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Let X be a Banach space. The subspace F of the conjugate space X* is called normalizing, 
if its Diksmay characteristic r(F} = sup {r:rB (X*)~cI*B(F)} >0, where B(X) is the unit sphere 
in the space X, and cl*A is the weak* closure of the subset A ~ X [I (see [I, p. 29]). It is 
known (see [I, p. 39]) that a numerical region of characteristic ~ (X)~ ~: HF~ X*, r(F) = s 
where F is a total proper subspace of X*, closed in norm, is an interval (0, a), whose ends 
may or may not be included. In this article we study the relationship between the numerical 
region of characteristic of the space X and its subspace Y, the possible values of the number 
a, and we also introduce the concept of a strongly normalizing subspace, and we show that for 
improperly defined problems on linear finite-dimensional Tikhonov regularizability (and its 
equivalent functional-analytic properties), this concept fills the role of a normalizing sub- 
space for simple regularizability. 

I. The numerical region of characteristic was studied in [I-4]. In particular, it fol- 
lows from the result of [4] that for a space X with unconditional orthogonal spanning basis, 
we always have ~ (Y) ~ ~(X) for any subspace Y ~ X. In connection with this, the following 
question naturally arises: do we always have ~(Y) c ~(X) , if Y is a subspace of X. The fol- 
lowing statement shows that when Y is well complemented in X, the conclusion holds. 

THEOREM I. Let Y and Z be closed, mutually complementary subspaces of the Banach space 
X: X = Y O Z , and let the norm of the sum have the "lattice property": if ilY111 411Y211 and 
Ilzlll~llzs[I then IIFt~ztlt~IlYs~zs]I for arbitrary F~CY, ziCZ, i = 1, 2 . Then ~(Y) ~ ~(X) 
a n d  ~ (Z) ~ ~ (X). 

P r o o f .  I t  i s  s u f f i c i e n t  t o  v e r i f y  t h e  i n c l u s i o n  9~(Y) ~ ~ ( X ) .  I t  f o l l o w s  f r o m  t h e  c o n -  
d i t i o n s  o f  t h e  t h e o r e m  t h a t  t h e  no rms  o f  t h e  n a t u r a l  p r o j e c t o r s  X § Y and  X + Z a r e  e q u a l  t o  
o n e .  I t  i s  known ( s e e ,  f o r  e x a m p l e ,  [ 5 ] ) ,  and  i s  e a s i l y  v e r i f i e d ,  t h a t  i n  t h i s  c a s e  X* = 
Z• @ y l ,  w h e r e  Z • and  Y• a r e  t h e  a n n i h i l a t o r s  i n  X* o f  t h e  c o r r e s p o n d i n g  s u b s p a c e s ,  and  m o r e -  
o v e r  Z • i s  i s o m e t r i c  t o  Y*, and  Y• t o  Z*;  t h e  i s o m e t r y  i s  d e f i n e d  i n  t h e  n a t u r a l  way .  T h e r e -  
f o r e  we s h a l l  i d e n t i f y  Y* w i t h  Z i ,  and  Z* w i t h  Y• I t  i s  a l s o  e a s i l y  v e r i f i e d  t h a t  i f  t h e  
no rm o f  t h e  sum Y G Z h a s  t h e  " l a t t i c e  p r o p e r t y , "  t h e n  t h e  same i s  a l s o  t r u e  f o r  t h e  a n n i -  
h i l a t o r s :  f o r  a r b i t r a r y  f ~ E Z  ! and  gi~ y l  , i = 1, 2 ,  i t  f o l l o w s  f r o m  II[ l l l~l l fzH and  l lg i l l~ l lgs i l  
that [[/, + g,[[ ~-~ }{f2 + g~/I �9 

Let M be a subspaceof Y*=ZZof characteristic ~. We show that the characteristic of 
the subspace F =M �9 Y• ~ X* is not less than a. Take an arbitrary element u : [@g~ X*, 
[CZ • gEY• , with norm l] u[l : a. Then llfll ~a, and by the definition of characteristic there 
exists a net {/~}ae~ ~ l[[llB(M)/a, which converges weakly* to f. Then the net {[~ q-g}~EA ~ F 

weakly* converges to u. Since ll[~q-g{l~ll}lflla-lfq-gl}~}Ia-lf-l-a-'gll = I, then r(F)~a. The in- 
clusion ~(Y)~(X) is proved. 

