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Abstract

By using results from a paper [G.R. Pantsulaia, On ordinary and standard Lebesgue
measures on R∞, Bull. Pol. Acad. Sci. Math. 57 (3-4) (2009), 209–222] and an ap-
proach based in a paper [T. Gill, A.Kirtadze, G.Pantsulaia , A.Plichko, The existence
and uniqueness of translation invariant measures in separable Banach spaces, Func-
tiones et Approximatio, Commentarii Mathematici, 16 pages, to appear ], a new class
of translation-invariant quasi-finite Borel measures (the so called, ordinary and stan-
dard ”Lebesgue Measures”) in an infinite-dimensional separable Banach space X is
constructed and some their properties are studied in the present paper. Also, various
interesting examples of generators of two-sided (left or right) shy sets with domain in
non-locally compact Polish Groups are considered.
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1. Introduction

By using an additional set-theoretical axiom asserted that each subset of R is Lebesgue mea-
surable an example of an invariant measure firstly has been constructed on the powerset of
a Banach space with absolutely convergent Schauder basis such that the constructed mea-
sure takes the value 1 on the standard rectangle (see [16, Th. 7.3]). A version of Lebesgue
measure on every separable Banach space that has a Schauder basis firstly has been con-
structed in [8, Th. 12] without any additional set-theoretical assumption. More lately has
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been demonstrated that the completion µQ of the Yamasaki-Kharazishvili measure µQ has
the uniqueness property in the class of all L1-invariant σ-finite measures in X with do-
main dom(µQ) (see comment in [7, p. 121]). The latter result has been extended by [6,
Th. 4.2] to all infinite-dimensional separable Banach spaces. In [6], the problem of invari-
ant measures for infinite-dimensional separable Banach spaces has been considered. Here
has been demonstrated that their approach is distinct from that of Oxtoby [13]. The meth-
ods developed by [1] and [8], have been used for the construction of a translation invariant
Borel measure in an infinite-dimensional separable Banach space with absolutely conver-
gent Markushevich basis which gets the numerical value 1 on the standard parallelepiped
defined by that basis.

In [18], new concepts of the Lebesgue measure on R∞ have been proposed. Here
has been demonstrated that Baker’s both measures [1], [2], Mankiewicz and Preiss - Tiśer
generators [17] and the measure [15] are not an α-standard Lebesgue measure on R∞ for
α = (1,1, · · ·).

Let α be an infinite parameter set and let (αi)i∈I be its any partition such that αi is
a non-empty finite subset for every i ∈ I. For j ∈ α, let µ j be a σ-finite Borel measure
defined on a Polish metric space (E j,ρ j). In [20], a new concept of a standard (αi)i∈I-
product of measures (µ j) j∈α has been introduced and its existence has been proved. As
consequence, “a standard (αi)i∈I-Lebesgue measure” on the Borel σ-algebra of subsets of
Rα for every infinite parameter set α has been constructed such that it is invariant under
a group generated by shifts and canonical permutations. A certain interesting application
of the standard Lebesgue measure mα in Rα for a construction of uniform measures in the
Banach space of all real-valued α-sequences ℓα for an arbitrary parameter set α has been
considered.

The purpose of the paper is to introduce a new concept of α-standard and α-ordinary
”Lebesgue measures” in infinite-dimensional separable Banach spaces.

The paper is organized as follows.
In Section 2 we give some basic definitions and results from measure theory and func-

tional analysis.
In Section 3 we present our main results.
In Section 4 study topological structures of carriers of ordinary and standard Lebesgue

measures in separable Banach spaces.
In Section 5 we give some examples of generators of two-sided (left or right) shy sets

in non-locally compact Polish Groups.

2. Basic definitions and results from measure theory and func-
tional analysis

a) Contionuous mappings.

Lemma 2.1 [5, Theorem 2.3.6]. Let (Yi)i∈I be a family of topological spaces and Y =

∏i∈I Yi be their cartesian product endowed with product topology. Let p j : Y → Yj be the
j-projection for j ∈ I, defined by

p j((yi)i∈I) = y j (yi)i∈I ∈ Y.
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If X is a topological space, then a mapping f : X → Y is continuous if and only if each
composition p j ◦ f , j ∈ I, is continuous.

Lemma 2.2 (Lusin-Souslin [12, Theorem 15.1]). Let X ,Y be Polish spaces and f : X → Y
be continuous. If A ⊆ X is Borel and f |A is injective then f (A) is Borel.

b) Markushevich basis.

