
Further, 

02 + ~8 = ~keJ, a.~. aly i + . . .  + ~.~E:7 ' a.~. avyi -~- 
1~t-1 "~<~ < ~i /q_l~<k < ki 

+ ~]~J'  ki"~/f <]q+l an~'alYi+l+'''+~k'E~ ~p<" ~%1 an~:'apy~+'= 

a 

/~i-I "~</c< ]fi ki_t<k < k i 

] f i ~  <k/+l, /ci~<k <ki+ 1 

ki-l<~< ki+1 ~i-i ~<k< ~i+l 

ki~k< ]fi+l ]~i<k<ki+l 

Obviously, the second term tends to 0 as i § | since the expression in the brackets is 
bounded. Hence 

a ~ 

where 7~ -~ 0 (i -+ oo). 

In view of the choice of numbers k i (i = i, 2, . . .), and the fact that {Zk} is hound- 
ed, the third term tends to 0 as i + =, and by (i), the first term also tends to 0 as i § =. 
Hence, sequence {z n} is A-s,,mmahle to 0. 

QED. 

In conclusion, I thank N. A. Davydov for advice and interest. 

i. 
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IiEASURABILITY AND REGULARIZABILITY OF MAPPINGS 

TO CONTINUOUS LINEAR OPERATOES 

V. A. Vinokurov, Yu. I. Petunin, 
and A. N. Plichko 

INVERSE 

The minimal o-algebra, containing all open sets of topological space E, is called the 
o-algebra of Borel sets ~(E) of space E. Let E and F be two topological spaces, and let A 
be a mapping from E into F; we call mapping A measurable if the preimage A-L(S) of any Borel 
set S ~  (F) belongs to the o-algebra ~ (E). The set of all measurablemappings contains 
the set of B-measurable mappings of class u (see [i]). Among these families of mappings, 
the greatest interest attaches to mappings of the first class, i.e., mappings A: E § F for 
which the preimage of every open set U cF is a countable union of closed sets (i.e., 
A-*(U) is a set of type F a)- 

Let E and F be metric spaces; a mapping A: E + F is regarded as Tikhonov-regularizable 
if there exists a one-parameter family of mappings R6: E-~F, 0,.<-8<8,, such that for any 
x~E 

sup {p (R8 (y), A (x)): y E E, p ~,  y) < 8},--~ 0 

as 8§ 
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It was shown in [2] that, in the case of separable metric space F, regularizability of 
a mapping A, acting from metric space E into F, is equivalent to mapping A being a member of 
the first class. In this connection, it is interesting to find necessary and sufficient 
conditions for measurability and membership of the first class for an unbounded linear map- 
ping, acting from normed space E into P. A particular case of-thls problem is examined be- 
low: we consider mappings A -t , which are inverse to bounded linear mappings A. By the 
classical Banach theorem on the inverse operator, the mapping A -t is a bounded linear opera- 
tor if A is a bounded linear operator acting from Banach space E into Banach space F. When 
F is an incomplete linear normed space, Banach's theorem is not valid, so that it is not 
possible to guarantee the continuity of mapping A -t. Nevertheless, we have: 

THEOREM i. Let E be a separable Banach space, F a topological vector space, and A a 
continuous linear operator with zero kernel, acting from E into P. Then, the inverse oper- 
ator A -t is a measurable linear mapping, acting from P into E. 

This theorem is a restatement of Proposition 2 of [3]. 

THEOREM 2. Let E be a reflexive Banach space, and F a separable locally convex space. 
The inverse mapping A -I to the continuous linear mapping A with zero kernel, acting from E 
into F, is also measurable. 

As a preliminary, we shall prove: 

LEMMA i. If E is a locally uniformly convex Banach space, then, given any point x 0 ~ E, 
x,~=0, and any number y > 0, there exist a rational number r~I[x01[and a linear continuous 
functional f, such that 

xo ~ {x ~ E : ll x ll ~< r, f (x) > t } c S (xo, ?), 

where  S(xo,  7 ) ~ -  { x ~ E :  [ [ x - - x  olIn<Y}. 