We introduce an example of a Banach space X, for which there exists a subspace Y such 
that ~ (Y) c~!~ (X). Moreover Y has a one-dimensional complement Z and the norms of the natu- 

ral projectors X * Y and X + Z are equal to I. 

Example I. For any set M, the notation c0(M), If(M), l~(M) has the standard sense (see 
[I, p. 7]). Denote by X the subspace ~(M), where M : {--I} U {0} U N , where N is the natural 
numbers, spanned on c0(N), and consider the elements e0:e0 (m) = I, ~ C M and e-1 : e-i (--I) = 
i, e-1 (0) =--I, e_1(n)=0, hEN. We show that X* = ll(M). Duality is defined by the formula 

f(x)=~:,[(m)x(m), [EI,(M), x~X. Since [ / (x)]  ~}lxlIZ~,I[(m) l, then II[llx,~E~,lf(m)}. For each 

s > 0, it is easy to select an element x ~B (X), for which f(x)>ES, If(m) l--e Therefore 
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X* D/I(M ). Since c0(N)* = If(N), and c0(N) and If(N) differ from X and If(M) by precisely 
two dimensions, then X* = li(M). 

The subspace K ~ c o (N) -~ [e0] ~ X is isometric to the space of convergent sequences c 
([A] denotes the norm-closed linear hull of the set A), and therefore ~ (K)= [0~ I] (see [2])~ 
Moreover, the subspace Y has in X complement Z = [e-l], and the norms of the corresponding 
projectors are equal to one. 

We show that ~ (X)~ [0,2/3]. To do this we note that l~ (M)* = foo(M), and for one of the 
equivalent definitions of the characteristic [I, p. 30] it is sufficient to show that for an 
arbitrary element ~ E l~ (M) 

i n f { l l ~ - - x i l . x ~ x ,  llxll--1,~CR}~2,,'3. (1) 

As u s u a l  we i d e n t i f y  the  space  X w i t h  i t s  c a n o n i c a l  image in  t he  second  c o n j u g a t e ,  

Take any element ~I~(M) with norm 2/3. If sup{I~(n)I:n E)V}~I/3, then for any s > 0 
there exists k I> I such that l~(k)[>[/3--e. Let ekCX be a unit vector: ek(k) = i, ek(m) = 0, 
m z k. Then llehi!= 1,11~p -- sign q0 (k) e~ll~2/3~-& and for such a q0 , inequality (I) is satisfied. 
If, however, l~(n) l<I/8, n~.O , then either lq0(-- I)I~2/3 or iq~(0) I=2/3 . The space X contains 
the elements x~(eo-}-e_i)/2 and y=(e o --e i)~2, llxll=lly[l~-I. If I~(--I)]- 2/3, then ll2-1qo - 
sign~(1)Xxll~2/3, i.e., inequality (i) is also satisfied in this case. 

THEOREM 2. Let (X, [['II) be a Banach space and let R (X,[!.I[)= sup{)~:hC,~i(X)} =a >0. 
Then for an arbitrary number b E[a, i] , there exists a norm [I].lll on X, equivalent to the orig- 
inal norm, for which R(X, [II'[II) = b. 

Proof. Let Fez_ (X,]I. If)* be any proper normalizing subspace, one of which must exist by 
the conditions of the theorem. Then the norm llxl]1~ sup {If (x)[: fC F, IIflI~l} is equivalent to 
the original norm and /~ (X,ll'IIi)= I. For any %C[0, II we define a norm on the space X:IIxll~.~ 
%llxlli-~ (l -- %)llxli. Clearly, it is equivalent to the original norm, and the Banach--Mazur dis- 
tance d ((X,~I.II~), (X,II'll~))-+ 0 as ~ § ~. Since for arbitrary Banach spaces X and Y R(X) ~< d(X, 
Y)R(Y) (see [3]), the mapping q0 , which associates with each %CI0,11 a number R(X,II-II~) , 
is continuous, and ~ (0)~ a, ~ (i)~ I. Since a continuous function takes all its intermediate 
values, the theorem is proved. 

