REFLEXIVITY AND QUASIREFLEXIVITY OF TOPOLOGICAL VECTOR SPACES

A. N. Plichko UDC 519.9

Suppose E is a separated locally convex topological vector space, E' its dual, and E" its bidual. Recall that E is said to be reflexive if K(E) = E", where K(E) is the image of the canonical embedding of E into E", and the strong topology $\beta(E, E')$ coincides with the original topology of E. In the sequel we will identify E with its image K(E).

A separated locally convex topological vector space E is called quasireflexive if it is a closed subspace of finite deficiency in its bidual E" and the strong topology $\beta(E, E')$ coincides with the original topology of E.

An example of a quasireflexive topological vector space that is not isomorphic to a Banach space is the Cartesian product $B \times E$ of a quasireflexive Banach space B and a reflexive topological vector space E that is not isomorphic to any Banach space.

This paper contains several generalizations of the results of [1]-[3] to topological vector spaces.

1. THEOREM 1. For a separated locally convex topological vector space E to be reflexive it is necessary and sufficient that it be barreled and that any bounded closed convex set $V \subset E$ be closed in any separated locally convex topology Γ on E that is comparable with the original topology of E.

Necessity. If E is reflexive, then it is barreled [4, Chap. IV, §3, Theorem 2]. Suppose Γ is a separated locally convex topology on E that is weaker than the original. Denote by E_{Γ} the space E with the topology Γ , and by E'_{Γ} its dual. It is obvious that each linear functional defined on E that is continuous in the topology Γ will also be continuous in the original topology of E. Thus, $E'_{\Gamma} \subset E'$. Since E is reflexive, any bounded closed convex set $V \subset E$ is compact in the weak topology $\sigma(E, E')$, hence also in the topology $\sigma(E, E'_{\Gamma})$. Thus the set V is closed in the topology $\sigma(E, E'_{\Gamma})$, hence also in the topology Γ .

Sufficiency. Suppose E is nonreflexive. If it is not barreled, then sufficiency is proved. Assume that E is barreled. Then there exists a bounded closed convex subset $V \subset E$, $\theta \in V$, that is not compact in the weak topology $\sigma(E, E')$ [4, §3, Theorem 2]. Since the closure \overline{V} of V in the topology $\sigma(E'', E')$ is compact [4, §2, Corollary 2], it follows that \overline{V} contains an element $x_0'' \in E$. Take $x_0 \in E$, $x_0 \in V$, and $\widehat{x}'' = x_0 - x_0''$. Let $M_{X''}^{*} = \{x' \in E' : \langle x', \widehat{x}'' \rangle = 0\}$. We introduce on E the weak topology $\sigma(E, M_{X''})$ defined by the duality between E and $M_{X''}$. It is easy to verify that $\sigma(E, M_{X''})$ is a separated locally convex topology on E that is weaker than the original, and the closure of V in this topology contains the element x_0 .

The theorem is proved.

Note that the conditions of the theorem are independent. The existence of nonreflexive barreled spaces is obvious. An example of a nonreflexive space E in which any bounded closed convex set $V \subseteq E$ is closed in any separated locally convex topology Γ on E that is comparable with the original is an infinite-dimensional reflexive Banach space with the weak topology $\sigma(E, E')$.

2. We now turn to the study of quasireflexivity of topological vector spaces.

Definition. Suppose E is a separated locally convex topological vector space, and M' a subspace of the dual space E' that is everywhere dense in the weak topology $\sigma(E', E)$. Denote by $\beta(E, M')$ the topology

Kiev State University. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 27, No. 1, pp. 24-32, January-February, 1975. Original article submitted June 18, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

on E with a neighborhood base of zero consisting of the polars of the sets $V' \cap M'$, where V' ranges over the bounded subsets of E'. We say that the subspace M' has characteristic zero if the topology $\beta(E, M')$ is weaker than the strong topology $\beta(E, E')$.

THEOREM 2. If a space E is quasireflexive, then the dual space E' contains no subsapce of characteristic zero that is everywhere dense in the weak topology $\sigma(E', E)$.

<u>Proof.</u> Suppose M' is a subspace of E' that is everywhere dense in the weak topology $\sigma(E', E)$. Since E is quasireflexive, it has the form

$$M' = \{x' \in E' : \langle x', x_1'' \rangle = 0, \ldots, \langle x', x_k'' \rangle = 0\},\$$