Proof. By the Hahn--Banach theorem, there exists a linear continuous functional g such 
that g(xo) = 1 and [[ g H----I/I[ x0 If. Since space E is locally uniformly convex, there exists 
6 > 0 such that the diameter of the set Q = {x~E;g(x)~l-8, [[x]l ~I[x011} is less than 
7/3 (we use the implication URL~DL, see [4]). We take 6' > 0 such that 6'[Ix, lI<y/3 and 
6' < 6. Then, (I q-6')Q~x 0 and (I q-6')QcS(x0, 2/3?), since every point of the set Q has a 
displacement of less than 7/3. The set (i + ~')Q can be written as 

(t + 8') Q = {x E E: g (x) > (1 -- 6) (t + 8), I[ x II ~ (l + 8') II xo II}. 

On choosing the rational number r from the conditions II x0 ]l < r < (I q-8') II x0 II and putting f = 
g/((l --6)(I q-8')), we obtain the lemma. The theorem is now easily proved: 

Proof of Theorem 2. We need to show that, if XC E is a nonempty open set, then AX is 
a measurable set in space F. It can be assumed without loss of generality that X does not 
contain zero. Moreover, we shall assume that the norm in E is locally uniformly convex, 
since, in accordance with [5], an equivalent norm with this property exists in any reflexive 
space. For every point x ~ X we choose, in accordance with Lemmo i, a rational number r x > 
0, and a continuous functional fx, such that 

x ~ { x ' ~ E :  I Ix ' l l~<r~,  / x ( x ' ) > i } c x ,  

w h i l e  I x ( x ) =  I - { - e x ,  ex > 0. S i n c e  t h e  l i n e a r  c o n t i n u o u s  mapp ing  A i s  i n J e c t i v e ,  and s p a c e  E 
i s  r e f l e x i v e ,  t h e  s e t  A ' F '  i s  e v e r y w h e r e  d e n s e  w i t h  r e s p e c t  t o  t h e  norm i n  E ' ;  h e n c e  we can  
c h o o s e  a l i n e a r  f u n c t i o n a l  vx ~ A'F' s u c h  t h a t  ]l f x -  vx !l < e~/4rx; t h e n ,  t h e  f u n c t i o n a l  gx = 
vx/(t + e J 2 )  b e l o n g s  t o  t h e  s e t  A ' F ' ,  and t h e  f o l l o w i n g  i n c l u s i o n s  h o l d  f o r  i t :  

x ~ { x ' ~ E :  I l z ' t l ~ r x ,  g ~ ( x ' ) > t } ~ { x ' C E :  IIx' I I ~ r x ,  / x ( x ' ) >  t}. 
In fact, 

l~x/2 ~ i  (1 -4- ex g~ (x) = v~ (x)/(i -F ex/2) = 1 + [Ix (x) - -  (Ix - -  v~)(x)l > . 8~ - rx-~-r~) > i.  

I n  a d d i t i o n ,  i f  I1 x' II ~< r~ and gx(x') > t ,  t h e n  

E x �9 

/x (z') = v~ (z') - (vx - A)  (x') > v~ (x') - ~ r~ = (t + ~x/2) g~ ( x )  - ~14  > t + ~14  > t .  

We introduce some notation: Hx ----- {x' ~ E: gx(x') > I}, Q is the set of positive rational 
numbers; and we write the set of x as X = ~xEx (S (0, r~) [] Hx). Using the fact that mapping 
A is injective, we obtain 
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AX = U . ~  (A (S(0, ~.)) N A (H.)) = U ~  (A (S (0, D) N (U ~ x ,  ..=~ A (H.))). 

It remains to observe that, by hypothesis, g~A'F', and the set AH x is open in F. Next, 
the linear continuous operator A: E ~ F is continuous from a weak into a weak topology; 
and since S(0, ~) is compactum in the weak topology ('inasmuch as E is reflexive), 
then its image under a weakly continuous mapping will also be a compactum in the weak topol- 
ogy in F, i.e., it is weakly closed, and closed in F. In short, the set O~x.~=~A(Hx) is 

open, the set A(S(O, ~)) is closed in F, their intersection is measurable in F, and the 
countable union of the sets is measurable in F. The measurability of set AX is proved; QED. 

