Let X be a Banach space and X^{*} its dual. The $\operatorname{system}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}}\right), x_{i} \in X, f_{i} \in X^{*}, i \in l$ (where I is some set) is called a total biorthogonal system if $f_{i}\left(x_{j}\right)=\delta_{i j}$ (where $\delta_{i j}$ is the Kronecker symbol) and the set (f_{i}) is total on X. If, in addition, (Xf) is total on X^{*}, then it is an M-basis. An M-basis which can be totally ordered so that for each α there exist totally bounded projections P_{α} from X onto the closed linear hull of $\left[\mathrm{x}_{\beta}: \beta<\alpha\right]$ parallel to $\left[x_{\beta}: \beta \geq \alpha\right]$ is called a projection basis. Every Banach space has an infinite-dimensional subspace with a basis (see [1]). It is natural to ask whether every Banach space X has a subspace Y with a projection basis of weight dens $Y=$ dens X. For certain classes of Banach spaces the answer is affirmative (see [2]). We show that in the general case it is not.
L.EMMA 1. Suppose that X can be decomposed into a direct sum of closed separable and reflexive subspaces. Then every subspace and every factor-space of X has the same property.

Proof. Suppose that $X=Y \oplus Z$, where Y is separable, Z is reflexive, and $X_{1} \subset X$. Then X will be a WCGspace and therefore there exist a separable subspace $Y \subset Y_{0} \subset X$ and a continuous projection $P: X \rightarrow Y_{0}, P_{X_{1}} \subset X_{1}$ (see [3, p. 140]). We denote the projection from X onto Y parallel to Z by Q. Then $Q P$ is a projection from X onto Y parallel to ker $P+^{-}\left(\operatorname{ker} Q \cap Y_{0}\right)$. The subspace ker QP is isomorphic to X / Y and isomorphic to Z and hence is reflexive. This means that its subspace $Z_{0}=\operatorname{ker} P$ is reflexive, and therefore so also is $Z_{0} \cap X_{1}$. Thus $\mathrm{X}_{1}=$ $Y_{1} \oplus Z_{1}$, where $Y_{1}=P X_{1} \subset Y_{0}$ is separable, and $Z_{1}=Z_{0} \cap X_{1}$ is reflexive. Since, by construction, $X=Y_{0} \oplus Z_{0}$, $X_{1}=Y_{1} \oplus Z_{1}, \quad Y_{1} \subset Y_{0} Z_{1} \subset Z_{0}$, it follows that $\mathrm{X} / X_{1}=Y_{0} / X_{1}+Z_{0} / X_{1}, Y_{0} /\left(Y_{1} \oplus Z_{1}\right) \cap Z_{0} /\left(Y_{1}+Z_{1}\right)=0, Y_{0} /\left(Y_{1} \oplus Z_{1}\right)$ is isomorphic to Y_{0} / Y_{1} and consequently is separable, and $Z_{0} /\left(Y_{1} \oplus Z_{1}\right)$ is isomorphic to Z_{0} / Z_{1} and therefore reflexive.

Let X be a space with projection basis $\left(\mathrm{X}_{\alpha}, \mathrm{f}_{\alpha}\right)$. For each α we put $X_{\alpha}=\left[x_{\beta}: \beta<\alpha\right], X^{\alpha}=\left[x_{\beta}, \beta \geqslant \alpha\right], F_{\alpha}=$ $\left[f_{\beta}: \beta<\alpha\right], F^{\alpha}=\left[f_{\beta}: \beta \geqslant \alpha\right]$.

LEMMA 2. $X=X_{\alpha} \oplus X^{\alpha}, X^{*}=\left(X_{\alpha}\right)^{\perp} \oplus\left(X^{\alpha}\right) \perp,\left[F_{\alpha}\right]_{*}=\left(X^{\alpha}\right) \perp$ and $\left[F^{\alpha}\right]_{*}=(X \alpha) \perp$, where []$_{*}$ is weak * closure.
We will not define the Johnson-Lindenstrauss space (JL), rather referring the reader to [4]. We need only its properties:

1) JL is nonseparable, and there exists a countable set in JL* which is total on JL;
2) $J L^{*}=G \oplus H$, where G is separable and H is reflexive;
3) JL is not isomorphic to a subspace of l_{∞}.

THE OREM 1. JL does not have a subspace with an uncountable projection basis.
Proof. Let X be a subspace with an uncountable projection basis ($\mathrm{x}_{\alpha}, \mathrm{f}_{\alpha}, 1 \leq \alpha<\Omega$). We identify the dual space with the factor-space by the annihilator: $\mathrm{X}^{*}=\mathrm{JL}^{*} / \mathrm{X}^{\perp}$. According to Lemma 1 and property 2), the subspace $F=\left\{f_{\alpha}: \alpha<\Omega\right\} \subset X^{*}$ has the form $F=G_{1} \oplus H_{1}$, where G_{1} is separable and H_{1} is reflexive. From Lemma 2 it follows that, for each $\alpha, F=F_{\alpha} \oplus F^{\alpha}$. By virtue of the separability of G_{1}, there exists a countable ordinal γ for which the (separable) subspace $F_{\gamma} \supset G_{1}$. We show that F^{γ} is reflexive. Indeed, if P is the projection on F_{γ} parallel to F^{γ}, and Q is the projection on G_{1} parallel to H_{1}, then QP is a projection on G_{1} and ker $Q P \supset F^{\gamma}$.