where x_1'',\ldots,x_k'' is a finite set of elements of E". Denote by $M^{i\,0}$ the linear hull of the elements x_1'',\ldots,x_k'' . Let x_1',\ldots,x_k' be a set of nonzero elements of E' for which $|\langle x_i',x_i''\rangle| \leq 1$, $i=1,\ldots,k$. Consider the neighborhood $W_0^{i\,0} = \{x^m \in E^m : |\langle x_i',x^m\rangle| \leq 1,\ i=1,\ldots,k\}$ and its polar in E'. The polar of W_0^i is a bounded subset of E', hence for any bounded subset $U' \subset E'$ the union $V' = W_0^i \cup U'$ will also be bounded. If the subsets U_α^i ($\alpha \in I$) form a base for the bounded sets of E', then the subsets $V_\alpha^i = W_0^i \cup U_\alpha^i$, $\alpha \in I$, will also form a base for the bounded sets of E'. Consider the polar of the set $V' \cap M'$ in E". Since M^{i0} is locally compact, $V^{i\,0}$ and $M^{i\,0}$ are closed in the weak topology $\sigma(E'', E')$, and $V^{i\,0} \subset W_0^{i\,0}$, we have

$$(V' \cap M')^0 = V'^0 + M'^0.$$

If the subsets $V_{\alpha}' = W_0' \cup U_{\alpha}'$, $\alpha \in I$, form a base for the bounded sets, then their polars in E form a neighborhood base of zero in the strong topology $\beta(E, E')$, and the subsets $(V_{\alpha}' \cap M')_E^0 = (V_{\alpha}'^0 + M'^0) \cap E$ a neighborhood base of zero of the space E in the topology $\beta(E, M')$. Assume that the topology $\beta(E, M')$ is weaker than the topology $\beta(E, E')$. Then there exists a neighborhood $V_0'^0$ of zero such that for any $\alpha \in I$ there exists $x_{\alpha} \in (V_{\alpha}'^0 + M'^0) \cap E$ and $x_{\alpha} \in V_0'^0$. We have

$$x_{\alpha} = y_{\alpha}^{"} + z_{\alpha}^{"}, \quad y_{\alpha}^{"} \in V_{\alpha}^{'0}, \quad z_{\alpha}^{"} \in M^{'0},$$

and since the net $\{y_{\alpha}\}$ tends to zero, it follows that from some α_0 on we have $z_{\alpha}'' \in (1/2)V_0^{'0}$ for $\alpha > \alpha_0$. Select from the net $\{x_{\alpha}\}$ the subnet $\{x_{\overline{\alpha}}\} = \{x_{\alpha} : \alpha > \alpha_0, \ \alpha \in I\}$. Since $V_{\alpha}^{'0}$ is balanced, it follows that if $0 \le \lambda \le 1$, then $\lambda y_{\overline{\alpha}}'' \in V_{\alpha}'^0$. For each $z_{\overline{\alpha}}''$ we select $\lambda_{\overline{\alpha}} \in [0,1]$ so that

$$\lambda_{\overline{\alpha}}z_{\overline{\alpha}}^{"} \in V_0^{'0}, \quad \lambda_{\overline{\alpha}}z_{\overline{\alpha}}^{"} \not\subset \frac{1}{2}V_0^{'0}.$$

Since $V_0^{10} = W_0^{10}$ and the set $W_0^{10} \cap M^{10}$ is bounded, the net $\{\lambda_{\overline{\alpha}}z_{\overline{\alpha}}^n\}$ has a subnet converging in the strong topology $\beta(E^n, E^n)$ to a nonzero element z_0^n . But the net $\{\lambda_{\alpha}y_{\alpha}^n\}$ converges to zero, hence from the net $\{\lambda_{\alpha}x_{\alpha}\}$ we can choose a subnet converging to the element $z_0^n \in M^{10}$ in the strong topology $\beta(E^n, E^n)$, which contradicts the fact that the space $E \subseteq E^n$ is closed. The theorem is proved.

3. We will now prove several propositions which will be needed later.

LEMMA 1. Suppose E is a barreled space and F a barreled subspace of E. If the dual space F' contains a subspace M' of characteristic zero that is everywhere dense in the weak topology $\sigma(F', F)$, then the dual space E' contains a subspace of characteristic zero that is everywhere dense in the weak topology $\sigma(E', E)$.

<u>Proof.</u> As is well known, the subspace F' can be identified with the quotient space E'/F⁰. Consider the preimage K⁻¹(M') of the subspace M' \subset E'/F⁰ under the canonical embedding E' $\stackrel{K}{\to}$ E'/F⁰. It is easy to see that the subspace K⁻¹(M') is everywhere dense in E' in the weak topology $\sigma(E', E)$. If the topologies $\beta(E, E')$ and $\beta(E, K^{-1}(M'))$ were equivalent, then the restrictions of these topologies to F would also be equivalent. Since E and F are barreled, the restriction of the topology $\beta(E, E')$ to F coincides with the strong stopology $\beta(F, F')$. Since the canonical embedding K is continuous, the restriction of the topology $\beta(E, K^{-1}(M'))$ to F is not stronger than the topology $\beta(F, M')$. The topology $\beta(F, F')$ is stronger than the topology $\beta(F, M')$; hence the topologies $\beta(E, E')$ and $\beta(E, K^{-1}(M'))$ are not equivalent. The lemma is proved.

LEMMA 2. Any complete nonreflexive barreled space E contains a bounded sequence $\{x_n\}$ having no limit point in the weak topology $\sigma(E, E')$.