The essential nature of the conditions in Theorems I and 2 is underlined by the follow- 
ing: 

THEOREM 3. If E is a nonseparable Banach space, adJoint to a separable space, then 
there is a linear bounded in~ective mapping A:E-+~. 

Proof. If E = E~ and ~n)~ c EO is a point sequence, everywhere dense in the unit sphere 
of space Eo, then, on associating an element z EE with a numerical sequence {f,(~)~, we ob- 
tain an isometric imbedding $: E-+m. Then, the mapping A: E-+l~,associating the element 
z~E with the sequence 2-"~,(z), is a linear bounded injective mapping. 

If we accept the continuum hypothesis, or the weaker hypothesis 2x,>2w., then a B-mea- 
surable mapping will preserve separability of a space (see [i]), and hence, under these con- 
ditions, the mapping inverse to that constructed in Theorem 3 is unmeasurable. 

Let us now turn to examining the regularizability of mappings A -~, inverse to continu- 
ous linear Injectlve operators, acting from Banach space E into normed space F. To this 
end, we consider in space E the new norm 

II �9 11" = It Ax II~; 

since A is a bounded linear operator, the norm Ilzll* is weaker than the initial norm of space 
E. By the above results, the adjoint space E~ to a vector space E, equipped with the norm 
II II ~, is imbedded in space E' and is there an everywhere dense linear manifold in the weak 
topology o(E', E). 

A subspaceMcE', everywhere dense in the weak topology ~(E', E), is called a subspace 
with zero characteristic, if the norm 

II = 16 - sup U (3: / EE M, II / II < t }  

is not equivalent to the initial norm of space E. Otherwise, we say that the characteristic 
of M is nonzero (see [6]). We know [6] that a subspace has zero characteristic if and only 
if the closure of the unit sphere S, of space E in the topology a(E, M) is unbounded with 
respect to the norm of E. In the case M = A'F', this last condition is equivalent to the 
following assertion: the closure $I of sphere $I in the norm [I x ll = is an unbounded set in 
the metric of space E (see [7]). If space F, into which mapping A acts, is a separable top- 
ological vector space, then, instead of the norm llxll �9 in space E we introduce the preimage 
A-x~(T) of topology r of space F with respect to the mapping A. 

THEOREM 4. Let A be a continuous linear operator with zero kernel, acting from separ- 
able Banach space E into separable topological vector space F with topology T. In order for 
the inverse operator A -I to be a B-measurable mapping of the first class, it is necessary 
and sufficient that the closure S~ of the unit sphere S, in topology A-I(T) be a bounded set 
in the metric of space E. 

The proof is obtained from the next lemma. 

LEMMA 2. Let E be a separable Banach space, and T a separable topology, matched with 
the Structure of vector space E, which is weaker than the original topology of space E. In 
order for an open set of Banach space E to be a set of type F~ in the topology T, it is 
necessary and sufficient that the closure S, of the unit sphere S, in topology T be a bound- 
ed set of space E. 

Proof. Sufficiency. In a separable metric space there exists a countable base, con- 
sisting of open spheres (see [i]); hence we only need to show that the open sphere S,, cen- 
ter the point 0, is a set of type Fu(T). Let Pn § i as n + andPn < I; then, S~ rUn=tPn. 
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Denote  by y~, y~ . . . .  a c o u n t a b l e  s e t ,  eve rywhere  dense  i n  s p h e r e  Son ; i t  can be assumed 

w i t h o u t  l o s s  o f  g e n e r a l i t y  t h a t  Y ~ o n .  S ince  S ,  i s  bounded,  t h e r e  e x i s t s  a c o n s t a n t  c 
s u c h  that c~ ,  C 8 , .  

