Let X be a Banach space. The subspace F of the conjugate space $X *$ is called normalizing, if its Diksmay characteristic $r(F)=\sup \left\{r: r B\left(X^{*}\right) \curvearrowleft c l^{*} B(F)\right\}>0$, where $B(X)$ is the unit sphere in the space X, and $c 1 * A$ is the weak* closure of the subset $A \subset X[1$ (see [1, p. 29]). It is known (see [1, p. 39]) that a numerical region of characteristic $\Re(X)=\left\{\lambda: \exists \bar{F} \in X^{*}, r(F)=\lambda\right\}$, where F is a total proper subspace of X^{*}, closed in norm, is an interval (0 , a), whose ends may or may not be included. In this article we study the relationship between the numerical region of characteristic of the space X and its subspace Y, the possible values of the number a, and we also introduce the concept of a strongly normalizing subspace, and we show that for improperly defined problems on linear finite-dimensional Tikhonov regularizability (and its equivalent functional-analytic properties), this concept fills the role of a normalizing subspace for simple regularizability.

1. The numerical region of characteristic was studied in [1-4]. In particular, it follows from the result of [4] that for a space X with unconditional orthogonal spanning basis, we always have $\Re(Y) \subset \Re(X)$ for any subspace $Y \subset X$. In connection with this, the following question naturally arises: do we always have $\Re(Y) \subset \Re(X)$, if Y is a subspace of X. The following statement shows that when Y is well complemented in X, the conclusion holds.

THEOREM 1. Let Y and Z be closed, mutually complementary subspaces of the Banach space $X: X=Y \oplus Z$, and let the norm of the sum have the "lattice property": if $\left\|y_{1}\right\| \leqslant\left\|y_{2}\right\|$ and $\left\|z_{1}\right\| \leqslant\left\|z_{2}\right\|$ then $\left\|y_{1}+z_{1}\right\| \leqslant\left\|y_{2}+z_{2}\right\|$ for arbitrary $y_{i} \in Y, z_{i} \in Z, i=1,2$. Then $\Re(Y) \subset \Re(X)$ and $\Re(Z) \subset \Re(X)$.

Proof. It is sufficient to verify the inclusion $\Re(Y) \subset \Re(X)$. It follows from the conditions of the theorem that the norms of the natural projectors $X \rightarrow Y$ and $X \rightarrow Z$ are equal to one. It is known (see, for example, [5]), and is easily verified, that in this case $X *=$ $Z^{\perp} \oplus Y^{\perp}$, where Z^{\perp} and Y^{\perp} are the annihilators in X^{*} of the corresponding subspaces, and moreover Z^{\perp} is isometric to Y^{*}, and Y^{\perp}, to Z^{*}; the isometry is defined in the natural way. Therefore we shall identify Y^{*} with Z^{\perp}, and Z^{*} with Y^{\perp}. It is also easily verified that if the norm of the sum $Y \oplus Z$ has the "lattice property," then the same is also true for the annihilators: for arbitrary $f_{i} \in Z^{\perp}$ and $g_{i} \in Y^{\perp}, i=1,2$, it follows from $\left\|f_{1}\right\| \leqslant\left\|f_{2}\right\|$ and $\left\|g_{i}\right\| \leqslant\left\|g_{2 i}\right\|$ that $\left\|f_{1}+g_{1}\right\| \leqslant\left\|f_{2}+g_{2}\right\|$

Let M be a subspace of $Y *=Z^{\perp}$ of characteristic a. We show that the characteristic of the subspace $F=M \oplus Y^{\perp} \subset X^{*}$ is not less than a. Take an arbitrary element $u=f+g \in X^{*}$, $f \in Z^{\perp}, g \in Y^{\perp}$, with norm $\|u\|=a$. Then $\|f\| \leqslant a$, and by the definition of characteristic there exists a net $\left\{f_{\alpha}\right\}_{\alpha \in A} \subset\|f\| B(M) / a$, which converges weakly* to f. Then the net $\left\{f_{\alpha}+g\right\}_{\alpha \in A} \subset F$ weakly* converges to u. Since $\left\|f_{\alpha}+g\right\| \leqslant\| \| f\left\|a^{-1} f+g\right\| \leqslant\left\|a^{-1} f+a^{-1} g\right\|=1$, then $r(F) \geqslant a$. The inclusion $\Re(Y) \subset \Re(X)$ is proved.

