
[ xn~ (a) 1 <  2/k for k > k0. 

C o n s e q u e n t l y ,  limx~kT~(a) = 0 .  I f  l i m % . ( a ) < o o ,  t hen  x~i (a) = 0 f o r  i ~ N ,  n~> sup % (a). 
/ f ~ c r  ~ o o  r 

Hence in this case too lira xnT~ = O. The theorem is proved. 

THEOREM 4. The assertion of the existence of a countable family of functions {Xnk}, 
defined on the set A of cardinality less than r satisfying (2) and such that for any in- 
creasing sequence {n k} (3) does not hold, is consistent with the system ZFC. 

Proof. The construction of such a family of fucntions is carried out in the Kunen model. 
Suppose we have strictly increasing sequences {n$} (a @ A, [A [ = ~1 <~ r ~=) of elements of 
a base of a free selective ultrafilter on N. We define functions xn~ by 

t ,  n <  ~ k~N,  a~A.  
xnk(a) k/~, nv.~<n<nv+x, 

Obviously (2) holds for these functions. The proof of the fact that (3) does not hold for 
any of the sequences {n k} is based on the property of selectivity of the ultrafilter and is 
analogous to the proof of Theorem 2. The theorem is proved. 

1. 

2. 

3. 
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PROJECTIVE RESOLUTIONS, MARKUSHEVICH BASES, AND EQUIVALENT NORMS 

A. N. Plichko 

Let X be a Banach space and let X* be its dual. A subspace F~X* is said to be %- 
norming, % > 0, if the Dixmier characteristic 

infsup {!(x): !~Z F, I]!11< i }  = ~, 

where the infimum is taken over all x~ X, ]] x I[ = i. When we are not interested in the value 
of %, we speak simply of norming subspaces. A system (xi, ]i), xi ~ X, ]i ~ X* iED (6? is 
some set) is said to be a Markushevich basis (an M-basis) if ]~ (xj)= 6~j (6 is the Kronecker 
symbol), the norm-closed linear span [xi: i~ 3] = X, and the subspace F = []i: i6~ J] CX*, is 
total on X. If the subspace F is norming, then the M-basis will be said to be norming. 

Notations. dens X is the weight, i.e., the smallest cardinality of an everywhere dense 
subset of the space X, ~ is the first infinite and ~ is the first uncountable ordinal, ~ is 
the cardinality of the ordinal ~, B(X) is the unit ball of the space X, M • is the annihila- 
tor and fin M is the linear span of the set M~ 

Let e be the first ordinal for the weight X. A collectively bounded set of projections 
P~: X-+X~ ~ ~ ~ ~ =, is said to be a projective resolution of the identity if for any ~ 
~, T < c r  1) P~Pv-- P~P~ :~--'Pmln(v,~); 2) densP~X ~ ;  3) P~X = [Pv+~X: y < ~] and 4) Pc~ = I 
(the identity operator). From here it is easy to derive that for any x ~ X and ordinal B 
we have 

II - x Ii o ( 1 )  

for y + ~ in the order topology. 
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In this note we prove that in spaces of weight there are not many projective resolutions 
(Theorem i) and we give some corollaries of this result. We also give an example of a loc- 

ally uniformly convex Bausch space without an M-basis. This gives the answer to a question 
from [i] (Problem 20.8). It is interesting that the dual of a locally uniformly convex space 

has an M-basis [2]. 

LEMMA I. Let P~ and Q~, 0),~ ~ ,~ ~, be projective resolutions in the space X (of weight 

~). For any B0 < ~ there exists an ordinal ~0<Z 7< ~ such that P~X -~ QvX. 

Proof. We construct a sequence ~0< ~n< ~n+l< ~ such that for even n = 0, ~ one has 

Since dens Q~,X-~o ~=~ and for any x ~ X there exists a sequence x n ~ U~.<~PgX~ converg- 
ing to x, it follows that there exists an ordinal ~0 < ~i< Q for which Q~oX ,C P~,X. Since 
dens P~,X<~, t hereexists ~I<~2<Q with P~,X~QB~X. For the same reason there exists 
~2 < ~a < ~ for which Q~,X ~ P~X, etc. Then the ordinal y = limn~ n satisfies the condition 
of the lemma. 

LEMMA 2. Let P~ and Q~ ~ ~ ~ ~, be projective resolutions in the space X and let 
X* ~[J~<~P~X*. Then for any fl < ~ there exists an ordinal ~ < y < ~ such that Q~X* Cs P~X*. 

Proof. We denote by dens*M the least cardinality of weak* subsets ,~r (Z X* , dense in M. 

