0 has an equivalent strictly convex norm [i, p. 692]. But its subspace Y/c0 cannot have 

an equivalent strictly convex norm [9]. Contradiction. 

3. An Enflo--Rosenthal basis is a set x~, i~-/, in a Banach space with [xi:i~/]-X , of 
which each countable subset can be ordered so that it becomes a basis in its closed linear 
hull. There exist functionals /~X*, biorthogonal to xi, where the set x, f~, i~]~ is a 

bounded M-basis (Singer [I, Sec. 17]). We introduce the ER-basis constant of an Enflo--Rosen- 
thal basis. For any sequence (~)~__I~I , let 

P(i,~) = sup,~, llP~[I, 
c o  

where Pk are projectors in the space [Xin]n= I onto the linear hull of the first k elements 
parallel to the rest. Let Q(i n) = infP(io(n)), where inf is taken over all permutations o(n) 
of the natural series. Finally, 

E R ( x J  = sup Q(i~, n = 1, ~ ) ,  

where the supremum is taken over all countable subsets (in, n = I, ~) in i. 

THEOREM 4. The ER-basis constant of an Enflo--Rosenthal basis is finite. 

Proof. If not, there would exist a sequence Jk of subsets of i, for which Q(Jk) § co as 
k § oo. Since for ]~]2 Q(f~)~Q(]~), then Q(UkJ~)=oo . But by the definition of an Enflo-- 
Rosenthal basis the set x~:i~Uj~ , for some ordering of the indices, forms a (Schauder) ba- 
sis, i.e., the corresponding projectors are jointly bounded. Contradiction~ m 

LEMMA 3. For any element x~S(X) , there exists a countable subset 7~, such that 

d(x, Ix, : i r 7] ~ I /ER(x,) .  ( ~ ) 

Proof. First suppose that x~lin(x~:i~i) , i.e., x=alxj~+ ..~ +a~xj . If the inequality 

is not satisfied for this x, this means that there exist a sequence (iT~)~__I ~ f and a number 

e > 0 such that for any k, d(x, [Xin]n~=~) < ~/(ER(x 0 + e). Then Q(xjl ..... xjm, xil ..... xi~,...) > 

ER(x i) + ~, which is impossible. If now the element x~S(X) is arbitrary and the sequence 
Yn ~S(lin(x~:i~])) is such that fly n -- yll § 0 as n § co, then let Jn be a set for which condi- 
tion (I) is satisfied for the element Yn. Then the union ]=U~J,~ is the required union. 

LEMMA 4. For each countable subset J0~f, there exists a countable subset ]~7~f, such 
that the projector P:X-~-[xj:]~7] , parallel to the subspace [x~:]~J] , exists, and its norm 
is not greater than ER(xi). 

Proof. We construct an increasing sequence of countable subsets ],~7 such that for 
any n 

d(S[x~ : ] ~ s  [xj : ] ~ J~+~] ) i> l /ER(xJ .  

For the set Jn, let (Ym) l be a dense subset of the sphere S[x~:i ~7,~] ~ For each Ym, from 
Lemma 3 there exists a countable set 7'~], such that d(g~, [x~:i@J(m>])>~I/ER(x~). Set Jn+z = 

co 

7~U Uj'L The set J=O Jn satisfies the conditions of the lermma. 
~ 0  

THEOREM 5.  An Enflo--Rosenthal basis is anorming M-basis. 

Proof. Since an Enflo--Rosenthal basis is an M-basis, for any element x there exists a 
countable subset ]o~i such that x~[xj:f~Jo]. By Lermna 4~ there exists a countable subset 
J0~J~i such that the norm of the projector P:X-+[x~:]~7] , parallel to [x~:i~]] , is not 
greater than ER(xi). We order the set (xj:]~]) so that the norms of the projectors Pk: 

[xn]~--~ [xn]~ ((x~)~ = (x~:] ~ ~)) are not greater than ER(xi). Then for the projectors C~ = Pk P 
and g ~ Q~X , 

ltgi[ = sup  ( f  (g) : f ~  B (X*)} = s u p  {/(Qky) : f ~ ' B  (X*)} = sup  {Q~.f(g) : ] ~ B (X*)} <~ sup  {/(g)  : / ~  ifQkllB (QkX*)} .  