We introduce an example of a Banach space X, for which there exists a subspace Y such that $\Re(Y) \not \subset \Re(X)$. Moreover Y has a one-dimensional complement Z and the norms of the natural projectors $X \rightarrow Y$ and $X \rightarrow Z$ are equal to 1 .

Example 1. For any set M, the notation $c_{0}(M), Z_{1}(M), Z_{\infty}(M)$ has the standard sense (see [1, p. 7]). Denote by X the subspace $Z_{\infty}(M)$, where $M=\{-1\} \cup\{0\} \cup N$, where N is the natural numbers, spanned on $\mathrm{c}_{0}(\mathrm{~N})$, and consider the elements $e_{0}: e_{0}(m)=1, m \in M$ and $e_{-1}: e_{-1}(-1)=$ $1, e_{-1}(0)=-1, e_{-1}(n)=0, n \in N$. We show that $X *=I_{1}(M)$. Duality is defined by the formula $\mathrm{f}(\mathrm{x})=\Sigma_{-1}^{\infty} f(m) x(m), f \in l_{1}(M), x \in X$. Since $|f(x)| \leqslant\|x\| \Sigma_{-1}^{\infty}|f(m)|$, then $\|f\|_{X^{*}} \leqslant \Sigma_{-1}^{\infty}|f(m)|$. For each $\varepsilon>0$, it is easy to select an element $x \in B(X)$, for which $f(x)>\Sigma_{-1}^{\infty}|f(m)|-\varepsilon$. Therefore

Institute of Applied Problems of Mathematics and Mechanics, Academy of Sciences of the Ukrainian SSR, Lvov. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 36, No. 4, pp. 427-433, July-August, 1984. Original article submitted May 16, 1983.
$X^{*} \supset l_{1}(M)$. Since $c_{0}(N) *=Z_{1}(N)$, and $c_{0}(N)$ and $Z_{1}(N)$ differ from X and $Z_{1}(M)$ by precisely two dimensions, then $X^{*}=\tau_{I}(M)$.

The subspace $Y=c_{0}(N)+\left[e_{0}\right] \subset X$ is isometric to the space of convergent sequences c ([A] denotes the norm-closed linear hull of the set A), and therefore $\Re(Y)=[0,1]$ (see [2]). Moreover, the subspace Y has in X complement $Z=[e-1]$, and the norms of the corresponding projectors are equal to one.

We show that $\Re(X) \subset[0,2 / 3]$. To do this we note that $l_{1}(M)^{*}=l_{\infty}(M)$, and for one of the equivalent definitions of the characteristic [1, p. 30] it is sufficient to show that for an arbitrary element $\varphi \in l_{\infty}(M)$

$$
\begin{equation*}
\inf \{\|\lambda \varphi-x\|: x \in X,\|x\|=1, \lambda \in \mathbb{R}\} \leqslant 2 / 3 . \tag{1}
\end{equation*}
$$

As usual we identify the space X with its canonical image in the second conjugate.
Take any element $\varphi \in l_{\infty}(M)$ with norm 2/3. If $\sup \{|\varphi(n)|: n \in N\} \geqslant 1 / 3$, then for any $\varepsilon>0$ there exists $k \geqslant 1$ such that $|\varphi(k)|>1 / 3-\varepsilon$. Let $e_{k} \in X$ be a unit vector: $\mathrm{e}_{\mathrm{k}}(\mathrm{k})=1$, $e_{k}(\mathrm{~m})=0$, $\mathrm{m} \neq \mathrm{k}$. Then $\left\|e_{k}\right\|=1,\left\|\varphi-\operatorname{sign} \varphi(k) e_{k}\right\| \leqslant 2 / 3+\varepsilon$ and for such a φ, inequality (1) is satisfied. If, however, $|\varphi(n)|<1 / 3, n>0$, then either $|\varphi(-1)|=2 / 3$ or $|\varphi(0)|=2 / 3$. The space X contains the elements $x=\left(e_{0}+e_{-1}\right) / 2$ and $y=\left(e_{0}-e_{-1}\right), 2,\|x\|=\|y\|=1$. If $|\varphi(-1)|=2 / 3$, then $\| 2^{-1} \varphi-$ $\operatorname{sign} \varphi(1) X x \| \leqslant 2 / 3$, i.e., inequality (1) is also satisfied in this case.