<u>Proof.</u> It follows from Theorem 2 of [4, Chap. IV, §3] that E contains a bounded closed subset W that is not compact in the weak topology $\sigma(E, E')$. It follows from [4, Chap. IV, §2, Exercise 15(b)] that W contains a sequence $\{x_n\}$ having no limit point in the weak topology $\sigma(E, E')$. The lemma is proved.

<u>LEMMA 3.</u> Any complete nonquasireflexive barreled space E contains a closed separable subspace F such that dim $F''/F = \infty$.

<u>Proof.</u> We will construct a sequence of closed separable subspaces $F_n \subseteq E$ such that $E_{n+1} \supset F_n$ and dim $F_n''/F_n \ge n$. Then the closure $F = \bigcup_n F_n$ of their union will be the desired subspace. We take as F_1 the closed linear hull of the sequence $\{x_i\}$ of Lemma 2. It is easy to see that dim $F_1''/F_1 \ge 1$.

Suppose we have constructed subspaces F_j ($j=1,\ldots,n$) with the required properties. If dim F_n / $F_n=\infty$, we may regard the construction as finished by putting $F_j=F_n$ for j>n. Thus, suppose dim F_n^n / $F_n=k<\infty$. We will show that the quotient space E/F_n is nonreflexive. The bidual of E/F_n is E^n/F_n^n , where F_n^n coincides with the closure of F_n in the weak topology $\sigma(E^n,E^n)$. If E/F_n coincided with its bidual E^n/F_n^n , then each element $x^n+F_n^n$ of E^n/F_n^n would have the form $x+F_n^n$, $x\in E$, hence each element $x^n\in E^n$ could be represented in the form $x^n=x+x^n$, $x\in E$, $x^n\in F_n^n$. But dim $F_n^n/F_n=k<\infty$, hence dim $E^n/E=k<\infty$, which contradicts the fact that E is nonquasireflexive. Hence E/F_n is a nonreflexive barreled space. By Lemma 2, we can choose in it a bounded sequence x_i+F_n having no limit point in the weak topology $\sigma(E/F_n)$, (E/F_n). In view of the completeness of the bidual of E^n/F_n^n in the weak topology $\sigma(E^n/F_n^n)$, (E/F_n). In view of the completeness of the bidual of E^n/F_n^n in the weak topology $\sigma(E^n/F_n^n)$, (E/F_n), this sequence has a limit point $x^n+F_n^n$ in E^n/F_n^n . Choose a representative x^n of the class $x^n+F_n^n$ and representatives x_i of the classes x_i+F_n . Let $F_n+1=E/\{x_i\}+F_n$ be the closure of the sum of the subspaces F_n in the linear hull of the sequence $\{x_i\}$. We will show that

$$\dim F_{n+1}''/F_{n+1} \geqslant \dim F_n''/F_n + 1.$$

Since $F_{n+1}^{"} \supset F_{n}^{"}$, it suffices to verify that $\hat{x}^{"}$ belongs to $F_{n+1}^{"}$ and does not belong to $F_{n+1} + F_{n}^{"}$. If $\hat{x}^{"}$ did not belong to $F_{n+1}^{"}$, then since $F_{n+1}^{"}$ is closed in the weak topology $\sigma(E^{"}, E')$ there would exist an element $x_{0}' \in E'$ such that $\langle x_{0}', \hat{x}^{"} \rangle \neq 0$, $x_{0}' \in F_{n+1}^{0}$, where F_{n+1}^{0} is the polar of F_{n+1} in the dual space E'. The element x_{0}' can be regarded as a continuous linear functional on E/F_{n} . Then $x_{0}'(x_{1} + F_{n}) = 0$ (i = 1, ..., ∞), $x_{0}'(\hat{x}^{"} + F_{n}^{"}) \neq 0$, which contradicts the fact that the element $\hat{x}^{"} + F_{n}^{"}$ is a limit point of the sequence $x_{1} + F_{n}^{"}$ in the weak topology $\sigma(E^{"}/F_{n}^{"}, (E/F_{n})')$. We will now show that $\hat{x} \in F_{n+1} + F_{n}$. If $\hat{x}^{"} = x + x^{"}$, where $x \in F_{n+1}$, $x^{"} \in F_{n}$, then $\hat{x}^{"} + F_{n}^{"} = (x + F_{n}^{"}) + (x^{"} + F_{n}^{"})$ and the sequence $\{x_{1} + F_{n}^{"}\}$ has as a limit point the element $(x + F_{n}^{"}) + (x^{"} + F_{n}^{"})$. But $x^{"} + F_{n}^{"} = F_{n}^{"}$, hence the element $x + F_{n}^{"}$ is a limit point of the sequence $\{x_{1} + F_{n}\}$, which contradicts the choice of $\{x_{1} + F_{n}\}$. The lemma is proved.