The subspace Q~X* is isomorphic to QgX (in the natural duality) and, therefore, dens* Q~X* -~ 
dens Q~X <~. Since X* = UI~<~aP~X*, there exists an ordinal ~ < y < ~, for which Q~X* 

* $ PvX . 
THEOREM I. Let /0~ Q~t~ ~ ~ [~ ~ ~ beprojective resolutions in space X and let 

= [.j ~<aPl~X ". (2) 

Then for any ~0 < ~ there exists an ordinal ~0 < Y < ~, such that Py = Qy. 

Proof. We construct a sequence ~0 < ~n< ~n+~< ~, n = i, oo, for which Q.~nX -~ P~X 
P* X* for n = 3k + 2, k = 0, I, 2 ..... The ordinal fl~ for n = 3k + i and Q~nX* ~ ~n+i 

exists according to Lemma I, the ordinals B2 and 8a exist according to Lemma 2 (if one sets 
there 8 = B2 and y = 8a), the ordinal B~ according to Lemma i, etc. Then for y = lira ~n, QvX 
PvX and QvX C~PvX . Consequently, Py = Qy. 

COROLLARY i. In a space of weight ~ the condition (2) is satisfied either for every 
projective resolutions or for none of them. 

LEMMA 3. Let P~, m ~ ~-~ ~, be a projective resolutions in the space X, bounded by 
* �9 

the number s Then the characteristic of the subspace H = {J~<~P~X ms not less than 
Z. For any ordinal B, the weak* closure of the subspace U~<~P~+~X* coincides with P~X*. 

Proof_ Let x~ X be an arbitrary element with IIxI[ = i and let l~ X* be a functional 
for which II][] --=-f(x) ---- i. Then, according to relation (I), 

tl ~ <x, f> = lira <Pi~x, 1> = lira < x ,  P ~ 2 .  

From here, 

sup {h ( x ) : h ~ B  ( H ) } ~  lira <x, kP~]> ..... g. 

The first part of the lemma is proved. If for some y ~ X there exists a functional /~ P~X*i 
such that ] (y) ~= 0, while uJ ~v<i:*D*~+1~v* ~ y• then x = Ppy has the same property. Indeed, 

<p~y, ]'2 = <y, P~]> = <y, ]> ~ 0 and for any g ~Uv<~P$+IX* we have 

_~_ p* <p~y, g> <y, ~g> = (y ,  g> = o. 

From here we obtain the contradicting relation 

= = P v + l ? >  = O .  0 4 :  < x , f >  lira <P~+I x , ] )  lira <x, * 

We recall thai: a Banach space X has a weak* angelic dual [3] if the weak* sequential 
closures of each bounded subset of X* coincide. In particular, any WCG-space (a space which 
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is the closed linear span of its weak compact subset) has a weak* angelic dual. 

COROLLARY 2~ Let P~, 0) ~ 6~] be a projective resolution in a Banach space X with a 

weak* angelic dual. Then the subspace H ---- U~<~P~%* coincides with X*. 

Proof. From Lemma 3 it follows that the subspace H is norming. This means that for 
some number r the weak* closure of the ball rB(H) contains the ball B(X*) [4]. Since X* is 
weak* angelic, for any element /~X* there exists a sequence /n ~P~nX*, which is weakly* 
convergent to f. We set ~ = limn6n. Then B < ~ and, since the subspace P~X* C7 X* is weak* 
closed, we have ] ~ P~X* ~__" H. 

As it is known, every WCG-space has a projective resolution with norms II P~II = I. More- 
over, II I --P~ II ~ 2. We give an example when this bound cannot be improved. 

E~xample. Let c(~) be the space of real functions on the space of ordinals [I, ~], 
satisfying the condition: for each x~:: c (~) and each E > 0 there exists a constant a such 
that the inequality Ix (~)--a I~> e is satisfied only for a finite number of ordinals B with 
the supremum norm. Let x0 be the function identically equal to unity and let x~, I ~ 6 < ~, 
be the standard unit vectors, i.e', functions equal to unity at the point $ and to zero at 
the remaining points. The set (X~:O~<~) isweakly compact and, therefore, c(~) is a WCG- 
space. Let Q~, m~ 6<~, be the projection operators onto X~ ~[xv:O~?~ 6] parallel to 
X B==[xv:~2<~]. It is easy to see that they form a projective resolution. If x~ ]in (xv: 
< 6), g ~ ]in (xv: ?~ 6), then, considering separately the cases when the function Ix(T) ] 

attains its maximum on an ordinal <$ and ~ 6 (in the latter case it attains the maximum on 

any ordinal ~6), we obtain that II x II ~ II x -- g [[. Consequently, II ~ II --I/inf {[] x -- g II: x~X~, 
II x II = i, y ~ X~} = i. In addition, II x~, -- xo/2 II = I/2 so that I[ I'-- O~ I[ -- 2. 