THEOREM 2. Let $(X,\|\cdot\|)$ be a Banach space and let $R(X,\|\cdot\|)=\sup \{\lambda: \lambda \in \Re(X)\}=a>0$. Then for an arbitrary number $b \in[a, 1]$, there exists a norm $\|\|$. $\| \|$ on X, equivalent to the original norm, for which $R(X, \||\cdot|| |)=b$.

Proof: Let $F \subset(X,\|\cdot\|)^{*}$ be any proper normalizing subspace, one of which must exist by the conditions of the theorem. Then the norm $\|x\|_{1}=\sup \{|f(x)|: f \in F,\|f\| \leqslant l\}$ is equivalent to the original norm and $R\left(X,\|\cdot\|_{1}\right)=1$. For any $\lambda \in[0,1]$ we define a norm on the space $X:\|x\|_{\lambda}==$ $\lambda\|x\|_{1}+(1-\lambda)\|x\|$. Clearly, it is equivalent to the original norm, and the Banach-Mazur distance $d\left(\left(X,\|\cdot\|_{\mu}\right),(X,\|\cdot\| \lambda)\right) \rightarrow 0$ as $\mu \rightarrow \lambda$. Since for arbitrary Banach spaces X and $Y R(X) \leqslant d(X$, $Y) R(Y)$ (see [3]), the mapping φ, which associates with each $\lambda \in[0,1]$ a number $R(X,\|\cdot\| \lambda)$, is continuous, and $\varphi(0)=\alpha, \varphi(1)=1$. Since a continuous function takes all its intermediate values, the theorem is proved.

While the conditions under which the left boundary of the numerical region $\Re(X)$ is contained in $\Re(X)$ are fully described (see [1, p. 78]), it is not clear when $R(X) \in \Re(X)$. We introduce an example showing that for an arbitrary number $1 / 2 \leqslant a \leqslant 1$ there exists a Banach space X with $\Re(X)=[0, a]$.

Example 2. Let $0 \leqslant \alpha \leqslant 1$. Consider the subspace $c_{\alpha}=c_{0}(N)+\left[e_{\alpha}\right] \subset l_{\infty}(N \cup\{0\})$, where e_{α} is defined thus: $e_{\alpha}(0)=1, e_{\alpha}(n)=\alpha, n \geqslant 1$, and we show that $\mathrm{M}^{2}\left(c_{\alpha}\right)=\left[0,\left(1+\alpha^{2}\right) / 2\right]$.

We note that $c_{\alpha}^{*}=l_{1}(N \cup\{0\})$ with the natural duality, and $c_{\alpha}^{* *}=l_{\infty}(N \cup\{0\})$. We first prove the inequality $R\left(c_{c}\right) \leqslant\left(1+\alpha^{2}\right) / 2$, i.e., for an arbitrary element $\varphi \in l_{\infty}(N \cup\{0\})$ we verify the relation

$$
\begin{equation*}
\inf \left\{\|\lambda \varphi-x\|: x \in c_{\alpha},\|x\|=1, \lambda \in \mathbb{R}\right\} \leqslant\left(1+\alpha^{2}\right) / 2 \tag{2}
\end{equation*}
$$

If for some index $k>0|\varphi(k)| \geqslant\left(1-\alpha^{2}\right)\left(1+\alpha^{2}\right)$, then $\left\|2^{-1}\left(1+\alpha^{3}\right) \varphi-\operatorname{sign} \varphi(k) e_{k}\right\| \leqslant \max \left\{\left(1+\alpha^{2}\right) / 2,1-\right.$ $\left.\left(1+\alpha^{2}\right)\left(1-\alpha^{2}\right) / 2\left(1+\alpha^{2}\right)\right\}=\left(1+\alpha^{2}\right) / 2$, where e_{k} is the k-th unit vector of the space co(N). Let $|\varphi(n)|<\left(1-\alpha^{2}\right) /\left(1+\alpha^{2}\right)$ for any $n>0$. Then $|\varphi(0)|=1$; we may assume that $\varphi(0)=-1$. In the case $\varlimsup_{n}|\varphi(n)|=a<(1-\alpha j /(1+\alpha)$, i.e., when $|\varphi(n)|>(1-\alpha) /(1+\alpha)$ for only a finite number of positive indices n_{1}, \ldots, n_{m}, the norm of the element $x=e_{\alpha}-\sum_{i=1}^{m} 2^{-1}\left(1-\alpha^{2}\right) \varphi\left(n_{i}\right) e_{n_{i}}$ is equal to 1 , and considering separately the values of the function $2^{-1}\left(1-\alpha^{2}\right) \varphi+x$ at the points 0 , n_{i}, $i=\overline{1, m}$ and at the remaining points, we obtain $\left\|2^{-1}\left(1-\alpha^{2}\right) \varphi+x\right\| \leqslant\left(1+\alpha^{2}\right) / 2$.