We choose  an  a r b i t r a r y  number rn ~ (0, i -  pn) and c o n s i d e r  t h e  sys t em o f  s p h e r e s  S (y~, 

' r a ) =  { x ~  E : I I Y ~ - - z [ [  < r . } .  Then,  

In view of this, and our above discussion, we have 

n n S 

where S (y~, r,.c) denotes the closure of sphere S (y~, rn.c) = {z ~E: ]] y~ -- z[[ ~ rn'c} in topology 
T. It is easily seen that 

| |  ~ _ U ~  S ~  Sl = U . = ~  { U k=, (yk, r~.c)} - k,~=l (y~, ~-c)~  

Hence S~ can be expressed as the sum of a countable number of sets, closed in topology T; 
consequently, SIEFa(~ ). 

Necessity. Let S~ be unbounded. Assume that the open sphere S~ belongs to Fu(r). 
Then, 

81 = UI X~, 

where X n are closed sets in topology T. It can easily be seen that Xn is a nowhere dense 
set in the original topology of space E. For, assume that, for some n, the set X n is dense 
in the sphere S(xo, s). Since ~ is weaker than the original topology of space E, then the 
density of X n in the metric of E implies its density in S(xo, g) in the topology T. The set 
Xn is closed in the topology ~, and hence the closure S (x0,.s) of sphere S (xo, ' ~) in topology 
T is contained in the set X nCSI ; but this contradicts the unboundedness of S (x0, ~) in the 
metric of space E. Consider any closed sphere ~r C S~, Sr -- {~ ~ E: [[ x [[ ~ r}. The sets 
Y,-- X, ~ Sr are nowhere dense for any integer n, whereas Sr = ~Ym. This last equation 
contradicts Baire's theorem on categories (see [1]), according to which Sr is a set of sec- 
ond category. This proof is similar to the proof of the 1emma in [8]. Our 1emma is proved. 

COROLLARY I. If, in the conditions of Theorem 4, space F is locally convex, then the 
operator A -~ is a B-measurable mapping of first class if and only if the characteristic of 
subspace E, c E "  is nonzero. 

Note. In the proof of necessity in Theorem 4 (and hence in Corollary i), no use is 
made of the assumption that space E is separable. 

Recall that a Banach space is said to be quasireflexive if dim E~/E<oo, where E" is 
the second adJoint to space E. We know (see [7]) that, in the adjoint to a quasireflexive 
space, the characteristic of any subspace, everywhere dense in the weak topology, is nonzero. 
Hence we have: 

COROLLARY 2. Let E be a quasireflexive separable Banach space, and A a continuous lin- 
ear inJective operator, mapping E into an arbitrary normed space F. Then, the inverse oper- 
ator A -~ is a B-measurable mapping of first class (or Tikhonov-regularizable). 

Since, into any nonquasireflexive Banach space E, a weaker norm [I [10 can be introduced, 
such that the closure of the unit sphere S of space E with respect to the norm I[ [10 is an 
unbounded set of space E (see [9, i0]), we have: 

COROLLARY 3. Let E be a nonquasireflexive Banach space; then there exists a normed 
spaceF, and a continuous linear inJectlve operator A: E ~ F, such that the inverse opera- 
tor A -~ does not belong to the first class, and hence is not Tikhonov-regularizable, as fol- 
lows from [ii, Theorem i]. 

The following holds without the assumption that the Banach space is separable: 

THEOREM 5. If E is a reflexive Banach space, and A: E § F is a linear bounded injec- 
tire mapping into normed space F, then mapping A -* is regularizable and hence, is a B-mea- 
surable function of the first class. 

This theorem follows from Trojanski's result [5] on the isomorphism of a reflexive 
space and a locally uniformly convex space, and the result of [12] (see also the note to 
[13]). 
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Using Corollary 2, Theorem 5, and the decomposition of a quasireflexive Banach space 
into a sum of a reflexive and a separable quasireflexive space, an extension of Corollary 2 
is obtained in [14]: to nonseparable spaces. Finally, note that the results proved here 
were announced in [15]. 
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