LEMMA 4. Any complete nonreflexive barreled space E contains a balanced convex neighborhood V_0 of zero such that for any finite set x_1' , ..., x_k' in E'

$$\{x \in E : \langle x, x_1' \rangle = 0, \dots, \langle x, x_k' \rangle = 0\} \cap V_0 \neq \{x \in E : \langle x, x_1' \rangle = 0, \dots, \langle x, x_k' \rangle = 0\}.$$

<u>Proof.</u> The proof follows immediately from the fact that the original topology of E does not coincide with the topology $\sigma(E, E')$.

We introduce the following notation: V^{00} is the closure of the neighborhood $V \subset E$ in the weak topology $\sigma(E'', E')$,

$$M_{x_{1}^{"}...x_{r}^{"}} = \{x' \in E' : \langle x', x_{1}^{"} \rangle = 0, ..., \langle x', x_{r}^{"} \rangle = 0\},$$

$$H_{x_{1}^{"}...x_{r}^{"}} = \{x'' \in E'' : \langle x'', x_{1}^{"} \rangle = 0, ..., \langle x'', x_{s}^{"} \rangle = 0\},$$

and $p_V(x)$ is the gauge function of V.

LEMMA 5. Suppose E is a complete nonquasireflexive barreled space, x_1''' , ..., x_S''' a finite set of elements in E", x_1''' , ..., x_r''' a finite set of elements in E", the subspace $M_{x_1'''}$... x_r''' is everywhere dense in E' in the weak topology $\sigma(E', E)$, V is a neighborhood of zero in E, and V_0 is the neighborhood whose existence was established in Lemma 4. Then there exists an element $x_{r+1}'' \in H_{x_1'''}$... x_S'''' such that $x_{r+1}'' \in E + L(x_1'', \ldots, x_r'')$, $x_{r+1}'' \in V_0^{00}$, $M_{x_1'''}$... x_{r+1}'' is everywhere dense in E' in the weak topology $\sigma(E', E)$, and there exists an element $x \in E$ for which $x_{r+1}'' - x \in V_0^{00}$.

<u>Proof.</u> Since E is nonquasireflexive, the subspace $H_{X_1^m \dots X_S^m}$ contains an element x^n not belonging to $E + L(x_1^n, \dots, x_r^n)$. It follows from the finite-dimensionality of $E^n/H_{X_1^m \dots X_S^m}$ and the choice of V_0 that there exists an element $x \in 2V_0$, $x \in H_{X_1^m \dots X_S^m} \cap E$. We can obviously choose $\epsilon > 0$ so small that the element $x_{r+1}^n = x + \epsilon x^n$ will possess the required properties. The lemma is proved.

<u>LEMMA 6.</u> Suppose E is a barreled space, H a linear subspace of E" containing E, x_1^n , ..., x_T^n a finite set of elements in E", V' a bounded closed convex balanced subset of E', and V' its polar in E". If $\{p_{V'0}(x^n-Y'): y^n \in H, p_{V'0}(y'') \ge 1, x^n \in L(x_1^n, ..., x_T^n)\} = a, a \ne 0$, then the closure of the set

 $(1/a)V'\cap M_{x_1''...x_r''}\cap M_{y_1''.,.y_k''}$ in the weak topology $\sigma(E', E)$ contains $V'\cap M_{y_1''...y_k''}$ for any finite set $y_1'',...,y_k''$ in H.

<u>Proof.</u> Since the set $(1/a)V' \cap M_{x_1''...x_r''} \cap M_{y_1''...y_k''}$ is convex, it suffices to show that there exists no element $x_0' \in V' \cap M_{y_1''...y_k''}$ that can be strongly separated from the set $(1/a)V' \cap M_{x_1''...x_r''} \cap M_{y_1''...y_k''}$ by a hyperplane that is closed in the weak topology $\sigma(E', E)$. Without loss of generality, we may assume that $p_{V'}(x_0') = 1$. Assume there exists an element $x \in E$ for which

$$\sup\left\{\langle x, x'\rangle : x' \in \frac{1}{\alpha} V' \cap M_{x_1^* \dots x_r^*} \cap M_{y_1^* \dots y_k^*}\right\} < 1,$$