Finally, when $\alpha>(1-\alpha) /(1+\alpha)$, we choose an arbitrary ε and index $k>0$ such that $a-\varepsilon<|\varphi(k)|<a+\varepsilon$. Let $n, \ldots, \mathrm{n}_{\mathrm{m}}$ be a finite number of positive indices for which $\left|\varphi\left(n_{i}\right)\right|$ $a+\varepsilon$. Set $\lambda=(1+\alpha) /(2 a+\alpha(1+a)), b=(1-a) /(2 a+\alpha(1+a))$. Then the norm of the element $y=b e_{\alpha}-(b \alpha+\operatorname{sign} \varphi(k)) e_{k}-\sum_{i=1}^{m} \lambda \varphi\left(n_{i}\right) e_{n_{i}}$ is equal to 1 , and considering separately the values of the function $\lambda \varphi+y$ at thepoint $0, k, n_{i}, i=\overline{1, m}$ and at the other points, we obtain $\|\lambda \varphi-y\| \leqslant(\alpha+a) /(2 a+\alpha(1+a))+\varepsilon(1+\alpha) /(2 a+\alpha(1+\alpha)) \leqslant(1+\alpha)^{2} / 2+\varepsilon(1+\alpha)^{2} / 2$. Inequality (2) follows from the fact that ε was chosen arbitrarily.

We show that for the element $\varphi \in c_{\alpha}^{* *}: \varphi(0)=-1, \varphi(n)=(1-\alpha) /(1+\alpha), n>0$, the characteristic of the subspace $\varphi \perp \subset c_{\alpha}^{*}$ is exactly equal to $\left(1+\alpha^{2}\right) / 2$, i.e., for any $x \in c_{\alpha},\|x\|=1$ and $\lambda>0\|\lambda \varphi+x\| \geqslant\left(1+\alpha^{2}\right) / 2$. Suppose that for some x and λ

$$
\begin{equation*}
\|\lambda \varphi+x\|<\left(1+\alpha^{2}\right) / 2 \tag{3}
\end{equation*}
$$

If $|x(k)|=1$ for some k, then since $\lambda \varphi(k)<0$ it makes sense to consider only the case $x(k)=$ -1 . By inequality (3) $-\lambda \varphi(k)-x(k)<\left(1+\alpha^{2}\right) / 2$; therefore, $\lambda>\left(1+\alpha^{2}\right) / 2$. Substituting this estimate in the relation $-\lambda \varphi(0)-x(0)<\left(1+\alpha^{2}\right) / 2$, we obtain $x(0)>\alpha$. Substitute the values for $\mathrm{x}(0)$ and λ in the inequality $\overline{\lim }_{n}(\lambda \varphi(n)+x(n))>\left(1+\alpha^{2}\right) / 2$; we obtain the contradictory relation $\left(1+\alpha^{2}\right)(1-\alpha) / 2(1+\alpha)+\alpha \alpha<\left(1+\alpha^{2}\right) / 2$. If, however, $|x(n)|<1$ for all $n>0$, then $|x(0)|=$ 1 ; it makes sense to consider only the case $x(0)=1$. By (3), $\lambda \varphi(0)+x(0)<\left(1+\alpha^{2}\right) / 2$; therefore $\lambda>\left(1-\alpha^{2}\right) / 2$. Substituting this estimate for λ in the inequality $\lim _{n}(\lambda \varphi(n)+x(n))<(1+$ $\left.\alpha^{2}\right) / 2$, we again obtain a contradiction. Therefore $r\left(\varphi^{\perp}\right)=\left(1+\alpha^{2}\right) / 2$, and then $\left(0,\left(1+\alpha^{2}\right) / 2\right] \subset \Re\left(c_{\alpha}\right)$ (see [1], p. 39). It is easily verified that the space c_{α} is isomorphic to c_{0} (the isomorphism is established in the same way as between c and c_{0}). Therefore c_{α} is nonquasireflexive and contains a total subspace of zero characteristic (see [1, p. 78]); therefore $\Re\left(c_{\alpha}\right)=[0$, $\left.\left(1+\alpha^{2}\right) / 2\right]$.
2. Let E be a Banach space and let M be a total linear subspace of E^{*}. We say that it is strongly λ-normalizing $(0<\lambda \leqslant 1)$ if for any finite-dimensional subspaces $X \in E$ and $F \subset E^{*}$ inf max $\left\{\|T\|,\left\|T^{-1}\right\|\right\} \leqslant \lambda^{-1}$, where the infimum is taken over all operators $T: F \rightarrow M$, for which $\langle\mathrm{x}, \mathrm{f}\rangle=\langle\mathrm{x}, \mathrm{Tf}\rangle$ for any $x \in X, f \in F$, and if λ is the maximal of those numbers for which this inequality is satisfied. We call the number λ the strong characteristic $s r(M)$ of the subspace M. In the case when the value of the constant λ is not important, we shall use the terminology "strongly normalizing subspace."

