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Let X be a Banach space and X* its dual space. A system x~, f~, x~ X,f~ X*, i~] (I 
being some set) is said to be biorthogonal if /~(xj)= ~j (8 is Kronecker's delta). A bior- 
thogonal system is fundamental if the closed linear hull [x d i ~f]----76; if, furthermore, the 
set (fi) is total on X, then the system x i, fi is called an M-basis. An M-basis which can 
be well-ordered in such a way that for all ~ there exist collectively bounded projectors 
P~: X--~ [x~" ~ <~] parallel to [x~: ~ ~ ~] is called a projection basis. If the norms of all 
projectors are equal to i, a basis is said to be monotonic. It is readily seen that the def- 
inition of a projection basis stated above is equivalent to the definition in [i, 2]. We 
say that a biorthogonal system xi, fi, i~f , isbounded by a number a if sup~ex~xi~fl~.~<a. We 
denote by dens X the weight of X, i.e., the smallest cardinality of everywhere dense subsets 
of the space X. The cardinal card I is called the cardinality of the biorthogonal system 

xi, fi" 

THEOREM. For a nonseparable Banach space X, the following are equivalent: 

I) X has a fundamental biorthogonal system; 

2) X has a quotient space with a monotonicprojection basis of cardinality dens X; 

3) X has a quotient space with a projection basis of cardinality dens X; 

4) X has a quotient space with a fundamental biorthogonal system of cardinality dens X; 

5) for each 6 > 0, the space X has a fundamental biorthogonal system bounded by the num- 
ber 4 + 6. 

Proof. The implication I) ~ 2) has been established in [3, 4]. The implications 
2)~3)~4) and 5)~ I) are obvious. We will show that 2) ~ 5). Let E = X/Y be a quotient 
space with a monotonicprojection basis x=, f=, 0~=~=0, of cardinality dens X, Pe the corre- 
sponding projectors in the space E, and B0 the greatest limit ordinal less than or equal to 
~0. Obviously, the cardinality of the set A of all limit ordinals less than B0 is equal to 
dens E. For each a ~ A, let E= = (P~+~- P=)E where ~ is the first infinite ordinal. We 
assume 0 to be a limit ordinal, so E 0-- P~E. For a given ~ > 0 and each ~ A  there exists 

e ~ n a fundamental biorthogonal system (=, ~)n~__1 in the separable space Ee such that ~ e= U = I, 
g= II ~ I q- 8, which is not an M-basis [5]. The fact that the system is not an M-basis is not 

directly stated in the above-mentioned article by Davis and Johnson but it follows from the , 
proof of Theorem 1 and Lemma 1 in [5]; the sequence x n in Lemma 1 of [5] should be chosen not 
total. Afortiori, the sequence (e~)~=x is not a basis in the space E~, in particular, it 
cannot be equivalent to the standard basis of the space ~l.. Extend each functional ~ to a 

functional g~ defined on the entire space E by the formula 

g~ (e) = g~n ( (P~ ,~  - -  P~) O,  e ~ E.  

Since . n  g=((P=+~-- P=)e~) is equal to one only when ~ = $ and n = m and is equal to zero other- 
n n wise, the obtained system e=, g~, = ~ A, n = i, co, is biorthogonal. Furthermore, for ordinals 

e n /~ (~) = g~ (x~) = o. 

Since ]] P~II : j for all ~, we have 

/[ g~ II = sup {g~ (e): e ~ E ,  It e II < l}  = 

^~ p 
---- sup {gc~ (( ~,+o, - -  P~) e): e ~ E ,  [] e [I ~ t} < H ~cr II II Pa+~o'-- Pa  i ~< 2 (1 + e). 
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Since the system x~, fe forms a monotonicprojection basis, it is bounded, more precisely, 
iTx=llll/=II<2 (p. 585 in [6]). To make the construction suitable for applying the theorem 

n n 
below, we adjoin finitely many elements z~,/~, ~0~0~ 0 to e0, g0, i.e., we set 

(eo, ~)$=~ = (~, ~ ) ~  U (~,/~ : ~o < ~ < ~o). 
r nln=l, co Obviously, LeaJ=~A ----[E=]=~A- E. Thus, there exists a fundamental biorthogonal system e=, 

~, a~A, n----i, oo, inthe quotient space E such that 

a) L1 e~l111 g~ II < 2 (I + e), 

b) card A = dens E, 

c) for each a ~ A the sequence (e=)n=1 is not equivalent to the standard basis of the 
space ~lo 

Thus, all conditions of the Lifting Theorem (p. 862 in [6]) are satisfied and, by its 
conclusion, the space X has a fundamental biorthogonal system bounded by the number 4 (i ~- 
~)-~ e, i~ 4 + 6, for a sufficiently small ~. 

Thus, 2)~b). To close the ring of implications, it suffices to establish that 4)~5). 
Suppose that a space X has a quotient space X/Y with a fundamental biorthogonal system of 
cardinality dens X. Since i)~2), the space X/Y has a quotient space (X/Y)/Z withamonotonic 
projection basis of cardinality dens X. Then the spaces (X/Y)/Z and X/cp-IZ are isometric 
where ~: X--> X/Y is the quotient map. 

Thus, the space X has a quotient space X/~p-IZ with a monotonicprojection basis of car- 
dinality dens X. As we have shown, 2)~45), so 4)=45). The theorem is proved. 

Remarks. It is known that conditions i)-5) are almost satisfied for each separable 
Banach space; more precisely, a monotonicprojectionbasis in condition 2) should be replaced 
by a ~-monotonicbasis, and the constant 4 + 6 in condition 5) may be replaced by 1 + ~. For 
nonseparable spaces they are not always fulfilled [4]. The implication I)~5) has been 
stated in [3]; the proof given there relies on the proof of Theorem 2 in [5]. But the proof 
of this theorem has a gap. Its correct proof (and the implication I)~8)without the estimate 
4 + 6) has been given by Godun (p. 862 in [6]). 

The author is grateful to B. V. Godun and E. V. Tokarev for valuable remarks. 
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