Norm approximation property

Anatolij Plichko

ABSTRACT. We introduce and study a general approximation property which takes origin in Numerical Analysis.

Let $\mathcal{F}(X)$ be the set of all finite rank bounded linear operators in a Banach space X. A Banach space X has the *approximation property* (AP) if for every $\varepsilon > 0$ and every compact subset $K \subset X$ there is $T \in \mathcal{F}(X)$ such that for all $x \in K$,

$$||Tx - x|| \le \varepsilon.$$

We say that a Banach space X has the norm approximation property (norm AP) if there is $\lambda \geq 1$ such that for every $\varepsilon > 0$ and every finitedimensional subspace $E \subset X$ there is $T \in \mathcal{F}(X)$ with $||T|| \leq \lambda$ and such that for all $x \in E$,

$$(1-\varepsilon)\|x\| \le \|Tx\| \le (1+\varepsilon)\|x\|. \tag{1}$$

Of course, one may consider the norm approximation property for different Banach spaces X and Y. This property is a kind of "finite representability" of X in Y. The norm approximation property takes origin in Numerical Analysis, see, e.g., Vainikko [6], Heinrich [1], Plichko [5].

Proposition 1. A Banach space X has the norm AP provided there is a sequence $T_n \in \mathcal{F}(X)$ such that for all $x \in X$,

$$||T_n x|| \to ||x|| \quad as \quad n \to \infty.$$
⁽²⁾

Proof. Indeed, by the Uniform Boundedness Principle, in this Proposition the operators (T_n) are automatically uniformly bounded. Moreover, (2) implies that this convergence is uniform on the unit ball of every finite-dimensional subspace $E \subset X$.

Received December 22, 2013.

²⁰¹⁰ Mathematics Subject Classification. Primary 46B28; Secondary 46B07. Key words and phrases. Approximation property, finite representability. http://dx.doi.org/10.12097/ACUTM.2014.18.07

^{097/}ACO1M.2014.18.0

ANATOLIJ PLICHKO

For separable Banach spaces the converse statement is also valid. If X has the norm AP, then there exists a sequence $T_n \in \mathcal{F}(X)$ with the property (2).

Now we present an example of a Banach space without the norm AP.

Denote by $\mathcal{L}(X, Y)$ the space of all bounded linear operators from a Banach space X to a Banach space Y. Let us recall that an operator $T \in \mathcal{L}(X, Y)$ is 2-absolutely summing if there is a constant C such that, for all finite subsets (x_i) in X, we have

$$\left(\sum \|Tx_i\|^2\right)^{1/2} \le C \sup_{f \in B_{X^*}} \left(\sum |f(x_i)|^2\right)^{1/2},$$

where B_{X^*} is the dual unit ball. We denote by $\pi_2(T)$ the smallest constant C satisfying the previous inequality. This $\pi_2(T)$ is a norm on the space of all 2absolutely summing operators and $\pi_2(T) \geq ||T||$. Moreover, if $T \in \mathcal{L}(X, Y)$ is 2-absolutely summing, and for subspaces $X' \subset X$ and $Y' \subset Y$ we have $T(X') \subset Y'$, then the restriction $T' = T|_{X'} \in \mathcal{L}(X', Y')$ is again 2-absolutely summing and $\pi_2(T') \leq \pi_2(T)$, see, e.g., Pisier [4, p. 9].

Lemma 2. Let $T \in \mathcal{L}(X, Y)$ and E be a subspace of X, dim E = n, for which (1) is satisfied. Then there exists a constant a > 0, depending on ε only, such that

$$\pi_2(T|_E) \ge a\sqrt{n}.$$

Proof. Let Id be the identity operator on X. As is well known, there exists an absolute constant b > 0 such that $\pi_2(Id|_E) \ge b\sqrt{n}$ (see, e.g., Pisier [3, p. 201] or [4, p. 145]). Since $Id|_E = (T|_E)(T|_E)^{-1}$ and $\pi_2(Id|_E) \le \pi_2(T|_E) ||(T|_E)^{-1}||$ (see, e.g., Pisier [4, p. 9]), the Lemma is proved. \Box

Pisier [3, p. 201], [4, p. 145] constructed a Banach space **X** for which there is a constant c > 0 such that for every $T \in \mathcal{F}(\mathbf{X})$ we have

$$\|T\| \ge c\pi_2(T). \tag{3}$$

Proposition 3. Every Banach space X for which (3) is satisfied fails the norm AP.