While the conditions under which the left boundary of the numerical region ~ (X) is 
contained in ~(X) are fully described (see [I, p. 78]), it is not clear when /~(X)~(X) . 
We introduce an example showing that for an arbitrary number ~/2 ~< ~ ~< I there exists a Banach 
space X with ~ (X) ~ [0, a]. 

Example 2. Let 0 ~< ~ ~< I. Consider the subspace c~=co(N)- r [e~]~l~(N U {0}), where ea 
is defined thus: ea(0) = I, ect(n) = ~, n /> ~, and we show that ~(ce)=I0,(1 ,~-g~)/2]. 

We note that c~=fi(N U {0}) with the natural duality, and c~ ~--[oo(M U {0}). We first 
prove the inequality /~(eg)~(l-~g~)/2, i.e., for an arbitrary element ~foo(N U {0}) we verify 
the relation 

inf{ll~--xll:x~c~, Ilx]l = 1, ~E~} <~(~ + o~D/~. (2) 

If for some index k>0 l~(k)I~(l--~z)/(l-~e), then I[2-~(I -~z}~--sign~(k) e~ii~nlax{(l.~_~)/2, I-- 
(I +~)(l--~z)/2(l ~-~)}--(I ~-~)/2, where e k is the k-th unit vector of the space c0(N). Let 
l~(~)l<(1--~z)/(l-~ ~) for any n > O. Then ]~(0)]= I ; we may assume that ~(0)----I. In the 

case lim~lq~(n)l=a<(l--g~/(l~-~), i.e., when ]q~(n) i>(l--~)/(1-~e) for only a finite number 

r~ 

of positive indices ni .... ,nm, the norm of the element x--e~--~ 2-~(l--g~)cp(n~)eni is equal to 

I, and considering separately the values of the function 2-~(l--~)q~-x at the points O, hi, 
i = ~, m and at the remaining points, we obtain l[2-~(l--~)(p-~ xll ~(I-~c~)/2. 

Finally, when a > {I- ~)/(i-~ ~) , we choose an arbitrary e and index k > 0 such that 
--s<]~ (k)[ ~a-~ e. Let n .... ,n m be a finite number of positive indices for which I~ (~i)l > 

~z + e. Set % = (I ~-~)/(2~ ~- ~ (i +a)), b = (I --~)/(2~ ~- c~(l ~-a)). Then the norm of the ele- 

---- De= -- (O~ q- sign q0 (k)) e~ --~ Eq0 (n~) en~ is equal to ~, and considering separately the ment 

i=l 

values of the function %~-~ at thepoint 0, k, ni, i = I, m and at the other points, we 
obtain Iliq0--.~II~<~(~-a)/(2a~_g( I _~a))~_e(l ~_~)/(2a_~ ~(i_~ ~))~ (I_}_ ~)~/2~_ g(l q_ c~)2/2" Inequality 
(2) follows from the fact that s was chosen arbitrarily. 
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We show that for the element q0~c~*:~0{0)=--I, q0(n)~(l--~)/(l@~) , n > 0, the character- 

istic of the subspace 9 • ~c* is exactly equal to (I@~2)/2 i e. for any xEcc~, [Ix[k= i and 

k>O IIk~-xll~(l~-~2)/2. Suppose that for some x and k 

II x~ + x II < (1 Jr  ~ ) / 2  (3 )  

If [x(k) l = I for some k, then since X~(k)<0 it makes sense to consider only the case x(k) = 
--I. By inequality (3) --k(p(k)--x(k)<(l@ocz)/2; therefore, L>(I@~)/2 . Substituting this 
estimate in the relation --)~(0)--x(0)<(l@~)/2, we obtain x(0) > ~. Substitute the values 

for x(0) and ~ in the inequality lim----n(k~p(n)-~x(n))~>(l-~2)/2; we obtain the contradictory rela- 

tion (I@~)(i--~)/2(I@~)@c~<(I@~2)/2. If, however, [x(n)[ < I for all n > 0, then Ix(0)[ = 
I; it makes sense to consider only the case x(0) = I. By (3), k~(0)@x(0)<(l-~e2)/2 ; there' 
fore 3.>(I--~z)/2. Substituting this estimate for k in the inequality lim,~(kg)in)-l-x(n))<(]- }- 
~2)/2, we again obtain a contradiction. Therefore r(q~i)=(l@e2)/2, and then (0, (l@~Z)/2]~(c~) 
(see [I], p. 39). It is easily verified that the space ca is isomorphic to co (the isomor- 
phism is established in the same way as between c and co). Therefore c~ is nonquasireflexive 
and contains a total subspace of zero characteristic (see [I, p. 78]); therefore ~(c~)=[0, 
(1 + cd)/2l. 