Let X be an infinite-dimensional separable Banach space. A sequence (xk)
∞
k=1 ⊂ X is called

minimal if each vector xk is not contained in the closed linear span of (xl)l ̸=k. A sequence
in X is called fundamental if its closed linear span coincides with X . It is easy to verify
that for a fundamental minimal sequence (xk)

∞
k=1 there exists a unique sequence (x∗k)

∞
k=1 of

continuous linear functionals satisfying the condition x∗k(xl) = δkl (k, l ∈N). This sequence
is called biorthogonal to (xk)

∞
k=1. Thus, if (xk) is minimal and fundamental, then to each

x ∈ X there corresponds a generalized Fourier series

∑∞
k=1 x∗k(x)xk.

The vector x is uniquely determined by this series if and only if the biorthogonal sequence
(x∗k)

∞
k=1 is total (that is for each x ̸= 0 there exists k ∈ N such that x∗k(x) ̸= 0). A fundamen-

tal minimal sequence with a total biorthogonal sequence is called the Markushevich basis
(M-basis in short). By the Markushevich theorem, for every countably-dimensional dense
subspace L of a separable Banach space X there is an M-basis (xk,x∗k)

∞
k=1 of X such that

the linear span lin(xi)
∞
1 = L. [22, p. 226]. Conversely, each Banach space with M-basis

is separable. We call an M-basis absolutely convergent if ∑∞
k=1 ∥xk∥ < ∞. The following

statement follows immediately from the Markushevich theorem mentioned above.

Lemma 2.3( [6, Lemma 2.3]). Every infinite-dimensional separable Banach space has
absolutely convergent M-basis.

Lemma 2.4 ( [6, Lemma 2.4]). Let (xk,x∗k) be an absolutely convergent M-basis in a Banach
space X. Then for every bounded scalar sequence (ak) the series ∑∞

k=1 akxk is absolutely
convergent to some element x ∈ X and moreover x∗k(x) = ak for all k.

Let (xk,x∗k)
∞
k=1 be an absolutely convergent M-basis of a Banach space X and define a

rectangle P by:
P = {x ∈ X : |x∗k(x)| ≤ 1/2 for all k ∈ N}. (2.1)

Obviously, P is a compact subset in X .

In the sequel, unlike N. Burbaki well known notion, under N we understand a set
{1,2, · · ·}. We denote by RN the vector space of all real-valued sequences equipped with
the product topology. We denote by ek = (0, . . . ,0,1,0, . . .), where 1 is in the k-th position,
k = 1,2, . . . , the unit vectors of RN.

If we define the operator T : X → RN by

T x = (x∗k(x))
∞
k=1 , (2.2)

then T is clearly linear, injective (because the M-basis is total), continuous (by Lemma 2.1)
and T xk = ek for all k.
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Lemma 2.5( [6, Lemma 2.5]). The subspace S := T (X)∈ B(RN) and the operator T : X →
S is a Borel isomorphism.

c) Ordinary and Standard ”Lebesgue measures” in RN.

Let (β j) j∈N ∈ [0,+∞]N .
We say that a number β ∈ [0,+∞] is an ordinary product of numbers (β j) j∈N if

β = lim
n→∞

n

∏
i=1

βi.

An ordinary product of numbers (β j) j∈N is denoted by (O)∏i∈N βi.
A standard product of the family of numbers (βi)i∈N is denoted by (S)∏i∈N βi and

defined as follows:
(S)∏i∈N βi = 0 if ∑i∈N− ln(βi)=−∞, where N− = {i : ln(βi)< 0} 1, and (S)∏i∈N βi =

e∑i∈N ln(βi) if ∑i∈N− ln(βi) ̸=−∞.
Let α = (nk)k∈N ∈ NN. We set

F0 = [0,n0]∩N, F1 = [n0+1,n0+n1]∩N, . . . ,Fk = [n0+ · · ·+nk−1+1,n0+ · · ·+nk]∩N, . . . .

We say that a number β ∈ [0,+∞] is an ordinary α-product of numbers (βi)i∈N if β is
an ordinary product of numbers (∏i∈Fk

βi)k∈N. An ordinary α-product of numbers (βi)i∈N
is denoted by (O,α)∏i∈N βi.

We say that a number β ∈ [0,+∞] is a standard α-product of numbers (βi)i∈N if β is
a standard product of numbers (∏i∈Fk

βi)k∈N. A standard α-product of numbers (βi)i∈N is
denoted (S,α)∏i∈N βi.

Let α = (nk)k∈N ∈ NN. Let (α)OR be the class of all infinite-dimensional measur-
able α-rectangles R = ∏i∈N Ri(Ri ∈ B(Rni)) for which an ordinary product of numbers
(mni(Ri))i∈N exists and is finite.

We say that a measure λ being the completion of a translation-invariant Borel measure
is an ordinary α-Lebesgue measure on R∞(or, shortly, O(α)LM) if for every R ∈ (α)OR
we have

λ(R) = (O)∏
k∈N

mnk(Rk).