Thus I I x H < ~ s u p { ] ( x ) : f ~ ( E R ( x l ) ) 2 B ( l i n ( f j : j ~ ] ) }  and the subspace [ f ~ : i ~ f ] ~ X *  is I/(ER(xi)) 2 norm- 
ing. 

LEMMA 5. Let X be a Banach space with projective basis x=:i~<s0 and biorthogonal 
functionals fa. 
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For any z~X and ~ > 0, there exists a finite number of ordinals a1,...,~n, such that 

~ Xa i x - -  ~ /~i  (x) < ~, 
i = 1  

Proof. For finite ordinals s0 the statement is obvious. Let P~ be natural projectors 
in the space X. Suppose that for all spaces with projective basis of length less than ~a, 
the lemma is proved. If a0 is not a limiting ordinal, then x----P%_ix+/%_1(x)x%_1. Since 

(x~:~<~0--1) is a projective basis in the space P=,-IX, then we choose ordinals ~l,.-.,a n 

s u c h  t h a t  I ] P % _ l X - - ~  ~ /~i(P%_lx)x~l<e. S i n c e  /~(P%_lx)=/~z(x), t h e n  x - - f  /~i(x)x~-- 
i 

i = l  i=l 

f%-I (x)x%_ I < e. If, however, ~o is a limiting ordinal, we then choose B --~o such that ilP~x- 

xZ]<g/2, and for the element PBx, by the inductive hypothesis there exists ordinals ~l,..., 

an < $ for which II s /~i(P~x)xczi--P~xl<e/2. Then x-- ~ f~i(x) xe i[<e. .  
Ii i=I ~=I 

THEOREM 6. Let X be a space with projective basis x~ and functionals f~ biorthogonal to 
it. For any element x~X , there exists a sequence of ordinals Bi, i = i, ~, suchthatx-- 

l ~ I ~ ( x )  x ~  ~ 0  a s  n §  

P r o o f .  L e t  t h e  s e q u e n c e  o f  n u m b e r s  ek § O, e k > O. By Lemma 5 we c a n  c h o o s e  o r d i n a l s  
n I 

ni ~2 
( ~ i )  1 s u c h  t h a t  [[x~[l<e~, w h e r e  x l=x--  ~_j / ~ i ( r )x~ i .  We t h e n  c h o o s e  o r d i n a l s  (~)~1+1 s u c h  t h a t  

~ = 1  
n 2 

IIx2[I < e 2 ,  w h e r e  x~ = x - - ~  /~ i (x )x~ i  , and  s o  o n .  As a r e s u l t  we o b t a i n  a s e q u e n c e  o f  o r d i n a l s  

~i and an increasing sequence of numbers nk, such that 

IIx~l'~ < ~ ,  

w h e r e  x~=x-- ~]~(x)xt h . We s h a l l  a s s u m e  t h a t  e a c h  s e t  (~3 i ,  i = n k + 1, nk+ z) i s  o r d e r e d  b y  

t h e  i n c r e a s e  o f  o r d i n a l s ,  i . e . ,  $ i  < ~3j i f  i < j .  L e t  c b e  t h e  p r o j e c t i v e  c o n s t a n t  o f  t h e  

p r o j e c t i v e  b a s i s  x~ and  l e t  n k < j < nk+ z .  Then  ~=,~+ ]~(x) xg~ < c~lx~- x~+~ ll, a n d  therefore 

"= i=nh+~ 

Denote by C[~] the space of order continuous functions on the interval of the ordinals 
[I, a]. The elements x~(~) = i for ~ ~< ~,andx~(E)=Ofor ~ > ~, form a natural projective 
basis there with biorthogonal functionals fs(x) = x(~) -- x(~ + I) (see [I, p. 590]). 