Let PB be some projective resolution in the space c(~). Then, according to Theorem 1 
and Corollary 2, there exists an ordinal y < ~ such that Py = QT and, consequently,If I- Pv If--2. 

We give now an example of a space of weight ~ with a projective resolution for which 
condition (2) does not hold. We denote by C0(~) the space of order continuous numerical 
functions on the segment [i, ~], convergent to zero for B § ~ with the supremum norm. For 
an ordinal i ~ ~ <~ we set x~ (?) = i for i ~ ~ ~ 6 and x~ (T) = 0 for Y > B. The biorthog- 
onal functionals have the form ~ (x) = x (6) -- x (6 ~- i). 

THEOREM 2. The space X ----C o (~) has the following properties: 

I) the system (xB, fB) forms an M-basis; 

2) the projections P~ onto the subspace [xv: ?~] , parallel to [xv: ?~ 6] , exist and 
form a projective resolution with norms II P~ II = 2; 

3) the ball B(X*) is weak* sequential compact; 

4) X* is not weak* angelic, more exactly, the subspace H = ~<aP~X* is weak* sequential 
compact, i/2-norming, and does not coincide with X*. 

Proof. The conditions I), 2) can be easily verified and have been proved in [5]. For 
the verification of the condition 3) we denote by X$ the functions from X, vanishing outside 
the segment [i, ~] and by X~ the functions that are equal to zero on [I, B]. Then X = 
X~ X~. It is easy to see that for any functional ]~_ X* there exists an ordinal B < 
such that [C-~_-(X~) • Indeed, if f does not belong to any of the annihilators (X~)• ~ ~, 
then this means that there exists a countable set (xv) ~ X for which supp xv ~ supp x5 -= Q7~ for 

# u and ] (xv) ~ a, where supp x = {?: x (?) ~ 0}. This contradicts the boundedness of the 
functional f. Assume now that (fn) is a sequence from the ball of X*. Then there exists 
B < ~ such that (]n)~(X~)s The annihilator (X~)C is isomorphic to the conjugate of the sep- 
arable space X B (in the natural duality). Since the ball of the dual of a separable space 
is weakly* sequential compact, one can select from fn a weakly* convergent subsequence. 

We verify condition 4). AccordJ~g to condition 2 and Lemma 3, the subspace H is 1/2- 
norming. Obviously, it is weak* sequential closed. But the functional g(x) = x(1) does 
not belong to H since it does not vanish on any subspace (I- PB)X. 

LEMMA4. Assume that the space Xhas aweak* angelic dual. Any of itssubspaces and factor- 
spaces has aweak* angelic dual. 

Proof. Thesecond part of the assertion isobvious. LetY bea subspaceof Xand letG be a 
bounded (by unity) subset of Y* = X*/Y • For some number b >lwe set A =~-~G~] [B(X*), 
where ~ is the quotient mapping X*-->X*/Y • We denote by A and ~ the weak* 

853 



closures of the corresponding sets. Let g~. This means that there exists a net g~s 
weakly* convergent to g. Since the set A is weak* compact and ~ (A)- G, from the net of any 
preimages (p-ig~ A one can select a subnet, weakly* convergent to an element a ~ A. Since 
the mapping ~ is weak* continuous, we have ~ (a)= g. The space X* is weak* angelic and, 

therefore, there exists a subsequence a n ~ A, weakly* convergent to a. Then T (an)--> ~ (a) z g, 
and, consequently, Y* is angelic in the weak* topology. 

We recall that the norm of a Banach space is said to be locally uniformly convex if for 
any x~ X, Ilxll ~ i, from the relations I[Ynll ~ i, IIYn -~ xII-->2 there follows llYn--xH-+0- 
We consider the conjugate ~T* of the ,James tree ~T. It has the following properties [6]: 

i) ~T is separable and does not contain subspaces isomorphic to ~i, while ~T* is non- 
separable ; 

2) There exists a separable subspace Y C~ ~T* for which ~T*/Y is isomorphic to a Hil- 
bert space. 

We denote by X a subspace of ~T* of weight ~ containing Y. 

THEOREM 3. The subspace X has an equivalent locally uniformly convex norm and a weak* 
angelic dual,--but it has neither a projective resolution nor an M-basis. 