Let α=(nk)k∈N ∈NN. Let (α)SR be the class of all infinite-dimensional measurable α-
rectangles R = ∏i∈N Ri(Ri ∈ B(Rni)) for which a standard product of numbers (mni(Ri))i∈N
exists and is finite.

We say that a measure λ being the completion of a translation-invariant Borel measure
is a standard α-Lebesgue measure on R∞(or, shortly, S(α)LM) if for every R ∈ (α)SR we
have

λ(R) = (S)∏
k∈N

mnk(Rk).

Lemma 2.6( [18, Proposition 1]). Note that for every α = (nk)k∈N ∈ NN the following
strict inclusion

(α)OR ⊂ (α)SR

1We set ln(0) =−∞
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holds.

Lemma 2.7 [16, Theorem 1]). For every α = (ni)i∈N ∈NN, there exists a Borel measure µα
on R∞ which is O(α)LM.

Lemma 2.8 [16, Theorem 2]). For every α = (ni)i∈N ∈ NN, there exists a Borel measure
να on R∞ which is (α)LM.

Let µ1 and µ2 be two measures defined on the measurable space (E,S).
Following [10, p. 124], we say that the µ1 is absolutely continuous with respect to the

µ2, in symbols µ1 ≪ µ2, if

(∀X)(X ∈ S & µ2(X) = 0 → µ1(X) = 0).

Following [10, p. 126], two measures µ1 and µ2 for which both µ1 ≪ µ2 and µ2 ≪ µ1
are called equivalent, in symbols µ1 ≡ µ2.

Lemma 2.9 [16, Theorem 3]). For every α = (ni)i∈N ∈ NN, we have να ≪ µα and the
measures να and µα are not equivalent.

Let α = (ni)i∈N ∈ NN such that ni = n j for every i, j ∈ N. We set Fi = (a(i)1 , . . . ,a(i)n0 )
for every i ∈ N. Let f be any permutation of N such that for every i ∈ N there exists
j ∈ N such that f (a(i)k ) = a( j)

k for 1 ≤ k ≤ n0. Then a map A f : R∞ → R∞ defined by
A f ((zk)k∈N) = (z f (k))k∈N for (zk)k∈N ∈ RN, is called a canonical α-permutations of RN.

A group of transformations generated by all α-permutations and shifts of R∞, is denoted
by Gα.

Lemma 2.10 ([16, Corollary 1]). For every α = (ni)i∈N ∈ NN for which ni = n j(i, j ∈ N),
the measure να is Gα-invariant.

Lemma 2.11 ([19, Theorem 3]). Let α = (ni)i∈N ∈ NN, and let T ni : Rni → Rni (i > 1)
be a family of linear transformations with Jacobians ∆i ̸= 0 and 0 < ∏∞

i=1 ∆i < ∞. Let
T N : RN → RN be a map defined by

TN(x) = (T n1(x1, . . . ,xn1),T
n2(xn1+1, . . . ,xn1+n2), . . .),

where x = (xi)i∈N ∈ RN. Then for each E ∈ B(RN), we have

µα(T N(E)) =
( ∞

∏
i=1

∆i

)
µα(E).

d) Ordinary and Standard “Lebesgue measures” in an infinite dimensional separable Ba-
nach space.

Let X be an infinite-dimensional separable Banach space and (xk,x∗k) be an absolutely
convergent M-basis. Let T : X → RN be a linear operator defined by (2.2).

Let α = (nk)k∈N ∈ NN. We say that a translation-invariant Borel measure µ on X is an
ordinary α-Lebesgue measure on X(or, shortly, O(α)LM(X)) if for every R ∈ (α)OR for
which R∩T (X) ∈ (α)OR we have

µ(T−1(R)) = µα(R∩T (X)),
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where µα becomes from Lemma 2.7.
We say that a translation-invariant Borel measure µ on X is a standard α-Lebesgue

measure on X(or, shortly, S(α)LM(X)) if for every R ∈ (α)SR for which R∩ T (X) ∈
(α)SR we have

µ(T−1(R)) = να(R∩T (X)),

where να becomes from Lemma 2.8.

3. Main Results

Let X be an infinite-dimensional separable Banach space and (xk,x∗k) be an absolutely con-
vergent M-basis.

Theorem 3.1. For every α = (ni)i∈N ∈ NN, there exists a non-zero Borel measure ψα in X
which is O(α)LM(X).

Proof. For Y ∈ B(X) we set ψα(Y ) = µα(T (Y )), where µα becomes from Lemma 2.7 and
T is defined by (2.2).