Proof. Indeed, let $E \subset X$, dim E = n, and let an operator $T \in \mathcal{F}(X)$ satisfy condition (1). Then, by (3) and Lemma 2,

$$||T|| \ge c\pi_2(T) \ge c\pi_2(T|_E) \ge ca\sqrt{n}.$$

Therefore, there exists no λ with $||T|| \leq \lambda$ for the operators $T \in \mathcal{F}(X)$ satisfying (1).

66

Proposition 4. Let X be a subspace of a Banach space Y which has the norm AP and is finitely representable in X. Then X has the norm AP.

Proof. Take a finite-dimensional subspace $E \subset X$, $\varepsilon > 0$, and let $I : X \to Y$ be the identity embedding. Since Y has the norm AP (with a constant λ), there is $T \in \mathcal{F}(Y)$ with $||T|| \leq \lambda$ such that

$$(1 - \varepsilon) \|x\| \le \|Tx\| \le (1 + \varepsilon) \|x\|$$

for every $x \in I(E)$. Since Y is finitely representable in X, there exists an operator $S: T(Y) \to X$ with $||S|| < 1 + \varepsilon$ and $||S^{-1}|| < 1 + \varepsilon$. Put U = STI. Then $U \in \mathcal{F}(X)$, $||U|| < \lambda(1 + \varepsilon)$, $||Ux|| < (1 + \varepsilon)^2 ||x||$ and $||Ux|| > \frac{1-\varepsilon}{1+\varepsilon} ||x||$ for every $x \in E$. Hence, X has the norm AP.

Corollary 5. Every Banach space X, which contains ℓ_{∞}^n uniformly, has the norm AP.

Proof. Indeed, each Banach space X is a subspace of $Y = \ell_{\infty}(\Gamma)$, for a suitable set Γ , which of course has the norm AP. By the assumption of Corollary, Y is finitely representable in X and one can apply the previous Proposition.

Corollary 6. Let $Y = (\sum_{n} \ell_{\infty}^{n})_{2}$ and X be an arbitrary Banach space. Then the space $Z = (X \oplus Y)_{\ell_{2}}$ has the norm AP. So, each Banach space is isometric to a 1-complemented subspace of a Banach space with the norm AP. Each reflexive Banach space is isometric to a 1-complemented subspace of a reflexive Banach space with the norm AP.

Corollary 7. Every subspace X of the space ℓ_p , $1 \leq p < \infty$, or c_0 has the norm AP. So, there exists a superreflexive separable Banach space with the norm AP but without the AP.

Proof. Indeed, each (infinite-dimensional) subspace X of ℓ_p or c_0 contains a subspace, $(1 + \varepsilon)$ -isometric to ℓ_p or c_0 [2, Proposition 2.a.2], and one can apply the previous Proposition. It is well known that there exists a subspace X of ℓ_p , $p \neq 2$, (or c_0) without the AP [2, p. 90].

Acknowledgements. The author expresses his thanks to G. Godefroy and W. B. Johnson for helpful discussions.

References

- S. Heinrich, A problem in discretization theory related to the approximation property of Banach spaces, Math. Nachr. 111 (1983), 147–152.
- [2] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces*, Vol. I, Ergebn. Math. Grenzgeb. 92, Springer, Berlin, 1977.
- [3] G. Pisier, Counterexamples to a conjecture of Grothendieck, Acta Math. 151 (1983), 181–208.
- [4] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, Amer. Math. Soc., Providence, RI, 1986.

ANATOLIJ PLICHKO

- [5] A. M. Plichko, Totality of a set of weak* P-approximable functionals, Dopovidi Akad. Nauk Ukrain. RSR Ser. A, No. 2 (1983), 17–20. (Ukrainian)
- [6] G. Vainikko, Funktionalanalysis der Diskretisierungsmethoden, Teubner-Texte zur Mathematik. B.G. Teubner Verlag, Leipzig, 1976.

Department of Mathematics, Cracow University of Technology, Cracow, Poland

 $E\text{-}mail \ address: \texttt{aplichko@pk.edu.pl}$

68