This definition is evoked by the principle of local reflexivity [6], which states that $E \subset\left(E^{*}\right)^{*}$ is strongly 1 -normalizing. Clearly, if the subspace $N \subset M$, then $\operatorname{sr}(N) \leqslant \operatorname{sr}(M)$ and $\operatorname{sr}(M) \leqslant r(M)[r(M)$ is the usual characteristic of the subspace $M]$. It is also easily verified that $\operatorname{sr}(\bar{M})=\operatorname{sr}(M)$ for the closure \bar{M} in norm of the subspace M,

THEOREM 3. Let E be a Banach space, let M be a strongly normalizing subspace of E^{*}, let $a^{>}>0$ and let J be a factor-mapping of $E * *$ into $E * * / M^{\perp}=M^{*}$. Let N be a subspace of M with the following property: for any finite-dimensional subspace $Z \subset J E$, there exist normclosed subspaces $\Phi \supset Z$ and $\Psi \supset N^{\left(\perp_{M}\right)}$ in M^{*}, and a projector $P: M^{*} \rightarrow \Phi$ parallel to Ψ with $\|P\| \leqslant a$, where $N^{\left({ }^{(}{ }_{M}\right)}$ is the annihilator in M^{*}. Then N is strongly normalizing.

Proof. Since under norm closure, strong normalizability is not affected, then without loss of generality we may assume that the subspaces M and N are norm-closed. Let X and F be finite-dimensional subspaces of E and $E *$, let $\varepsilon>0$ and let $Y \supset X$ be a finite-dimensional subspace of E such that for each $f \in F\|f\|<(1+\varepsilon) \sup \{f(y): y \in \dot{B}(Y)\}$.

Let $T: F \rightarrow M$ be an operator with $\langle y, f\rangle=\langle y, T f\rangle$ for arbitrary $y \in Y$ and $f \in F$, and let $\max \left\{\|T\|,\left\|T^{-1}\right\|\right\} \leqslant \lambda^{-1}, \lambda>\operatorname{si} M-\varepsilon$. Let $Z=J Y$ and let Φ, Ψ and P be the objects mentioned in the conditions of the theorem. The conjugate operator P^{*} maps $M * *$ into $\Psi^{\perp} \subset\left(N^{\left(\perp_{M}\right)}\right)^{\perp}$, parallel to Φ^{\perp}. Identifying $\left(N^{\left(\perp_{M}\right)}\right)^{\perp}$ with $N^{* *}$, we may assume that P^{*} maps $\mathrm{M}^{* *}$ into $\mathrm{N}^{* *}$. Then for $y \in Y$ and $f \in F$, denoting by J^{\prime} the factor-mapping of M^{*} into $M^{*} / N^{(\perp M)}=N^{*}$, we have

$$
\begin{equation*}
\langle y, f\rangle=\langle y, T f\rangle=\langle J y, T f\rangle=\left\langle J y, P^{*} T f\right\rangle=\left\langle J^{\prime} J y, P^{*} T f\right\rangle . \tag{4}
\end{equation*}
$$