Obviously, ψα is a non-zero Borel measure because for parallelepiped P defined by
(2.1), we have

ψα(P) = µα(T (P)) = µα([−
1
2
,
1
2
]N) = 1.

The latter relation follows from the evident fact that [−1
2 ,

1
2 ]

N belongs to the class O(α)LM
for every α = (ni)i∈N ∈ NN.

Let us show that ψα is translation invariant measure. Indeed, for Y ∈ B(X) and h ∈ X ,
we have

ψα(Y +h) = µα(T (Y +h)) = µα(T (Y )+T (h)) = µα(T (Y )) = ψα(Y ).

Let us show that ψα is O(α)LM(X). Let R ∈ (α)OR for which R∩T (X) ∈ (α)OR . Then
we have

ψα(T−1(R)) = ψα(T−1(R∩T (X))) = µα(T (T−1(R∩T (X))) = µα(R∩T (X)).

Theorem 3.2. For every α = (ni)i∈N ∈ NN, there exists a non-zero Borel measure ηα in X
which is S(α)LM(X).

Proof. For Y ∈ B(X) we set ηα(Y ) = να(T (Y )), where να becomes from Lemma 2.8 and
T is defined by (2.2). Obviously, ηα is non-zero Borel measure because for parallelepiped
P defined by (2.1), we have

ηα(P) = να(T (P)) = να([−
1
2
,
1
2
]N) = 1.

The latter relation follows from the evident fact that [−1
2 ,

1
2 ]

N belongs to the class S(α)LM
for every α = (ni)i∈N ∈ NN.



Let us show that ηα is translation invariant measure. Indeed, for Y ∈ B(X) and h ∈ X ,
we have

ηα(Y +h) = να(T (Y +h)) = να(T (Y )+T (h)) = να(T (Y )) = ηα(Y ).

Let us show that ηα is S(α)LM(X). Let R ∈ (α)SR for which R∩T (X) ∈ (α)SR . Then
we have

ηα(T−1(R)) = ηα(T−1(R∩T (X))) = να(T (T−1(R∩T (X))) = να(R∩T (X)).

Theorem 3.3. For every α = (ni)i∈N ∈ NN we have ηα ≪ ψα and ηα and ψα are not
equivalent.

Proof. Let us show that ηα ≪ ψα. Indeed, let ψα(Y ) = 0 for Y ∈ B(X). Then we have

ψα(Y ) = µα(T (Y )) = 0.

By Lemma 2.9 we know that να ≪ µα for every α = (ni)i∈N ∈ NN which implies that
να(T (Y )) = 0. By the definition of ηα we deduce that the value να(T (Y )) coincides with
the value ηα(Y ) which implies that ηα(Y ) = 0.

Now we have to show that ηα and ψα are not equivalent. For i ∈ N, we set

Di = ∏
j∈Fi

[0,e
(−1)i
i×ni ].

It is obvious that mni(Di) = e
(−1)i

i for i ∈ N.

Note that the sequence of positive real numbers {e
(−1)i
i×ni : i ∈ N} is bounded from above

by the number e
1
2 .

Since (xk,x∗k)
∞
k=1 is an absolutely convergent M-basis of a Banach space X , by Lemma

2.4 we deduce that the series ∑i ∑ j∈Fi a jx j is absolutely convergent to some element x ∈ X

when |a j| ≤ e
(−1)i
i×ni for j ∈ Fi. By that reason we have that T (D) = ∏i∈N Di, where D is

defined by

D = {∑
i

∑
j∈Fi

a jx j : 0 ≤ a j ≤ e
(−1)i
i×ni for j ∈ Fi}.

On the one hand we have

ηα(D) = να(T (D)) = να(∏
i∈N

Di) = 0,

because
(S)∏

i∈N
mni(Di) = (S)∏

i∈N
e

(−1)i
i = 0.

On the other hand we have

ψα(D) = µα(T (D)) = µα(∏
i∈N

Di) = 2,
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because
(O)∏

i∈N
mni(Di) = (O)∏

i∈N
e

(−1)i
i = 2.

The latter relations imply that ηα and ψα are not equivalent.

Remark 3.1. Let X be a Banach space with an absolutely convergent M-basis (xk,x∗k).
By using [6, Proposition 3.1]), one can prove that ηα and ψα are invariant inner regular
semi-finite non-σ-finite Borel measures in X for every α = (ni)i∈N ∈NN such that ηα(P) =
ψα(P) = 1. By using Theorem 3.3, we give a new proof of [6, Theorem 4.4]) asserted that
the class of invariant inner regular semi-finite non-σ-finite Borel measures in X which takes
the value 1 on the set P fails the uniqueness property.

