A. N. Plichko

Let X be a Banach space and X* its dual space. A system $x_i, f_i, x_i \in X, f_i \in X^{\bullet}, i \in I$ (I being some set) is said to be biorthogonal if $f_i(x_j) = \delta_{ij}$ (δ is Kronecker's delta). A biorthogonal system is fundamental if the closed linear hull $[x_i: i \in I] = X$; if, furthermore, the set (f_i) is total on X, then the system x_i , f_i is called an M-basis. An M-basis which can be well-ordered in such a way that for all α there exist collectively bounded projectors $P_{\alpha}: X \to [x_{\beta}: \beta < \alpha]$ parallel to $[x_{\beta}: \beta \ge \alpha]$ is called a projection basis. If the norms of all projectors are equal to 1, a basis is said to be monotonic. It is readily seen that the definition of a projection basis stated above is equivalent to the definition in [1, 2]. We say that a biorthogonal system $x_i, f_i, i \in I$, is bounded by a number α if $\sup_{i \in I} \|x_i\| \|f_i\| \le \alpha$. We denote by dens X the weight of X, i.e., the smallest cardinality of everywhere dense subsets of the space X. The cardinal card I is called the cardinality of the biorthogonal system x_i, f_i .

THEOREM. For a nonseparable Banach space X, the following are equivalent:

- 1) X has a fundamental biorthogonal system;
- 2) X has a quotient space with a monotonic projection basis of cardinality dens X;
- 3) X has a quotient space with a projection basis of cardinality dens X;
- 4) X has a quotient space with a fundamental biorthogonal system of cardinality dens X;

5) for each $\delta > 0$, the space X has a fundamental biorthogonal system bounded by the number 4 + δ .

<u>Proof.</u> The implication $(1) \Rightarrow 2$ has been established in [3, 4]. The implications $(2) \Rightarrow 3) \Rightarrow 4$ and $(5) \Rightarrow 1$ are obvious. We will show that $(2) \Rightarrow 5$. Let E = X/Y be a quotient space with a monotonic projection basis x_{α} , f_{α} , $0 \leq \alpha < \alpha_0$, of cardinality dens X, P_{α} the corresponding projectors in the space E, and β_0 the greatest limit ordinal less than or equal to α_0 . Obviously, the cardinality of the set A of all limit ordinals less than β_0 is equal to dens E. For each $\alpha \in A$, let $E_{\alpha} = (P_{\alpha+\omega} - P_{\alpha})E$ where ω is the first infinite ordinal. We assume 0 to be a limit ordinal, so $E_0 = P_{\omega}E$. For a given $\varepsilon > 0$ and each $\alpha \in A$ there exists a fundamental biorthogonal system $(e_{\alpha}^n, g_{\alpha}^n)_{n=1}^{\alpha}$ in the separable space E_{α} such that $||e_{\alpha}^n|| = 1$, $||g_{\alpha}^n|| < 1 + \varepsilon$, which is not an M-basis [5]. The fact that the system is not an M-basis is not directly stated in the above-mentioned article by Davis and Johnson but it follows from the proof of Theorem 1 and Lemma 1 in [5]; the sequence x_n^{\star} in Lemma 1 of [5] should be chosen not total. A fortiori, the sequence $(e_{\alpha}^n)_{n=1}^{\infty}$ is not a basis in the space E_{α} , in particular, it cannot be equivalent to the standard basis of the space l_1 . Extend each functional g_{α}^n to a functional g_{α}^n defined on the entire space E by the formula

$$g_{\alpha}^{n}(e) = \hat{g}_{\alpha}^{n}((P_{\alpha+\omega} - P_{\alpha})e), \quad e \in E.$$

Since $\hat{g}^n_{\alpha}((P_{\alpha+\omega}-P_{\alpha})e^m_{\beta})$ is equal to one only when $\alpha = \beta$ and n = m and is equal to zero otherwise, the obtained system $e^n_{\alpha}, g^n_{\alpha}, \alpha \in A, n = 1, \infty$, is biorthogonal. Furthermore, for ordinals $\beta_0 \leq \beta < \alpha_0$

$$f_{\beta}\left(e_{\alpha}^{n}\right)=g_{\alpha}^{n}\left(x_{\beta}\right)=0.$$

Since $|| \dot{P}_{\alpha} || = 1$ for all α , we have

$$\|g_{\alpha}^{n}\| = \sup \{g_{\alpha}^{n}(e): e \in E, \|e\| \leq 1\} =$$

 $= \sup \left\{ \hat{g}_{\alpha}^{n} \left(\left(P_{\alpha+\omega} - P_{\alpha} \right) e \right) : e \in E, \| e \| \leq 1 \right\} \leq \| \hat{g}_{\alpha}^{\alpha} \| \| P_{\alpha+\omega} - P_{\alpha} \| \leq 2 (1+\varepsilon).$

Institute of Applied Problems in Mechanics and Mathematics, Academy of Sciences of the Ukrainian SSR. Translated from Matematicheskie Zametki, Vol. 33, No. 3, pp. 473-476, March, 1983. Original article submitted November 18, 1980.