 $\langle \mathbf{x}, \, \mathbf{x}_0' \rangle = 1. \quad \text{Then the linear manifold } \mathbf{N}' = \left\{ \mathbf{x}' \in \mathbf{E}' : \langle \mathbf{x}, \, \mathbf{x}' \rangle = 1 \right\} \cap \mathbf{M}_{\mathbf{y}_1'' \dots \mathbf{y}_k''} \quad \text{strongly separates } \mathbf{x}_0' \text{ and } (1/a) \mathbf{V}' \cap \mathbf{M}_{\mathbf{x}_1'' \dots \mathbf{x}_r''} \cap \mathbf{M}_{\mathbf{y}_1'' \dots \mathbf{y}_k''} \quad \text{in the subspace } \mathbf{M}_{\mathbf{y}_1'' \dots \mathbf{y}_k''}. \quad \text{Since the set } (1/a) \mathbf{V}' \cap \mathbf{M}_{\mathbf{x}_1'' \dots \mathbf{x}_r''} \quad \text{is closed and convex in the strong topology } \beta(\mathbf{E}', \, \mathbf{E}) \text{ and does not contain } \mathbf{x}_0', \text{ then, by the Hahn—Banach theorem, } \mathbf{N}' \text{ can be extended to a hyperplane } \widetilde{\mathbf{N}}' \text{ which is closed in the strong topology } \beta(\mathbf{E}', \, \mathbf{E}) \text{ and strongly separates } \mathbf{x}_0' \text{ and } (1/a) \mathbf{V}' \cap \mathbf{M}_{\mathbf{x}_1'' \dots \mathbf{x}_r''}. \quad \text{Since } \mathbf{N}' \text{ is closed in the topology } \sigma(\mathbf{E}', \, \mathbf{E} + \mathbf{L}(\mathbf{y}_1'', \, \dots, \, \mathbf{y}_k'')) \text{ and has finite deficiency, the hyperplane } \widetilde{\mathbf{N}}' \text{ is also closed in the topology } \sigma(\mathbf{E}', \, \mathbf{E} + \mathbf{L}(\mathbf{y}_1'', \, \dots, \, \mathbf{y}_k'')), \text{ i.e. has the form } \mathbf{N}' \text{ is also closed in the topology } \sigma(\mathbf{E}', \, \mathbf{E} + \mathbf{L}(\mathbf{y}_1'', \, \dots, \, \mathbf{y}_k'')), \text{ i.e. has the form } \mathbf{N}' \text{ is also closed in the topology } \sigma(\mathbf{E}', \, \mathbf{E} + \mathbf{L}(\mathbf{y}_1'', \, \dots, \, \mathbf{y}_k'')), \text{ i.e. has the form } \mathbf{N}' \text{ is also closed in the topology } \sigma(\mathbf{E}', \, \mathbf{E} + \mathbf{L}(\mathbf{y}_1'', \, \dots, \, \mathbf{y}_k'')), \text{ i.e. has the form } \mathbf{N}' \text{ is also closed in the topology } \sigma(\mathbf{E}', \, \mathbf{E} + \mathbf{L}(\mathbf{y}_1'', \, \dots, \, \mathbf{y}_k'')), \text{ i.e. has the form } \mathbf{N}' \text{ is also closed in the topology } \sigma(\mathbf{E}', \, \mathbf{E} + \mathbf{L}(\mathbf{y}_1'', \, \dots, \, \mathbf{y}_k'')), \text{ i.e. has the form } \mathbf{N}' \text{ is also closed in the topology } \mathbf{E}' \mathbf{E}$

$$N' = \{x' : \langle x', y_0'' \rangle = 1\},$$

where $y_0 = \lambda_0 x_0 + \sum_{i=1}^k \lambda_i y_i^n$. It is easy to see that $\langle x_0', y_0'' \rangle = 1$, $\sup \{\langle x', y_0'' \rangle : x' \in (1/a) V' \cap M_{X_1'' \dots X_T''} \} < 1$, or $\sup \{\langle x', y_0'' \rangle : x' \in V' \cap M_{X_1'' \dots X_T''} \} < a$. Consider the restriction of the functional y_0'' to the subspace $M_{X_1'' \dots X_T''}$. By the Hahn—Banach theorem, this restriction can be extended to a linear functional \hat{y}_0'' defined on all of E, in such a way that $\sup \{\langle x', \hat{y}_0'' \rangle : x' \in V' \} < a$. Since the subspace $M_{X_1'' \dots X_T''}$ has finite deficiency, the functional \hat{y}_0'' is continuous. The element $x'' = y_0'' - \hat{y}_0''$ obviously belongs to the subspace $L(x_1'', \dots, x_T'')$.

$$\sup \{\langle x', y_0'' \rangle : x' \in V'\} \geqslant \langle x_0', y_0'' \rangle = 1 \text{ and } y_0'' \in H.$$

Since $p_{V'}(y'') = \sup\{\langle y', y'' \rangle : y' \in V'\}$, we obtain $\inf\{p_{V'}(x'' - y'') : y'' \in H, p_{V'}(y'') \ge a, x'' \in L(x_1'', ..., x_n'')\} \le p_{V'}(\hat{y}_0'') \le a$, which contradicts the hypothesis of the lemma. The lemma is proved.

From now on we will assume that E is a Fréchet space, V_1, \ldots, V_n, \ldots a countable base of closed convex balanced neighborhoods of zero in E such that $V_i \supset V_{i+1}$. It is easy to see that their closures V_i^{00} in the weak topology $\sigma(E^n, E^n)$ form a countable neighborhood base of zero in the strong topology of E^n .

THEOREM 3. For any nonquasireflexive Fréchet space E the dual space E' contains a subspace M' of characteristic zero that is everywhere dense in the weak topology $\sigma(E', E)$.

