In this note we establish a result which has as one simple consequence the existence of subspaces with special properties in certain Banach spaces. The following proposition is well known.

Lemma. Let X be a separable locally convex topological vector space, let Y be a finite-dimensional subspace of it, and let V be a closed, bounded, convex subset of X with $V \cap Y = \emptyset$. Then there exists a functional f in the dual space X^* which separates V and Y.

Theorem 1. Let X be a Banach space, let Y be an infinite-dimensional linear manifold in X, and let τ be a separable locally convex topology which is weaker than the norm topology. Let V_n be a sequence of convex, bounded, τ-closed subsets such that $V_n \cap Y = \emptyset$ for each n. Then Y contains an infinite-dimensional subspace Z whose τ-closure does not intersect V_n for any n.

Proof. We choose $y_1 \in Y$. Using the lemma, we separate the closed linear hull $[y_1]$ of y_1 and V_1 with the τ-continuous functional f_1. We choose y_2 from the annihilator $\text{ann}(f_1)$. We separate $[y_1, y_2]$ and V_2 with the functional f_2. We take $y_3 \in (y_1, f_2)$. The process of construction and the proof are now clear.

Corollary 1. Let X be a separable Banach space, and let $F \subset X^*$ be a linear manifold. Then there exists a subspace $G \subset F$ whose weak * closure \overline{G} is contained in the weak * closure F^* of F.

Proof. As is well known, $F^* = \text{lin} B(F)$, where $B(F) = \{ f \in F: \| f \| \leq 1 \}$ (see [1]). The ball $B(X^*)$ is metrizable and separable in the weak * topology with respect to the metric $d(f, g) = 2 \sum_{k=1}^{\infty} (f - g)(x_k)^2$, where x_k is a sequence which is dense in the sphere $S(X)$. Any ball in this metric is convex. Therefore $B(X^*) \setminus \overline{B(F)}$ can be covered by a collection of bounded weak * closed convex subsets $V_n \subset B(X^*)$, $V_n \cap \overline{B(F)} = \emptyset$. Putting $X = X^*$, $\tau = \sigma(X^*, X)$, $Y = F$ in Theorem 1, we get the existence of an infinite-dimensional subspace $G \subset F$, $\overline{G} \cap (B(X^*) \setminus \overline{B(F)}) = \emptyset$. If $f \in F^*$, $\| f \| = 1$, then $f \notin \overline{B(F)}$ and $f \notin \overline{\sigma(X^*, X)}$.

Corollary 2. Let X^* be separable. Every subspace $F \subset X^*$ which is closed with respect to the norm contains a weak * closed infinite-dimensional subspace.

In Theorem 1, we put $X = X^*$, $\tau = \sigma(X^*, X)$, $Y = F$. We cover $X^* \setminus F$ with a collection of balls V_n. $V_n \cap F = \emptyset$, and apply the theorem.

The following result is stated in [2] and proved in [3] with the help of a sequence which is a basis.

Corollary 3. Suppose that X^{**} is separable. Then X and X^* contain infinite-dimensional reflexive subspaces.

Proof. If we cover $X^{**} \setminus X$ with a sequence of balls, we get the first part of the statement. For the proof of the second part, we note that $X^{**} = X \oplus X^{**}$. As in Corollary 1, we can cover $C = B(X^*) \setminus 0$ with a sequence of weak * closed convex subsets of C. Applying Theorem 1, we get a subspace $F \subset X^*$, the $\sigma(X^{***}, X^{**})$-closure \overline{F} of which does not intersect C. By Corollary 2, we can choose a $\sigma(X^*, X)$-closed subspace H in $\overline{F} \cap X^*$. It is not difficult to see that $H \subset X^*$, i.e., H is reflexive.

We recall that closed subspaces X and Y of a Banach space E are said to be quasicomplementary if $X \cap Y = 0$ and $[X + Y] = E$.

Theorem 2. Let X and Y be quasicomplementary, but not complementary, subspaces of E. Then there exists a closed subspace $Y_1 \supset Y$, $\dim Y_1/Y = \infty$, $Y_1 \cap X = 0$.