Let α = (ni)i∈N ∈ NN such that ni = n j for every i, j ∈ N. We set Fi = (a(i)1 , . . . ,a(i)n0 ) for
every i ∈N. Let f be any permutation of N such that for every i ∈N there exists j ∈N such
that f (a(i)k ) = a( j)

k for 1 ≤ k ≤ n0. If a map Ã f : X → X defined by Ã f (∑k xkx∗k) = ∑k x f (k)x∗k
is convergent for all x = ∑k xkx∗k ∈ X , then Ã f is called a canonical α-permutations of X .

We denote by G̃α a group generated by shifts of X and by such canonical α-permutations
Ã f of X for which the following condition

(∀x)(x ∈ X → Ã f (x) = T−1(A f (T (x))))

holds.

Theorem 3.4. For every α = (ni)i∈N ∈ NN for which that ni = n j(i, j ∈ N), the measure ηα
is G̃α-invariant.

Proof. By Theorem 3.2 we know that the measure ηα is translation invariant. We have to
show that ηα is invariant under action of each canonical α-permutation (of X) Ã f . Indeed,
by definition of the canonical α-permutation of X and by Lemma 2.10, we have

(∀Y )(Y ∈ B(X)→ ηα(Ã f (Y )) = να(T (Ã f (Y ))) =

να(A f (T (Y ))) = να(T (Y )) = ηα(Y )).

This ends the proof of Theorem 3.4.

Let α = (ni)i∈N ∈ NN, and Lni := {∑ j∈Fi a jx j : (a j) j∈Fi ∈ Rni}. Let
T ni : Rni → Rni (i > 1) be a family of linear transformations.
Let T N : RN → RN be a map defined by

TN(x) = (T n1(x1, . . . ,xn1),T
n2(xn1+1, . . . ,xn1+n2), . . .),

where x = (xi)i∈N ∈ RN.
Let T̃ ni : Lni → Lni be defined by

T̃ ni(∑
j∈Fi

a jx j) = ∑
j∈Fi

Pr j(T ni((a j) j∈Fi))

for i ∈ N, where Pr j denotes j-th projection in X defined by Pr j(x) = x∗j(x)x j.
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Let T̃ N : X → X be a map defined by

T̃ N(x) = ∑
i

PrLni (x),

where PrLni denotes a usual projection on the vector subspace Lni defined by PrLni (x) =
∑ j∈Fi x∗j(x)x j.

Theorem 3.5. Let α = (ni)i∈N ∈ NN, and let T ni : Rni → Rni (i > 1) be a family of linear
transformations with Jacobians ∆i ̸= 0 and 0 < ∏∞

i=1 ∆i < ∞. If T̃ N is defined for every
x ∈ X such that the condition(

∀x
)(

x ∈ X → T̃ N(x) = T−1(T N(T (x)))
)

holds, then for each Y ∈ B(X) the following change of variable formula for the measure
ψα

ψα(T̃ N(Y )) =
( ∞

∏
i=1

∆i

)
ψα(Y )

is valid.

Proof. By the definition of the measure ψα and by the assumption of the theorem we get

ψα(T̃ N(Y )) = µα(T (T̃ N(Y ))) = µα(T N(T (Y ))).

By using Lemma 2.11, we get

ψα(T̃ N(Y )) = µα(T N(T (Y ))) =
( ∞

∏
i=1

∆i

)
µα(T (Y )) =

( ∞

∏
i=1

∆i

)
ψα(Y ).

This ends the proof of theorem.

4. On a certain carrier of ordinary and standard Lebesgue mea-
sures in separable Banach spaces

Remark 4.1 Let X be a separable Banach space. Following [9], a set Y is called shy if it is a
subset of a Borel set Y ′ for which µ(Y ′+x) = 0 for every x ∈ X and some Borel probability
measure µ such that µ(K)= µ(X) for some compact K. A measure µ is said to be a transverse
(or a transverse measure). A complement of a shy set is called prevalence. Following [17],
a Borel measure µ in X is called a generator of shy sets in X if the validity of the condition
µ(Y ) = 0 for Y ⊂ X implies that Y is shy in X , where µ denotes the usual completion of
the Borel measure µ. Following [17, Corollary 2.1], every quasifinite translation invariant
Borel measure in X is a generator of shy sets in X . By using the latter result, we deduce
that να and ψα are generators of shy sets in X for each α = (ni)i∈N ∈ NN.

The purpose of the present section is to study the topological structure of the carrier 2

of the ordinary and standard Lebesgue measures in separable Banach spaces.

2Let µ be a Borel measure defined in G. A Borel subset A ⊆ G is called carrier of µ if µ(G\A) = 0.
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Theorem 4.1. For each α = (ni)i∈N ∈ NN, ηα(or ψα) is generator of shy sets in separable
Banach space X and a carrier of that generator may be choice a meagre set which is not
covered by countable family of compact sets in X.