By the condition $\|\mathrm{P} *\|=\|\mathrm{P}\| \leqslant a$. For the restriction $\mathrm{P} * \mid$ TF we estimate the norm of the inverse. Let $g \in T F,\|g\|=1, f=T^{-1} g$ and let $y \in B(Y)$ be an element for which $\|f\|<(1+\varepsilon) f(y)$. Then $\|J y\| \leqslant 1$ and $\left\langle P^{*} g, J y\right)=\langle T f, P J y\rangle=\langle T f, J y\rangle=\lambda /(1+\varepsilon)$, since $\left\|\left(\left.P^{*}\right|_{T F}\right)^{-1}\right\|<\lambda^{-1}(1+\varepsilon)$. Applying the principle of local reflexivity to the space N and the subspaces $G=P^{*} T F \subset N^{* *}$ and $J^{\prime} Z \subset N^{*}$, we obtain a subspace $H \subset N$ and an operator $\mathrm{R}: \mathrm{G} \rightarrow \mathrm{H}$, for which max $\{\|R\|$, $\left.\left\|R^{-1}\right\|\right\}<1+\varepsilon$ and $\langle z, \mathrm{~g}\rangle=\langle z, \mathrm{Rg}\rangle$ for $z \in J^{\prime} Z$ and $g \in G$. Set $\mathrm{S}=\mathrm{RP*T}$. It is easily seen that this operator maps F into N. Moreover, for $x \in X \subset Y$ and $f \in F$, by (4) we have $\langle x$, $f\rangle=$ $\left\langle J^{\prime} J x, P * T f\right\rangle=\left\langle J J^{\prime} x, R P * T f\right\rangle=\langle x, S f\rangle$.

Finally, there exist constants bounding $R, P * \mid T F$ and their inverses, which do not depend on the subspaces X and F. Therefore there exists a number μ such that max $\left\{\|S\|,\left\|S^{-1}\right\|\right\}<\mu$, i.e., the subspace $N \subset E^{*}$ is strongly normalizing.

COROLLARY 1. If M is a strongly normalizing subspace of E^{*} and $N \subset M$ is a total subspace on E with dim $M / N<\infty$, then N is strongly normalizing. In particular, if N is a total subspace of finite defect in E^{*}, then N is also strongly normalizing.

In fact, since $\operatorname{dim} M / N<\infty$, then the annihilator $N^{\left(\perp M^{\prime}\right)} \subset M^{*}$ is finite-dimensional. From the totality of N we have $N^{(\perp M)} \cap J E=0$. . Moreover, the restriction $J \mid E$ is an isomorphism, and therefore the subspace $J E \subset M^{*}$ is closed. Therefore it can be extended to a closed subspace Φ, complementary to $N^{\left(\perp_{M}\right)}$, and we can apply Theorem 3 with $\Psi=N^{\left(\perp^{\prime}\right)}$.

We recall that the Banach space E is called quasireflexive if dim $E * * / E<\infty$.
COROLLARY 2. The Banach space E is quasireflexive if and only if any total subspace $M \subset E^{*}$ is strongly normalizing.

For a nonquasireflexive space, there exists a total normalizing subspace $M \subset E^{*}$ (see [1, p. 78]), which of course is not strongly normalizing. Since each norm-closed total subspace of M, conjugate to the quasireflexive E, has finite defect in E^{*}, then Corollary 2 follows from Corollary 1.

The Banach space E is called a \mathfrak{Z}_{∞}-space, if there exists a number $\lambda>0$ such that for any finite-dimensional subspace $X \subset E$, there exists a finite-dimensional subspace $Y \supset X$ and a linear bijective operator $T: Y \rightarrow l_{\infty}^{(n)}$ with norm $\max \left\{\|T\|,\left\|T^{-1}\right\|\right\}<\lambda$.

COROLLARY 3. Let E be a \mathcal{Z}_{∞}-space. Then any normalizing subspace $M \subset E^{*}$ is strongly normalizing.

Proof. Let $X \subset E$ be a finite-dimensional subspace and let Y, λ and T be the objects in the definition of a \mathcal{Z}-space. Since M is normalizing, then in the space $E+M^{\perp} \subset E^{* *}$ there exists a continuous projector $q: E+M^{\perp} \rightarrow E$ parallel to M^{\perp}. Consider the mapping $T Q:$ $\mathrm{E}+\mathrm{M}^{\perp} \rightarrow l_{\infty}^{(n)}$. By p. 247 of [7], this can be extended to an operator $S: E^{* *} \rightarrow l_{\infty}^{(n)}$, preserving the norm. Set $\mathrm{P}=\mathrm{T}^{-1} \mathrm{~S}$. The operator P projects the space $\mathrm{E}^{*} *$ onto $Y \supset X$ parallel to Ker $P \supset M$; thus we can apply Theorem 3, setting $M=E^{*}, N=M, \Phi=Y, \Psi=\operatorname{Ker} P$.