2. Let E be a Banach space and let M be a total linear subspace of E*. We say that it 
is strongly X-normalizing (0 < ~ ~< I) if for any finite-dimensional subspaces X ~ E and 
F ~ E* inf max {IITII, IIT-~II}~% -1 , where the infimum is taken over all operators T:F + M, for which 
<x, f> = <x, Tf> for any x~ X,/~F, and if ~ is the maximal of those numbers for which this 
inequality is satisfied. We call the number X the strong characteristic sr(M) of the sub- 
space M. In the case when the value of the constant ~ is not important, we shall use the 
terminology "strongly normalizing subspace." 

This definition is evoked by the principle of local reflexivity [6], which states that 
~ (E*)* is strongly l-normalizing. Clearly, if the subspace N~ M, then sr(N) <~ sr(M) and 

sr(M) ~< r(M) [r(M) is the usual characteristic of the subspace M]. It is also easily veri- 
fied that sr(M) = st(M) for the closure M in norm of the subspace M, 

THEOREM 3. Let E be a Banach space, let M be a strongly normalizing subspace of E*, 
let a > 0 and let J be a factor-mapping of E** into E**/M • = M*. Let N be a subspace of M 
with the following property: for any finite-dimensional subspace Z~ JE , there exist norm- 

closed subspaces (D~Z and ~ N  (• in M*, and a projector P:M* § ~ parallel to ~ with 

IIpll~a, where N (• is the annihilator in M*. Then N is strongly normalizing. 

Proof. Since under norm closure, strong normalizability is not affected, then without 
loss of generality we may assume that the subspaces M and N are norm-closed. Let X and F 
be finite-dimensional subspaces of E and E*, let e > 0 and let Y ~ X be a finite-dimen- 
sional subspace of E such that for each fEF Itfll<(l§ 

L e t  T : F  § M b e  a n  o p e r a t o r  w i t h  < y ,  f> = <y ,  Tf> f o r  a r b i t r a r y  y~Y and  f ~ F  , and  l e t  

max{l}TII, IIT-~II}~<~ -~, ~>srM--s Let Z = JY and let ~, ~ and P be the objects mentioned in 

the conditions of the theorem. The conjugate operator P* maps M** into ~FZ~(N(• • , parallel 

to ~• Identifying (N(i~)) • with N**, we may assume that P* maps M** into N**. Then for 

y~Y and f~F, denoting by J' the factor-mapping of M* into A4*/N (i~)=N*, we have 

<y, f> = (y, rf> = <J~, Tf> = <Jy, P'T/> = (J'Jy, P*Tf>. (4) 

By the condition l]P*ll = [[PI[ ~ a. For the restriction P*ITF we estimate the norm of the in- 

verse. Let g~ TF, llgil= I, f = T -~g and let y~ B (Y) be an element for which 11f[l%(l @ e) f (g). 

Then  IIJyI[ ~ 1 and  (P 'g ,  JY) =: <Tf, PJy)  -= (Tf, Jr = k/(1 ~- e ) ,  s i n c e  II (P*lrF)-~ll < %-~ (1 Jr e) 
A p p l y i n g  t h e  p r i n c i p l e  o f  l o c a l  r e f l e x i v i t y  t o  t h e  s p a c e  N and  t h e  s u b s p a c e s  G =  P * T F ~  N** 
and  J ' Z  ~ N* we o b t a i n  a s u b s p a c e  H ~ N and  an  o p e r a t o r  R:G § t t ,  f o r  w h i c h  max{I I R }l, 
/ [R-~II} < I -k e and  < z ,  g> = < z ,  Rg> f o r  z~J 'Z  and  g ~ G  S e t  S = RP*T. I t  i s  e a s i l y  s e e n  
t h a t  t h i s  o p e r a t o r  maps  F i n t o  N. M o r e o v e r ,  f o r  x ~ X ~ Y  and  [~F  , b y  (4 )  we h a v e  <x ,  f>  = 
<J'Jx, P*Tf> = <JJ'x, RP*Tf> = <x, Sf>. 