Proof. Since ηα(or ψα) is quasifinite translation invariant Borel measure in RN, by [17](see
Corollary 2.1, p. 241) we deduce that να(or ψα) is generator of shy sets.

Following [14](see Theorem 16.5) the real axis R may be written as the disjoint union
of a shy set X1 and a meagre set X2. We set Z1 := X1 ×RN\{1} and Z2 := X2 ×RN\{1}.

It is obvious that να(Z1) = 0 (or µα(Z1) = 0) which implies that Z2 is carrier of να(or
µα). On the one hand, Z2 is a meagre set in RN which is not covered by a countable union
of compact sets in RN. Indeed, assume the contrary and Z2 = ∪k∈NFk, where Fk is compact
in RN, then by [9](see Fact 8, p. 226) we will get that Fk is a shy set in RN for each k ∈ N.
Since να (or µα) is generator of shy sets we claim that Z1 is a shy set in RN. By [9](see Fact
3
′′
, p. 224), we deduce that Z1 ∪∪k∈NFk = RN is a shy set in RN, which is contradiction

because for each quasi-finite Borel measure µ in RN we have that µ(RN+ t) = µ(RN) > 0
for each t ∈ RN.

Now it is obvious that T−1(Z2) is carrier of ηα(or ψα) which satisfies all conditions in
Theorem 4.1

Corollary 4.1. Every infinite dimensional separable Banach space may be written as the
disjoint union of a shy set and a meagre set.

Corollary 4.2. In every infinite dimensional separable Banach space X there is a meagre
set D which is a prevalence and is not covered by a countable union of compact sets.

Corollary 4.3. In every infinite dimensional separable Banach space X there is a meagre
set D which is not covered by a countable union of compact sets and for which the following
condition holds

(∀h)(h ∈ X → D∩ (D+h)is prevalence).

Corollary 4.4. In every infinite dimensional separable Banach space X there is a meagre
set D such that for arbitrary h ∈ X there is a point y ∈ D such that an infinite arithmetic
progression y,y+h, · · · belongs to D.

Proof. Let D := Z2, where Z2 comes from Theorem 4.1. Let consider sets {D− ih : i ∈N}.
Since ∩i∈N(D− ih) again is prevalence, there is y ∈ ∩i∈N(D− ih). Since y ∈ D− ih for
i ∈ N, there are yi ∈ D(i ∈ N) such that y = yi − ih for i ∈ N which means that yi = y+ ih.
Hence an infinite arithmetic progression y,y+h, · · · belongs to D.

Corollary 4.5. In every infinite dimensional separable Banach space X there is a meagre
set D such that for arbitrary h ∈ X a set Dh defined by

Dh = {y : y ∈ D & (∀i)(i ∈ N→ y+ ih ∈ D)}

is prevalence in X.
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Proof. Let D := Z2, where Z2 comes from Theorem 4.1. Let consider sets {D− ih : i ∈N}.
Note that ∩i∈N(D−ih) is prevalence. We set Bh =∩i∈N(D−ih). Let y∈Bh. Since y∈D−ih
for i ∈N, there is yi ∈ D(i ∈N) such that y = yi − ih for i ∈N which means that yi = y+ ih.
Hence an infinite arithmetic progression y,y+h, · · · belongs to D. Since Bh ⊆Dh we deduce
that Dh is prevalence in X .

Corollary 4.5 admits the following reformulation.

Corollary 4.6 In every infinite dimensional separable Banach space X there is a meagre
set D such that for an arbitrary h ∈ X, a set X \Dh is of ηα(or ψα)-measure zero(and, hence
shy in X), where

Dh = {y : y ∈ D & (∀i)(i ∈ N→ y+ ih ∈ D)}

.

Corollary 4.7. In every infinite dimensional separable Banach space X there is a meagre
set D such that for an arbitrary sequence of elements h = (hk) ∈ X a set Dh defined by

Dh = {y : y ∈ D & (∀i)(i ∈ N→ y+
i

∑
k=1

hk ∈ D)}

is prevalence in X.

Proof. Let D := Z2, where Z2 comes from Theorem 4.1. Let consider sets {D−∑i
k=1 hk :

i ∈ N}. Note that ∩i∈N(D−∑i
k=1 hk) is prevalence. We set Bh = ∩k∈N(D−∑i

k=1 hk). Let
y ∈ Bh. Since y ∈ D−∑i

k=1 hk for i ∈N, there is yi ∈ D(i ∈N) such that y = yi−∑i
k=1 hk for

k ∈N which means that yi = y+∑i
k=1 hk. Hence an infinite sequence (y+∑i

k=1 hk) belongs
to D. Since Bh ⊆ Dh we deduce that Dh is prevalence in X .