The subspace ker $Q P$ is isomorphic to F / G_{1}, isomorphic to H_{1}, and consequently reflexive.
Since a reflexive subspace of the dual space is weak * closed (see [5]), it follows by Lemma 2 that $\mathrm{X}^{*}=$ $\left[F_{\gamma}\right]_{*} \oplus F^{\gamma}$.

The reflexive subspace $\mathrm{F} \gamma=\left(\mathrm{X}_{\gamma}\right)^{\perp}$ is dual to $\mathrm{X} \gamma$, which is therefore also reflexive and nonseparable. There can exist no countable total set of functionals on such a subspace, which contradicts property 1).

[^0]We recall that a subspace $F \subset X^{*}$ is said to be norming if $\|x\|=\sup \{|f(x)|: f \cong F,\|f\|=1\}$ is a norm which is equivalent to the original norm $\left\|\|\right.$. The biorthogonal system (x_{i}, f_{i}) is said to be norming if the subspace $\left[f_{i}, i \in I\right]$ is norming. For each Banach space there exists a total biorthogonal system (see [6]), but not always a norming one.

THE OREM 2. The space JL does not have a norming biorthogonal system.
Proof. Let $\left(x_{i}, f_{i}\right), i \in I$, be a norming biorthogonal system in JL. The set I is not countable because, as was pointed out to us by I. Singer, it follows directly from property 3) that there are no separable norming subspaces in JL^{*}. For $X=\left[x_{i}, i \in I\right]$, we denote the images of the functionals f_{i} under the factor-transformation $\mathrm{JL}^{*} \rightarrow \mathrm{JL}^{*} / \mathrm{X}^{\perp}$ by $\hat{\mathrm{f}}_{\mathrm{i}}$. It is easy to see that the set ($\mathrm{X}_{\mathrm{i}}, \hat{\mathrm{f}}_{\mathrm{i}}$) forms a norming M -basis of the space X . But each subspace with a norming M-basis contains a subspace of the same weight with projection basis (see [2]). But this contradicts Theorem 1.

Remark. Our definition of a projection basis is formally different from that in [2, 7]. It is not difficult to verify that they are in fact equivalent.

LITERATURE CITED

1. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. 1, Springer-Verlag, Berlin-Heidelberg - New York (1977).
2. K. John and V. Zizler, Commun. Math. Univ. Carol., 15, No. 4, 679-691 (1974).
3. J. Diestel, Geometry of Banach Spaces - Selected Topics, Springer-Verlag, Berlin-Heidelberg-New York (1975).
4. W. B. Johnson and J. Lindenstrauss, Isr. J. Math., 17, No. 2, 219-230 (1974).
5. H. Rosenthal, J. Funct. Anal., 4, No. 2, 176-214 (1968).
6. A. N. Plichko, Theory of Functions, Functional Analysis, and Applications [in Russian], Vol. 33 (1980), pp. 111-118.
7. C. Bessaga, Bull. Acad. Pol. Sci., 15, No. 6, 397-399 (1967).

c-CONVEX BANACH LATTICES

E. V. Tokarev

UDC 517.982

Pisier [1] has proved the following theorem.
THE OREM. A Banach space X is superreflexive iff it is uniformly isomorphic to a convex space Y whose modulus of uniform convexity $\delta Y(\varepsilon)$ admits a power lower bound: $\delta Y_{Y}(\varepsilon) \geq \mathrm{K}^{\mathrm{p}}(\mathrm{p} \geq 2)$.

We show below that if we restrict ourselves to Banach lattices, then it is possible to introduce a new numerical characteristic of a Banach space (the "modulus of complex uniform convexity") which allows us to prove an analogous result for c-convexity.

Definitions. 1. A Banach space X is superreflexive if no nonreflexive Banach space E is finitely represented in it.
2. A Banach space E is c-convex if the space c_{0} is finitely represented in it.
3. A normed space E is λ-finitely represented in a normed space X if for each finite-dimensional subspace $F \subset E$ there exists a subspace of the same dimension $Y \subset X$ such that $d(F, Y) \leq \lambda$ [where $d(F, Y)$ is the Banach-Mazur distance]. A space E is finitely represented in X if it is λ-finitely represented in X for any $\lambda>1$.
4. A Banach lattice (B. l.) is a vector lattice which is at the same time a Banach space with the following relation between order and norm:

$$
0<|x|<|y| \Rightarrow\|x\| \leqslant\|y\| .
$$

VNII Conditioner. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 15, No. 2, pp. 90-91, April-June, 1981. Original article submitted October 1, 1979.

[^0]: Institute of Applied Problems in Mechanics and Mathematics, Academy of Sciences of the Ukrainian SSR. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, VoI. 15, No. 2, pp. 88-89, April-June, 1981. Original article submitted April 23, 1980.