<u>Proof.</u> A Fréchet space is barreled, and a closed subspace of a Fréchet space is again a Fréchet space. Hence, in view of Lemmas 1 and 3, we may assume that E is separable. By Proposition 3 of [4, Chap. IV, §2], the dual space E' is the union of bounded sets V_n^0 that are metrizable and separable in the weak topology $\sigma(E', E)$. Let x^{i1}, \ldots, x^{in} be a countable set that is everywhere dense in E' in the weak topology $\sigma(E', E)$. Without loss of generality, we may assume that $x^{i1} \in V_1^0$. The construction of the subspace M' will be carried out inductively.

- 1. There exists an element $x_1'' \in E''$ satisfying the following conditions: $x_1'' \in V_0^{00}$; $x_1'' \in M_{X_1''}$; $x_1'' \in E$; there exists an element $x_1 \in E$ such that $x_1'' x_1 \in V_1^{00}$. To demonstrate the existence of x_1'' it suffices to apply Lemma 5. The element x_1'' possesses the following properties.
 - a) There exists an element $x_1''' \in E^0$ such that $\langle x_1'', x_1''' \rangle \neq 0$. This follows from the fact that $x_1'' \not\subset E$.
 - b) There exists a neighborhood $W_1 \subset V_1$ of zero such that

$$a_1 = \inf \left\{ p_{W_1^{00}}(x'' - y'') : y'' \in H_{x_1'''}, \ p_{W_1^{00}}(y'') \geqslant 1, \ x'' \in L(x_1'') \right\} \neq 0.$$

Indeed, we can take as W_1 any neighborhood of zero whose closure in the topology $\sigma(E^n, E^n)$ is contained in the set $V_1^{00} \cap \{x^n \in E^n : |\langle x^n, x_1^m \rangle| \le 1\}$. Lemma 6 implies that the closure of $(1/a_1)W_1^0 \cap M_{X_1^n} \cap M_{Y_1^n \dots Y_k^n}$ contains $W_1^0 \cap M_{Y_1^n \dots Y_k^n}$ for any set y_1^n, \dots, y_k^n in Hx_1^m .

c) We introduce on the bounded set W_1^0 a metric ρ_1 equivalent to the weak topology $\sigma(E', E)$. The previous property implies the existence of an element $x_1^{'1} \in (1/a_1)W_1^0$ for which $\rho_1(x_1^{'1}, x^{'1}) \leq 1$.

We will give two illustrations of the second step of the inductive construction.

2. There exists an element $x_2^{"} \in E^{"}$ satisfying the following conditions: $x_2^{"} \notin V_0^{00}$; $x_1^{'1} \in M_{X_1^{"} X_2^{"}}$; $x_2^{"} \in H_{X_1^{"}}$; $\{x^{'1}, x^{'2}\} \subset M_{X_2^{"}}$; $x_2^{"} \in E + L(x_1^{"})$; there exists an element $x_2 \in E$ such that $x_2^{"} - x_2 \in V_0^{00}$. To demonstrate the existence of x2" it suffices to apply Lemma 5.

The element x₂" possesses the following properties.

- a) There exists $x_2^{'1} \in (1/a_1)W_1^0 \cap M_{X_1^n X_2^n}$ for which $\rho_1(x^{'1}, x_2^{'1}) \leq 1/2$. The existence of such an element follows from Lemma 6, the role of the set y_1^n , ..., y_k^n being played here by x_2^n .
- b) There exists an element $x_2^{"} \in E^0$ for which $\langle x_1^{"}, x_2^{"} \rangle = 0$, $\langle x_2^{"}, x_2^{"} \rangle \neq 0$. This follows from the fact that $x_2'' \subset E + L(x_1'')$ and E^0 is infinite-dimensional.
 - c) There exists a neighborhood $W_2 \subset V_2$ of zero for which

$$a_2 = \inf \left\{ p_{W_0^{00}}(x'' - y'') : y'' \in H_{x_1'' x_2'''}, \ p_{W_0^{00}}(y'') \geqslant 1, \ x'' \in L(x_1'', x_2') \right\} \neq 0.$$

Indeed, we can take as W_2 any neighborhood of zero whose closure in the topology $\sigma(E", E')$ is contained in the set $V_2^{00} \cap \{x'' \in E'' : |\langle x'', x_1''' \rangle| \le 1, |\langle x'', x_2''' \rangle| \le 1\}$. Lemma 6 implies that the closure of $(1/a_2)W_2^0$ $\bigcap M_{X_1'X_2''} \bigcap M_{y_1'' \dots y_k''} \text{ in the weak topology } \sigma(E', E) \text{ contains } W_2^0 \cap M_{y_1'' \dots y_k''} \text{ for any set } y_1'', \dots, y_k'' \text{ in }$ H "" ""

d) We introduce on the bounded set W_2^0 a metric ρ_2 equivalent to the weak topology $\sigma(E', E)$. The previous property implies the existence of an element $x_2^{12} \in (1/a_2)W_2^0 \cap M_{X_1^{"}X_2^{"}}$ for which $\rho_2(x^{'2}, x_2^{'2}) \leq 1/2$.