5. On generators of shy sets in non-locally compact Polish
groups

Let G be a Polish group, by which we mean a separable group with a complete metric for
which the transformation (from G×G onto G ) which sends (x,y) into x−1y is continuous.
Let B(G) denotes the σ-algebra of Borel subsets of G.

Definition 5.1. A Borel set X ⊆ G is called two-sided-shy if there exists a Borel prob-
ability measure µ over G such that µ( f Xg) = 0 for all f ,g ∈ G. A subset of a Borel two-
sided-shy set is called also two-sided-shy. The measure µ is called a two-sided transverse
to the Borel set X .

Definition 5.2. A Borel set X ⊆ G is called left (or right)-shy if there exists a Borel
probability measure µ over G such that µ( f X) = 0(or µ(X f ) = 0) for all f ∈ G. A subset of
a Borel left (or right)-shy set is called also left (or right)-shy.The measure µ is called a left
(or right) transverse to the Borel set X .

Definition 5.3. A Borel measure µ in G is called a generator of two-sided-shy sets in
G, if

(∀X)(µ(X) = 0 → X ∈ S(G)),

11



where µ denotes a usual completion of the Borel measure µ and S(G) denotes a class of all
two-sided-shy sets.

Definition 5.4. A Borel measure µ in G is called a generator of left (or right) shy sets
in G, if

(∀X)(µ(X) = 0 → X ∈ LS(G) ( or R S(G))),

where LS(G) and R S(G) denote classes of all left-shy and right-shy sets in G, respectively.
Definition 5.5. A Borel measure µ in G is called quasi-finite if there exists a compact

set U ⊆ G for which 0 < µ(U)< ∞.
Definition 5.6. A Borel measure µ in G is called semi-finite if for X with µ(X) > 0

there exists a compact subset F ⊆ X for which 0 < µ(F)< ∞.
Definition 5.7. A Borel measure µ in G is called left invariant if

(∀X)(∀g)(X ∈ B(G) & g ∈ G → µ(gX) = µ(X)).

Definition 5.8. A Borel measure µ in G is called right invariant if

(∀X)(∀g)(X ∈ B(G) & g ∈ G → µ(Xg) = µ(X)).

Definition 5.9. A Borel measure µ in G is called two-sided invariant if

(∀X)(∀g, f )(X ∈ B(G) & g, f ∈ G → µ(gX f ) = µ(X)).

Definition 5.10. A Borel measure µ in G is called left quasiinvariant if

(∀X)(∀g)(X ∈ B(G) & g ∈ G → (µ(gX) = 0 ⇐⇒ µ(X) = 0)).

Definition 5.11. A Borel measure µ in G is called right quasiinvariant if

(∀X)(∀g)(X ∈ B(G) & g ∈ G → (µ(Xg) = 0 ⇐⇒ µ(X) = 0)).

Definition 5.12. A Borel measure µ in G is called two-sided quasiinvariant if

(∀X)(∀g)(∀h)(X ∈ B(G) & g,h ∈ G → (µ(gXh) = 0 ⇐⇒ µ(X) = 0)).

Definition 5.13. A Borel measure µ in G is called locally finite if there is a neighbor-
hood U of unity such that 0 < µ(U)<+∞.

Definition 5.14. Let K be the class of measures in G. We say that a measure µ ∈ K has
the property of uniqueness in the class K if µ and λ are equivalent for every λ ∈ K.

Definition 5.15. Let G be equipped with a left invariant metric. Two sets A and B are
said to be congruent if there exists an element a ∈ G such that B = aA.

Definition 5.16. Let G be equipped with a two sided invariant metric. Two sets A and B
are said to be congruent if there exists elements a,b ∈ G such that B = aAb.

Remark 5.1. Following [13](see Theorem 3, p. 220), in any complete separable metric
group which is dense in itself there exists a left-invariant quasi-finite Borel measure. By
the scheme due to Oxtoby[13], in [21] has been established an existence of a two-sided-
invariant quasi-finite Borel measure in any complete separable metric group with two-sided
invariant metric which is dense in itself and has been demonstrated that there always exist
infinitely many two-sided invariant quasi-finite Borel measures and no any such a measure
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possesses the uniqueness property. In case the group is locally compact, the construction
may in some cases generate Haar’s measure. In the additive group of real numbers, that
construction gives such measures which are not locally finite.

Note also that every Polish group admits a compatible left-invariant metric. Such a
metric need not be complete. A compatible two-sided invariant metric on a Polish group
is necessarily complete (c.f. [3]). Each abelian Polish group admit a compatible two-
sided invariant metric; it is also known that all compact Polish groups have an analogous
property. There are locally compact Polish groups which do not admit a compatible two-
sided invariant metric ( an example is SL2(R)). For a diagram of the relationship among
classes of Polish groups which admit compatible two-sided invariant metric, see [4].