LEMMA 6. In the (separable) space C[~ 2], the elements (x~) do not form a basis for any 

permutation of the indices. 

Proof. This fact can be deduced, for example, from the fact that functionals biorthogo- 
nal to (x 8) span a nonnorming subspace [10]. For the convenience of the reader, we shall 
give a direct proof. Let (Xn) ~ be some permutation of the elements xB, I < ~ ~< 2. Choose 

from this elements (xn~)i=~ such that xui ~(x~i:io)~<(i+i)o)). From the set (Xn:n > nk), 

choose elements Xm i, i = 1, k such that xm~(x~:~<(i-~i)w), where Bi is an ordinal such 

that x~i = Xni. Then x~ ----k, and Xn~-- xml ----I, which contradicts the criterion that 
i = i  ~=i 

the basis be projective. 

From Theorem 6 and Lemma 6, we have: 

COROLLARY 2. For any x~C[o~ ~] there exists a permutation X~n of the natural projective 

basis x$, such that x=~a~x~, but x8 does not form a basis for any permutation of the in- 

dices. "=~ 
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4. Borel Components~ THEOREM 7. Let X be an infinite-dimensional Banach space with 

Hamel basis (x~:?~F), and let e~:?~ F be the natural unit vectors in the space ll(F) o The 

linear mapping A(lo~x~a~e~ from X into If(F) has the following properties: 

I) AX is a nonclosed Borel subset of the space ll(F), with closed complement there~ 

2) the graph G(A) is a Borel subset of the product X • If(F); 

3) A-flAx is continuous; 

4) A is injective and discontinuous. 

Proof. The nonclosure of the subspace AX, the continuity of the restriction A-!lAX, and 
the injectivity and discontinuity of the operator A, are obvious. The kernel Z0 of a con- 
tinuous extension of the operator A-IIAX is a closed complement of AX. The subset Z,={z~ 
Z~(F):eardsnppz:~n}~4(F) is closed, and therefore AX=U.Z,~ is Borel. The graph G(A) = 
G(A -I) of the continuous operator A-I!AX is a closed subset of the product X • AX, which is 
a Borel subset of X • Y. Therefore it is also Borel. [] 

Remark. If as the space X we take, for example, 12, then the sunspaee Z0 does not have 
any closed complement in If(F), although it has a Borel complement. This follows from the 
fact that ll(F) does not contain an infinite-dimensional subspace isomorphic to a Hilbert 
space. 

THEOREM 8. There exist a Banach space Y and a linear injective discontinuous operator 
from Y to ll(F), with Borel graph. 

Proof. Let A, X, Z0, and Z n be as in Theorem 7 and let Y0 be some space isometric to Z0 
with the isometry i:Y0 § Z0. Set Y = X + Y0 with the norm Ny!!=[ix!l +i!y011, y=z+~0, x~X, y~Y0. 
Define a mapping B:Y + ll(F) by the equation 

B ( x + y o )  = Ax+lyo. 
For the proof we need only to show that the graph G(B) is Borel. Clearly, G(B) ~ UGn, where 

G~,={(x+yo, Aa'+]yo):Ax~Z,~}. Let [I(x~+Y~, Ax~ +Iy~).--(y,z)l!-+O for k--+oe, (x~+~,Ax~+ 
" i'~ i l - + O .  Since X and Yo are closed fy~)~G~. This means that llxh+y~--yll-+0 and liAxh+ lyo--z 

complementary subspaces of the Banach space Y, x k tends to some x ~ X, where y~ tends to some 

y0 ~ Y0, where y = x + Y0. Then iy~ § Iy0 and Ax k § z- iy0. Since the subset Z= c t,(F) is 
closed, z -- ly0 ~ Z~. The operator A is continuous, and therefore Ax = z -- iy0~ Thus, B(y) = 
B(x + y0) = Ax + iy0 = z -- iy0 + iy0 = z, where z-- @0 ~ Z,,o We have proved that the sets G n 
are closed, and therefore the graph G(B) is Borel. [] 
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