This result has been proved in [4-6] under a variety of assumptions (reflexivity, the property of being weakly compactly generated, separability). We show that the argument in [6] carries over to the arbitrary case.

Proof. According to [6], there exists in E a countable-dimensional subspace Z such that for any \(z \in Z, z \neq 0 \), there are no bounded sequences \(x_n \in X \) and \(y_n \in Y \) such that \(\| x_n + y_n - z \| \to 0 \). The space \([Z + Y] / Y \) is separable; therefore it is possible to choose a sequence \(f_i \in E^\ast \) for which \(Y \subset \langle f_i \rangle^\perp \) and \(\langle f_i \rangle^\perp \cap M = 0 \), where \(M = X \cap [Z + Y] \). Let

\[
W_i^j = \{ x \in M: \| x \| \leq i, f_i(x) \geq 1/j \}.
\]

By virtue of the choice of the functionals \(f_i \), there exist bounded sets \(W_i^j \) at a nonzero distance from \(Y \) such that \(\bigcup_i W_i^j = M \setminus 0 \). Indexing the \(W_i^j \) we get a sequence \(V_n \). Furthermore, applying exactly the same argument as in [6], we can construct sequences of elements \(z_n \in Z \) and closed hyperplanes \(H_n \subset E \) such that for every \(n \):

1. \(z_n \notin \langle z_i \rangle^\perp \),
2. \(V_n \cap H_n \neq \emptyset \), and
3. \(Z_n = [Y + \langle z_i \rangle^\perp] \) is the one sought.

We say that the Banach space \(X \) is normally imbedded in the Banach space \(Y \) if \(X \subseteq Y \), \(\| x \|_Y \leq \| x \|_X \) for \(x \in X \), and the linear manifold \(X \) is dense in \(Y \) but does not coincide with \(Y \). As was shown by M. I. Kadets, we have the following consequence of Theorem 2.

Corollary 4. Suppose that \(X \) is normally imbedded in \(Y \). Then there exists a closed infinite-dimensional subspace \(Z \subset Y \), \(Z \cap X = 0 \).

We get it as a consequence of Theorem 1. We choose a separable subspace \(X_1 \subset X \) on which the norms \(\| \cdot \|_X \) and \(\| \cdot \|_Y \) are not equivalent. Let \(Y_1 \) be the closure of \(X_1 \) in \(Y \) and let \(X_2 = X \cap Y_1 \). Then \((X_2, \| \cdot \|_X) \) is normally imbedded in \((Y_1, \| \cdot \|_Y) \), and \(Y_1 \) is separable. We denote the closure of the unit ball in \(X_2 \) with respect to the norm in \(Y \) by \(C \). From Lemma 1.2 of Chap. 1 of [7] it is not difficult to get (see [8]) the existence of an infinite-dimensional subspace \(Z_1 \subset Y_1, Z_1 \cap C = 0 \). We cover the set \(C \setminus 0 \) with a sequence of balls \(W_n \) of the space \(Y_1, W_n \neq 0 \). Then the collection \(V_n = W_n \cap C \) covers \(C \setminus 0 \), and we can apply Theorem 1.

Corollary 5. Let the separable space \(X \) be normally imbedded in \(Y \). Then \(Y^* \subset X^* \), and there exists a \(\sigma(X^*, X) \)-closed infinite-dimensional subspace \(F, F \cap Y^* = 0 \) in \(X^* \).

Proof. The ball \(B(Y^*) \) is weakly * compact and therefore closed in the topology \(\sigma(X^*, X) \). As in the preceding corollary, there exists an infinite-dimensional subspace \(F \) which does not intersect \(B(Y^*) \). We cover the set \(B(Y^*) \setminus 0 \), which is separable and metrizable in the topology \(\sigma(X^*, X) \), with a sequence of sets \(W_n \) which are convex and \(\sigma(X^*, X) \)-closed, and then putting \(v_n = W_n \cap B(Y^*) \), we apply Theorem 1.

Literature Cited