Finally, there exist constants bounding R, P*ITF and their inverses, which do not depend 
on the subspaces X and F. Therefore there exists a number M such that max{llSll, llS-~ll }< ~ , 
i.e., the subspace N~_E* is strongly normalizing. 
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COROLLARY I. If M is a strongly normalizing subspace of E* and N~ M is a total sub- 
space on E with dimM/N < oo, then N is strongly normalizing. In particular, if N is a total 
subspace of finite defect in E*, then N is also strongly normalizing. 

In fact, since dimM/N < oo, then the annihilator N(• * is finite-dimensional. From 

the totality of N we have N (• A JE=O. Moreover, the restriction JIE is an isomorphism, 
and therefore the subspace JE~M* is closed. Therefore it can be extended to a closed 
subspace ~, complementary tO N (• , and we can apply Theorem 3 with ~ = N(• ~ 

We recall that the Banach space E is called quasireflexive if dimE**/E < ~. 

COROLLARY 2. The Banach space E is quasireflexive if and only if any total subspace 
M~ E* is strongly normalizing. 

For a nonquasireflexive space, there exists a total normalizing subspace M ~ E* (see 
[I, p. 78]), which of course is not strongly normalizing~ Since each norm-closed total sub- 
space of M, conjugate to the quasireflexive E, has finite defect in E*, then Corollary 2 fol- 
lows from Corollary I. 

The Banach space E is called a ~ -space, if there exists a number X > 0 such that for 
any finite-dimensional subspace X ~ E , there exists a finite-dimensional subspace Y ~ X 

and a linear bijective operator T:Y--+ !~) with norm max{ltTl[, lIT -~ I/} "~ ~- 

COROLLARY 3. Let E be a ~ -space. Then any normalizing subspace M~ E* is strongly 
normalizing. 

Proof. Let X ~ E be a finite-dimensional subspace and let Y, % and T be the objects 
in the definition of a ~ -space. Since M is normalizing, then in the space E q-M ~- ~--E** 
there exists a continuous projector q:E + ~ + E parallel to M i. Consider the mapping TQ: 
E -~M• ). By p. 247 of [7], this can be extended to an operator S:E** -+[~ ) , preserving 
the norm. Set P = T-ZS. The operator P projects the space E** onto F~% parallel to 
KerP~M; thus we can apply Theorem 3, setting M = E*, N = M, .~ = Y, ~ = KerP. 

We recall that the Banach space E has the X-metric approximation property (the X-MAP), 
if for any finite-dimensional subspace X~E and any e > 0, there exists a finite-dimen- 
sional linear operator Rx,~:E-+E with IIRx,e{l~% and IIRx,~X--XIl~gllxll for x~X. If the 
space X has the X-MAP for some X >~ I, then we say that it has the bounded approximation prop- 
erty (the BAP). We call the set ,~-~{Rx.~} the set of X-approximating operators. For a given 
E, there may of course be many such sets {R . Set M~=Iin{R*E*:R~}. 

THEOREM 4. Let the Banach space E have the X-MAP. Then: 

t ) sr "M.~) ~ ;~-~; 

2) if for the linear subspaee M~E*,sr(M)~bt -i, then in the space E there exists a set 
~ of %~-approximating operators, such that M~ ~ M 

Proof. I) Let X~E and F~E* be finite-dimensional subspaces and let ~, ~ > 0. 
Choose a finite-dimensional subspace X~Y~E, such that for any fCF 

{1 f II < (1 q- 6) sup {{ (Y):F E B ( g)}. (5)  

L e t  RY,eCN be  an  a p p r o x i m a t i n g  o p e r a t o r  c o r r e s p o n d i n g  t o  t h e  s u b s p a c e  Y and t h e  number  c .  
By Lemma 2 . 4  o f  [ 6 ] ,  we c a n  c h o o s e  an  o p e r a t o r  Rz w i t h  R~Ir=IIr, [ i R , ~ R I ] % ( l - - e ) - l e X d i m g  

and R~E* =R*E*cM~ t .  Then f o r  F ~ Y  and f E F ~ ( F , R ~ f ) = ( R ~ F ,  [ ) = ( y , [ )  �9 M o r e o v e r ,  {]Rtil ={!Rill  