Proof. From conditions i), 2) and Theorem 3.1.1 of [5] there follows that the space X 
has an equivalent locally uniformly convex norm. According to condition I), ~T** is weak* 
angelic [7], therefore (Lemma 4) X* is weak* angelic. In the same way as it has been proved 
in [8], for WCG-spaces one can show that if X* is weak* angelic, then any M-basis (xi,f~), 
i~/, in the space X is countably 1-norming i.e., the subspace FcX *~ consisting of ele- 
ments f for which the set {i ~ J: ] (xi) ~= 0} is countable, is l-norming. By Theorem 1 of [8], 
from such an M-basis in the space X one can construct a projective resolution of the iden- 
tity, P~, 60~~. Therefore, there exists an ordinal B < ~ such that YcP~X. The sub- 
space PBX is separable and complemented in X. But it is actually proved in [9] that if a 
nonseparable subspace of X has a reflexive quotient with respect to a separable subspace Y 
and the weak* separable X*, then for the subspace Y there is no separable subspace YCfY'C7 
X, complemented in X. Consequently, H has neither an M-basis nor a projective resolution. 

Let X be a Banach space and let F be a total subspace of X*. In analogy with [i0], 
the norm of the space X will be called a Kadec F-norm if on the sphere S(X) it coincides 
with the weak topology ~(X, F). This is equivalent to the fact that for each x~ S (X) and 

> 0 the point x does not belong to the o(X, F)-closure of the set B (X)\B (x,e), where 
B(x, ~) is the ball with center at x and radius s. 

THEOREM 4. If dens F < dens X, then the norm of the space X is not a Kadec F-norm. 

Proof. Let YcS (X) be a set of cardinality dens X with IIY--Y' II~ e for some s > 0 
and for all y, y'~ Y, y =~= Y'. Let G be a subset of F of cardinality dens F and dense with 
respect to the norm. We assume that I] II is a Kadec F-norm. Then for each point y ~ Y there 
exists a finite sequence g!"'',gn~G and rational numbers r I, ., r n such that the set 
{x ~ Y: gl (x) ~ r I ..... g~_(x) ~ r~}~ {y}. Consequently, to each point y ~ Y there corresponds 
a finite sequence {(gl, rl),.-',(gn, rn)}, and to different y, y'~]7 there correspond different 
sequences {(gl, rl) ..... (gn, rn)} ~= {(gl, r~) ...... (g$':'i r~,)}. Thus, the set of all finite collec- 
tions {(gJ, rl)( .... (gn, rn)} (of cardinality equal to dens F) has a cardinality of least dens X. 
Contradict ion. 

Remark. If the subspace F is separable, then ]I II is a Kadec F-norm if and only if it 
has the HF-property, i.e., on the sphere S(X) the o(X, F)-convergence coincides with the 
convergence in the norm. Indeed, the space X can be imbedded in a natural manner into F* 
and the ball B(X) cB(F*). Since the restriction of the topology o(F*, F) to the ball B(F*) 
is metrizable, it follows that the o(X, F)-closure and the o(X, F)-sequential closure on 
the sphere S(X) coincide. In [5] one has given some examples of Banach spaces X with the 
Hx,-property and with a norming subspace F~ X*, for which X does not possess the HF-property 
for any equivalent norm. Making use of Theorem 4, the number of such examples can be ex- 
tended. Thus, the space X ~ l~ [0, ~] has the HX*-property but for the separable norming sub- 
space F---- C [0, ~] ~ l~ [0, ~] ~ X* there is no equivalent norm on X with the HF-property. 
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REPRESENTATION OF FUNCTIONS IN P~,, BY SUPERPOSITIONS OF ONE-PLACE 

FUNCTIONS AND ADDITION 

I. G, Perfil'eva 

In the theory of functional systems the representation of the functions of a system 
by superpositions of functions of a complete subsystem is part of the more general problem 
of completeness. As examples can serve the representation of Boolean functions in perfect 
disjunctive normal form and the corresponding representation of functions of many valued 
logic, or the representation of functions of p-valued logic by modulo-p polynomials (p being 
a prime), etc. (see [i]). 

However, the problem of representation is also of intrinsic interest, due to the fact 
that "composite" many place functions can be expressed in terms of "simple" one-place and 
two-place functions. Thus, without the use of the concept of completeness, a result has 
been obtained concerning the representation of any continuous function by a superposition 
of continuous fuctions of a variable and addition [2]. A similar result is obtained below 
for functions of countable valued logic. 

Let us list all the necessary definitions and notations [I, 3]: E~ 0= {0, I, 2, ...} is 
the set of all nonnegative integers; P~0 is a countable-valued logic, i.e., the set of all 
n-place functions (n~l) defined on the set (E~,)~ and that take their values on the set 
EN0; f0 is the set of all one-place functions of countable valued logic that have only in- 
finite level sets and that take each value in E~0; C (m) is the set of all one-place func- 
tions of countable valued logic that take precisely m values, m~i; 

R = d ( t )  U C ( 2 )  U 4 U ( x + y } .  

The principal result of this paper is expressed by the following 

THEOREM. In a countable-valued logic any function g(Xl,..., Xn), n~i, can be repre- 
sented by a superposition of the form 

n . . . . .  (1) 

or for n = i, 
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