We recall that the Banach space E has the λ-metric approximation property (the λ-MAP), if for any finite-dimensional subspace $X \subset E$ and any $\varepsilon>0$, there exists a finite-dimensional linear operator $R_{X, \varepsilon}: E \rightarrow E$ with $\left\|R_{X, \varepsilon}\right\| \leqslant h$ and $\left\|R_{X, \varepsilon} x-x\right\| \leqslant \varepsilon\|x\|$ for $x \in X$. If the space X has the λ-MAP for some $\lambda \geqslant 1$, then we say that it has the bounded approximation property (the BAP). We call the set $\Re=\left\{R_{X, 8}\right\}$ the set of λ-approximating operators. For a given E , there may of course be many such sets \Re. Set $M_{\Re}=\operatorname{lin}\left\{R^{*} E^{*}: R \subset \Re\right\}$.

THEOREM 4. Let the Banach space E have the λ-MAP. Then:

1) $\left.\mathrm{sr}{ }^{\prime} M_{\mathfrak{R}}\right) \geqslant \lambda^{-1}$;
2) if for the linear subspace $M \subset E^{*}, \operatorname{sr}(M)>\mu^{-1}$, then in the space E there exists a set \Re_{1} of $\lambda \mu$-approximating operators, such that $M_{\Re_{1}} \subset M$.
Proof. 1) Let $X \subset E$ and $F \subset E^{*}$ be finite-dimensional subspaces and let $\varepsilon, \delta>0$. Choose a finite-dimensional subspace $X \subset Y \subset E$, such that for any $f \in F$

$$
\begin{equation*}
\|f\|<(1+\delta) \sup \{f(y): y \in B(Y)\} . \tag{5}
\end{equation*}
$$

Let $R_{Y, e \in \Re}$ be an approximating operator corresponding to the subspace Y and the number ε. By Lemma 2.4 of [6], we can choose an operator R_{1} with $\left.R_{1}\right|_{Y}=\left.I\right|_{Y},\left\|R_{1}-R\right\|<(1-\varepsilon)^{-1} \varepsilon \lambda \operatorname{dim} Y$ and $R_{1}^{*} E^{*}=R^{*} E^{*} \subset M_{\Re}$. Then for $y \in Y$ and $\mathrm{f} \in F,\left\langle y, R_{1}^{*} f\right\rangle=\left\langle R_{1} y, f\right\rangle=\langle y, f\rangle$. Moreover, $\left\|R_{1}\right\|=\left\|R_{1}\right\| \leqslant$ $\left\|R-R_{1}\right\|+\|R\| \leqslant(1-\varepsilon)^{-i} \varepsilon \lambda \operatorname{dim} Y+\lambda . \quad$ For $f \in F,\left\|R_{1}^{*} f\right\|=\sup \left\{\left\langle e, R_{!}^{*} f\right\rangle: e \in B(E)\right\}=\sup \left\{\left\langle R_{1}, e, f\right\rangle: e \in B(E)\right\} \geqslant \sup \left\{\left\langle R_{1} \psi\right.\right.$, $f>: y \in B(Y)\}=\sup \{f(y): y \in B(Y)\} \geqslant\|f\|(1+\delta)$. In the last inequality we are using formula (5). Thus $\|f\|<(1+\delta)\left\|R_{f}^{*} f\right\|$, i.e., the norm of the restriction $\left\|\left(\left.R_{\mid}^{*}\right|_{f}\right)^{-1}\right\|<1+\delta$. Inequality 1) follows from the fact that ε and δ were chosen arbitrarily.
2) Let \Re be the family of λ-approximating operators, let X be a finite-dimensional subspace of E , let $\varepsilon>0$, let $R_{X, \varepsilon} \in \Re$ be the operator corresponding to them, and let S be the operator associated with the mapping R by Lemma 2.4 of [6]. Let $T: S^{*} E^{*} \rightarrow M$ be an operator for which $\langle x, T f\rangle=\langle x, f\rangle$ for $x \in X, f \in S^{*} E^{*}$ and $\|T\|\left\langle\mu\right.$. Set $T_{1}=T S^{*}$. Then T_{1} is a finite-dimensional operator mapping E^{*} into M , where $M,\left\|T_{\mathrm{i}}\right\| \leqslant\|T\|\left\|S^{*}\right\| \leqslant \mu\left[(1-\varepsilon)^{-i} \lambda \varepsilon d \mathrm{dim} X+\lambda\right]$ and for $x \in X$ and $f \in E^{*},\left\langle T_{1}^{*} x, f\right\rangle=\left\langle x, T_{1} f\right\rangle=\left\langle x, T S^{*} f\right\rangle=\left\langle x, S^{*} f\right\rangle=\langle S x, f\rangle=\langle x, f\rangle$. Therefore $\mathrm{T}_{1 \mathrm{x}}^{*}=\mathrm{x}$ (E is considered as a subspace of $\mathrm{E}^{\star *}$). By Lemma 3.1 of $[6]$, there exists a weakly* continuous
operator $\mathrm{S}_{1}: \mathrm{E}^{*} \rightarrow \mathrm{~T}_{1} \mathrm{E}$ such that a) $\left\|f_{1}\right\| \leqslant\left\|T_{1}\right\|(1+\varepsilon)$ and b$) \mathrm{S}_{1}^{*} \mathrm{y}=\mathrm{T}_{1}^{*} \mathrm{y}$, only if $T_{1} y \in E$. The operator R_{l} into E, to which S_{l} is conjugate, is bounded by the expression $\mu\left[(1-\varepsilon)^{-1} \lambda \varepsilon d i m X+\right.$ $\lambda](1+\varepsilon), R_{1} x=x$ and $R_{1}^{*} E^{*} \subset M$. The number ε may be chosen sufficiently small so that $\left\|R_{1}\right\|<\lambda \mu$.