IIR--R:iJ-kllRll~(1--e)-"'~dimY+)v. F o r  [CF, IlR;f{{--sup{(e,R;f):eqB(E)}--sup{(R,e,f):effB(E)}..~sup{(Rty, 
f>:y~B(Y)}=sup{f(!l):h~B(g)}~]][]I/(l-~6 ) In the last inequality we are using formula (5). Thus 

[[fll~( 1 q-6) IIR~f]l, i.e., the norm of the restriction II(R~[F)-~II<I @6. Inequality ~) follows 
from the fact that ~ and 6 were chosen arbitrarily. 

2) Let ~ be the family of X-approximating operators, let X be a finite-dimensional 
subspace of E, let e > 0, let Rx.e~ be the operator corresponding to them, and let S be 
the operator associated with the mapping R by Lemma 2.4 of [6]. Let T:S*E* § M be an opera- 
tor for which <x, Tf> = <x, f> for x~X, ~ ES*E* and ]IT]] < ~. Set T~ = TS*. Then T:~ is a 

finite-dimensional operator mapping E* into M, where M, I[ T~!I ~-~ i[ T II [I S* [l ~ u [(I --e)-~%edimX q- s 

and f o r  x~X and fEE*,<T;x,f>=<x,T$>=<x, TS*f>=ix, S*f>=<Sx, f>=(x,f>. T h e r e f o r e  T~x = x (E 
i s  c o n s i d e r e d  a s  a s u b s p a c e  o f  E * * ) .  By Lemma 3 .1  o f  [ 6 ] ,  t h e r e  e x i s t s  a w e a k l y *  c o n t i n u o u s  
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operator St:E* § TIE such that a) HfIII~IIT~II(I~) and b) STy = T~y, only if TIyCE. The 

operator RI into E, to which $I is conjugate, is bounded by the expression ~[(!--e)-1%~dimX~ 
%](i ~ e), Rix=x and R~E*~M. The number s may be chosen sufficiently small so that IrR~IJ<%~. 

In the case of a separable space E, the set of approximating operators ~ becomes a 
sequence Rn, pointwise converging to the unit operator I. We recall that for each of the 
equivalent definitions [8], the operator inverse to the linear continuous injective operator 
A:X § Y, where X and Y are normed spaces, is called linearly finite-dimensionally regular- 
izable, if there exists a sequence of linear continuous finite-dimensional operators Bn:Y§ 
X, for which for any yEAX,][B~y--A-IFLI --+0 as n + ~. 

THEOREM 5. Let A be a linear continuous injective operator from the separable Banach 
space X into the normed space Y. The following statements are equivalent: 

I) A -I is linearly finite-dimensionally regularizable; 

2) X has  the  BAP, and f o r  t he  subspace  M = A'Y* c X~ s t ( M ) > 0 .  

P r o o f .  I f  B n a r e  the  o p e r a t o r s  a p p r o x i m a t i n g  A - 1 ,  t hen  the  o p e r a t o r s  BnA a p p r o x i m a t e  
t he  u n i t  o p e r a t o r ,  and t h e r e f o r e  a r e  bounded in  t o t a l ,  so t h a t  (B~A)* c M. Then by Theorem 4 
s r  (M) > 0; t h e r e f o r e  we have e s t a b l i s h e d  the  i m p l i c a t i o n  1) => 2 ) .  I t  f o l l o w s  f rom 2) and 
t he  f i r s t  p a r t  o f  Theorem 4 t h a t  t h e r e  e x i s t s  a sequence  o f  l i n e a r  c o n t i n u o u s  f i n i t e - d i m e n -  
s i o n a l  o p e r a t o r s  Rn:X § X, c o n v e r g i n g  t o  I ,  f o r  which R~X* c M. This  c o n d i t i o n  e n s u r e s  t h a t  
A -1  i s  l i n e a r l y  f i n i t e - d i m e n s i o n a l l y  r e g u l a r i z a b l e  [ 8 ] .  
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