Consider the n-th step of the inductive construction. Suppose that after the (n-1)-st step of the inductive construction we have sets $\{x_1, \ldots, x_{n-1}\} \subseteq E$; $\{x_1^n, \ldots, x_{n-1}^n\} \subseteq E^n$; $\{x_1^{n-1}, x_2^{n-1}, \ldots, x_{n-1}^{n-1}\} \subseteq E^n$; $\{x_1^{n-1}, x_2^{n-1}, \ldots, x_{n-1}^{n-1}, x_2^{n-1}\} \subseteq E^n$; neighborhoods $W_1 \subseteq V_1, \ldots, W_{n-1} \subseteq V_{n-1}$; numbers a_1, \ldots, a_{n-1} unequal to zero; and metrics a_1, \ldots, a_{n-1} equivalent to the weak topology a_1, \ldots, a_{n-1} decrease a_1, \ldots, a_{n-1} and a_1, \ldots, a_{n-1} decrease a_1, \ldots, a_{n-1} dec on the bounded sets $(1/a_1)W_1^0$, ..., $(1/a_{n-1})W_{n-1}^0$ possessing the following properties:

1)
$$x_i'' \in V_0^{00}; \ x_i'' - x_i \in V_i^{00}, \ i = 1, ..., n-1;$$

$$\begin{aligned} x_i'' &\in V_0^{00}; \ x_i'' - x_i \in V_i^{00}, \ i = 1, \dots, n-1; \\ \{x_1'^{1}, x_2'^{1}, \dots, x_{n-1}'^{1}; x_2'^{2}, x_3'^{2}, \dots; x_{n-2}'^{n-2}, x_{n-1}'^{n-2}; x_{n-1}'^{n-1}\} \subset M_{x_1'' \dots x_{n-1}''}; \ \{x'^{1}, \dots, x_{n-1}'^{1}, \dots, x_{n-1}'^{n-1}\} \subset M_{x_1'' \dots x_{n-1}''}; \end{aligned}$$

2)
$$\ldots, x^{i} \} \subset M_{x_{i}^{m}}; x_{i}^{n} \in H_{x_{i}^{m}}; x_{i}^{n} \in H_{x_{i}^{m} \ldots x_{i-1}^{m}}; x_{i}^{n} \in E + L(x_{i}^{n}, \ldots, x_{i-1}^{n}), i = 1, \ldots, n-1;$$

3) the closure of the set $(1/a_q)W_1^0 \cap Mx_1'' \dots x_q'' \cap My_1'' \dots y_k''$ contains $W_q^0 \cap M_{y_1 \dots y_k''}''$ for any set $y_1'' \dots y_k''$ in $H_{X_1, \dots, X_Q}^{"}$ (q = 1, n-1);

$$\rho_{1}(x_{1}^{'1},x^{'1}) \leqslant 1; \rho_{1}(x_{2}^{'2},x^{'1}) \leqslant \frac{1}{2}; \dots; \rho_{1}(x_{n-1}^{'1},x^{'1}) \leqslant \frac{1}{n-1},$$

$$\rho_2(x_2^{\prime 2}, x^{\prime 2}) \leqslant \frac{1}{2}; \dots; \rho_2(x_{n-1}^{\prime 2}, x^{\prime 2}) \leqslant \frac{1}{n-1},$$

$$\rho_{n-1}(x_{n-1}^{\prime n-1}, x^{\prime n-1}) \leqslant \frac{1}{n-1}.$$

Then there exists an element $x_n^{"} \in E^{"}$ satisfying the following conditions: $x_n^{"} \in V_0^{00}$; $\{x_1^{'1}, \ldots, x_{n-1}^{'1}; x_2^{'2}, \ldots; x_n^{'n-1}\} \subset M_{x_1^{"}\ldots x_n^{"}}$; $\{x^{'1}, \ldots, x^{'n}\} \subset M_{x_n^{"}}$; $x_n^{"} \in H_{x_1^{"}\ldots x_{n-1}^{"}}$; $x_n^{"} \in E + L(x_1^{"}, \ldots, x_{n-1}^{"})$; there exists an element $x_n \in E$ such that $x_n^{"} - x_n \in V_n^{00}$. To demonstrate the existence of $x_n^{"}$ it suffices to apply

The element x_n'' possesses the following properties.