In the case of a separable space E, the set of approximating operators \mathfrak{K} becomes a sequence R_{n}, pointwise converging to the unit operator I. We recall that for each of the equivalent definitions [8], the operator inverse to the linear continuous injective operator $A: X \rightarrow Y$, where X and Y are normed spaces, is called linearly finite-dimensionally regularizable, if there exists a sequence of linear continuous finite-dimensional operators $\mathrm{B}_{\mathrm{n}}: Y \rightarrow$ X , for which for any $y \in A X,\left\|B_{n} y-A^{-1} y\right\| \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.

THEOREM 5. Let A be a linear continuous injective operator from the separable Banach space X into the normed space Y. The following statements are equivalent:

1) A^{-1} is linearly finite-dimensionally regularizable;
2) X has the BAP, and for the subspace $M=A^{*} Y^{*} \subset X^{*}$, sr $(M)>0$.

Proof. If B_{n} are the operators approximating A^{-1}, then the operators $B_{n} A$ approximate the unit operator, and therefore are bounded in total, so that $\left(B_{n} A\right)^{*} \subset M$. Then by Theorem 4 $\operatorname{sr}(M)>0$; therefore we have established the implication 1) $\Rightarrow 2$). It follows from 2) and the first part of Theorem 4 that there exists a sequence of linear continuous finite-dimensional operators $R_{n}: X \rightarrow X$, converging to I, for which $R_{n}^{*} X^{*} \subset M$. This condition ensures that A^{-1} is linearly finite-dimensionally regularizable [8].

LITERATURE CITED

1. Yu. I. Petunin and A. N. Plichko, The Theory of Characteristics of Subspaces and Its Applications [in Russian], Vishcha Shkola, Kiev (1980).
2. B. V. Godun and M. I. Kadets, "The set of values of the characteristic of subspaces of a conjugate space," in: The Theory of Functions, Functional Analysis and Its Applications [in Russian], Vol. 29, Kharkov (1978), pp. 25-31.
3. B. V. Godun, "Normalizing subspaces in certain conjugate Banach spaces," Mat. Zametki, 29, No. 4, 549-555 (1981).
4. $\bar{B} . V$. Godun, "Unconditional bases and spanning bases of sequences," Izv. Vyssh. Uchebn. Zaved., Mat., No. 10, 69-72 (1980).
5. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag (1966).
6. W. B. Johnson, H. P. Rosenthal, and M. Zippin, "On bases, finite-dimensional decompositions and weaker structures in Banach spaces," Isr. Math. J., 9, 488-506 (1971).
7. L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).
8. V. A. Vinokurov and A. N. Plichko, "The regularizability of linear inverse problems by linear methods," Dok1. Akad. Nauk SSSR, 229, No. 5, 1037-1040 (1976).