Since the system x_{α} , f_{α} forms a monotonic projection basis, it is bounded, more precisely, $|| x_{\alpha} || || f_{\alpha} || \leq 2$ (p. 585 in [6]). To make the construction suitable for applying the theorem below, we adjoin finitely many elements x_{β} , f_{β} , $\beta_0 \leq \beta_0 < \alpha_0$ to e_0^n , g_0^n , i.e., we set

$$(e_0^n, g_0^n)_{n=1}^{\infty} = (e_0^n, g_0^n)_{n=1}^{\infty} \bigcup (x_{\beta}, f_{\beta} : \beta_0 \leq \beta < \alpha_0).$$

Obviously, $[e_{\alpha}^{n}]_{\alpha \in A}^{n=1, \infty} = [E_{\alpha}]_{\alpha \in A} = E$. Thus, there exists a fundamental biorthogonal system e_{α}^{n} , g_{α}^{n} , $\alpha \in A$, n = 1, ∞ , in the quotient space E such that

a) $|| e_{\alpha}^{n} || || g_{\alpha}^{n} || < 2 (1 + \varepsilon),$

b) card A = dens E,

c) for each $\alpha \in A$ the sequence $(e_{\alpha}^{n})_{n=1}^{\infty}$ is not equivalent to the standard basis of the space l_{1} .

Thus, all conditions of the Lifting Theorem (p. 862 in [6]) are satisfied and, by its conclusion, the space X has a fundamental biorthogonal system bounded by the number $4(1 + \epsilon) + \epsilon$, i.e., $4 + \delta$, for a sufficiently small ϵ .

Thus, $2) \Rightarrow 5$). To close the ring of implications, it suffices to establish that $4) \Rightarrow 5$). Suppose that a space X has a quotient space X/Y with a fundamental biorthogonal system of cardinality dens X. Since $1) \Rightarrow 2$), the space X/Y has a quotient space (X/Y)/Z with a monotonic projection basis of cardinality dens X. Then the spaces (X/Y)/Z and $X/\phi^{-1}Z$ are isometric where $\phi: X \to X/Y$ is the quotient map.

Thus, the space X has a quotient space $X/\varphi^{-1}Z$ with a monotonic projection basis of cardinality dens X. As we have shown, $2) \Rightarrow 5$, so $4) \Rightarrow 5$. The theorem is proved.

<u>Remarks.</u> It is known that conditions 1)-5) are almost satisfied for each separable Banach space; more precisely, a monotonic projection basis in condition 2) should be replaced by a δ -monotonic basis, and the constant $4 + \delta$ in condition 5) may be replaced by $1 + \delta$. For nonseparable spaces they are not always fulfilled [4]. The implication $1) \Rightarrow 5$) has been stated in [3]; the proof given there relies on the proof of Theorem 2 in [5]. But the proof of this theorem has a gap. Its correct proof (and the implication $1) \Rightarrow 5$) without the estimate $4 + \delta$) has been given by Godum (p. 862 in [6]).

The author is grateful to B. V. Godun and E. V. Tokarev for valuable remarks.

LITERATURE CITED

- C. Bessaga, "Toplogical equivalence of unseparable reflexive Banach spaces. Ordinal resolution of identity and monotone bases," Bull. Acad. Polon. Sci., <u>15</u>, No. 6, 397-399 (1967).
- K. John and V. Zizler, "Some remarks on nonseparable Banach spaces with Markusevic basis," Comment. Math. Univ. Carolin., <u>15</u>, No. 4, 679-691 (1974).
- 3. A. N. Plichko, "Construction of bounded fundamental and total biorthogonal systems by unbounded ones," Dokl. Akad. Nauk Ukr. SSSR, Ser. A, No. 5, 19-22 (1980).
- 4. A. N. Plichko, "A Banach space without a fundamental biorthogonal system," Dokl. Akad. Nauk SSSR, 254, No. 4, 798-801 (1980).
- 5. W. J. Davis and W. B. Johnson, "On the existence of fundamental and total bounded biorthogonal system in Banach spaces," Stud. Math., <u>45</u>, 173-179 (1972).
- 6. I. Singer, Bases in Banach Spaces. II, Springer-Verlag, Berlin-Heidelberg-New York (1981).