- a) There exists an element $x_n' q \in (1/a_q) W_q^0 \cap M_{x_1'', \dots x_n''}$ for which $\rho_q(x^{'q}, x_n^{'q}) \leq 1/n$ (q = 1, n-1). The existence of such elements follows from Lemma 6.
- b) There exists an element $\mathbf{x}_n^{\text{\tiny{II}}} \in \mathbf{E}^0$ for which $\langle \mathbf{x}_i^{\text{\tiny{I}}}, \mathbf{x}_n^{\text{\tiny{III}}} \rangle = 0, \ldots, \langle \mathbf{x}_{n-1}^{\text{\tiny{II}}}, \mathbf{x}_n^{\text{\tiny{III}}} \rangle = 0, \langle \mathbf{x}_n^{\text{\tiny{II}}}, \mathbf{x}_n^{\text{\tiny{III}}} \rangle \neq 0$. This follows from the fact that $\mathbf{x}_n^{\text{\tiny{II}}} \not\in \mathbf{E} + \mathbf{L}(\mathbf{x}_1^{\text{\tiny{II}}}, \ldots, \mathbf{x}_{n-1}^{\text{\tiny{III}}})$ and \mathbf{E}^0 is infinite-dimensional.
 - c) There exists a neighborhood $W_n \subset V_n$ of zero for which

$$a_n = \inf \left\{ p_{W_n^{00}}(x'' - y'') : y'' \in H_{x_1''' \dots x_n'''}, \ p_{W_n^{00}}(y'') \geqslant 1, \qquad x'' \in L(x_1'', \dots, x_n'') \right\} \neq 0.$$

Indeed, we can take as W_n any neighborhood of zero whose closure in the topology $\sigma(E^n, E^n)$ is contained in the set $V_n^{00} \cap \{x^n \in E^n : |\langle x^n, x_1^m \rangle| \leq 1, \ldots, |\langle x^n, x_n^m \rangle| \leq 1\}$. Lemma 6 implies that the closure

of the set $(1/a_n)W_n^0\cap M_{x_1^n\dots x_n^m}\cap M_{y_1^n\dots y_k^n}$ in the weak topology $\sigma(E',E)$ contains $W_n^0\cap M_{y_1^n\dots y_k^n}$ for any set y_1^n,\dots,y_k^n in $H_{x_1^n\dots x_n^m}$.

d) We introduce on the bounded set W_n^0 a metric ρ_n equivalent to the weak topology $\sigma(E', E)$. The previous property implies the existence of an element $x_n^{'n} \in (1/a_n) W_n^0 \cap M_{x_1'' \dots x_n''}$ for which $\rho_n(x'^n, x_n'^n) \le 1/n$.

Thus, it is possible to carry out the inductive step, i.e. to replace n-1 by n in the set of properties 1)-4). We will show that $M' = \bigcap_{i=1}^{\infty} M_{X_1'' \dots X_i''}$ is a subspace of characteristic zero that is everywhere dense in the weak topology $\sigma(E', E)$. Property 2) implies that

$$\{x_1'^1, x_2'^1, \ldots, x_n'^1, \ldots; x_2'^2, x_3'^2, \ldots, x_n'^2, \ldots; x_n'^n, \ldots\} \subset M'.$$

The sequences $x_n^{'n}$, $x_{n+1}^{'n}$, $x_{n+2}^{'n}$... converge to elements $x^{'n}$ in the weak topology $\sigma(E', E)$, so that the closure of M' in the weak topology $\sigma(E', E)$ contains the elements $x^{'1}$, ..., $x^{'n}$, ..., i.e. it coincides with E'. It follows from the construction of $\{x_n\}$ that zero is not a limit point in the strong topology $\beta(E, E')$ of the sequence $\{x_n\}$. But $\{x_n\}$ converges to zero in the topology $\beta(E, M')$. Indeed, consider any neighborhood V_i of zero in the fundamental system $\{V_n\}$ of neighborhoods of zero of E. Then

$$(V_i^0 \cap M')^0 \supset (V_i^0 \cap M_{x_i''})^0 \supset V_i^{00} + L(x_i'').$$

But $x_i'' - x_i \in V_i^{00}$, hence $x_i \in (V_i^0 \cap M')^0 \cap E$.

Thus, the topologies $\beta(E, E')$ and $\beta(E, M')$ are not equivalent. The theorem is proved.

Using Theorems 2 and 3, we can formulate the following criterion for the quasireflexivity of a Fréchet space.

THEOREM 4. For a Fréchet space E to be quasireflexive it is necessary and sufficient that the dual space E' not contain a subspace of characteristic zero that is everywhere dense in the topology $\sigma(E', E)$.

LITERATURE CITED

- 1. Yu. I. Petunin, "A criterion for the reflexivity of a Banach space," Dokl. Akad. Nauk SSSR, 140, No. 1 (1967).
- 2. Yu. I. Petunin, "Conjugate Banach spaces containing subspaces of characteristic zero," Dokl. Akad. Nauk SSSR, 154, No. 3 (1964).
- 3. W. Davis and J. Lindenstrauss, "On total nonnorming subspaces," Proc. Amer. Math. Soc., 31, No. 1, 109-111 (1972).
- 4. N. Bourbaki, Topological Vector Spaces [Russian translation], IL, Moscow (1959).