In the sequel we need the following auxiliary proposition.
Lemma 5.1 Every quasi-finite two-sided(left or right) quasiinvariant Borel measure µ

defined on a Polish group G is a generator of two-sided (left or right)-shy sets in G.

Proof. We present the proof of Lemma 5.1 for a quasi-finite two-sided quasiinvariant Borel
measure µ. One can get the validity of Lemma 5.1 similarly for quasi-finite left(or right)
quasiinvariant Borel measures.

Let µ(S) = 0 for S ⊆ G. Since µ(S) = 0, there exists a Borel set S
′
for which S ⊆ S

′
and

µ(S
′
) = 0. By using a two-sided quasiinvariance of the Borel measure µ, we have

(∀ f ,g)( f ,g ∈ G → µ( f X
′
g) = 0).

Since µ is quasi-finite there is a Borel set F with 0 < µ(F)<+∞. We set

(∀X)(X ∈ B(G)→ λ(X) =
µ(X ∩F)

µ(F)
).

Let us show that λ is a two-sided transverse to the Borel set S
′
. Indeed, we have:

(∀ f ,g)( f ,g ∈ G → λ( f X
′
g) =

µ(( f X
′
g)∩F)

µ(F)
≤ µ( f X

′
g)

µ(F)
= 0).

The latter relation means that S
′

is a Borel two-sided–shy set. S being a subset of S
′

also is
two-sided-shy set. This ends the proof of Lemma 5.1.

Since each two-sided(left or right) invariant Borel measure same times is two-sided(left
or right) quasiinvariant, we get the following corollary of the Lemma 5.1.

Corollary 5.1. Every quasi-finite two-sided (left or right) quasiinvariant Borel measure
µ defined on a Polish group G is a generator of two-sided (left or right)-shy sets in G.

Let us construct a sequence of positive numbers (σk)k∈N for which a function f defined
by

f (x1, · · ·) =
∞

∏
k=1

1√
2πσk

e
− x2

k
2σ2

k

is convergent for all (xk)k∈N ∈ R∞.
Formally we have
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f (x1, · · ·) =
∞

∏
k=1

1√
2πσk

e
− x2

k
2σ2

k =
∞

∏
k=1

e
ln( 1√

2πσk
)− x2

k
2σ2

k = e
∑∞

k=1

(
ln( 1√

2πσk
)− x2

k
2σ2

k

)
.

Note that if ∑∞
k=1 ln( 1√

2πσk
) is convergent then (σk)k∈N must tend to 1√

2π . Then

e
∑∞

k=1 ln( 1√
2πσk

)− x2
k

2σ2
k

will be positive for all (xk)k∈N ∈ ℓ2 and equal to zero for all (xk)k∈N ∈ R∞ \ ℓ2.

For example, setting σk =
e−1/2k
√

2π for k ∈ N, we get

f1(x1,x2, · · ·) =
∞

∏
k=1

1√
2πσk

e
− x2

k
2σ2

k =

∞

∏
k=1

1
√

2π e−1/2k
√

2π

e
− x2

k

2 e−1/2k−1

2π =
∞

∏
k=1

e1/2k−πx2
ke1/2k−1

.

Obviously, that f is convergent for all (xk)k∈N ∈ R∞. More precisely, f1 is positive for
all (xk)k∈N ∈ ℓ2 and equal to zero for all (xk)k∈N ∈ R∞ \ ℓ2. Setting σk =

1√
2π for k ∈ N, we

get more a simple example of the infinite-dimensional Gaussian density function f2 defined
by

f2((xk)k∈N) = e−π∑∞
k=1 x2

k .

For each natural number n ∈ N and for an arbitrary sequence of positive numbers
(σk)1≤k≤n the following equality

∫
Rn

( n

∏
k=1

1√
2πσk

e
− x2

k
2σ2

k
)
dmn = 1 (5.1)

holds in an finite-dimensional Euclidean vector space Rn, where m, as usual, denotes a
linear Lebesgue measure in R.

Here naturally arises a question asking whether the formula (5.1) admits an infinite
analogue.

We have the following proposition.
Theorem 5.1. Let E be an infinite dimensional Polish topological vector space and

f : E → R be positive real valued measurable function. Then there does note exist a
translation-invariant Borel measure µ∞ in E for which the following formula∫

E
f (z)dµ∞(z) = 1

holds.
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Proof. Assume the contrary and let µ∞ be such a measure. We define a new Borel measure
µ on E by the following formula

(∀A)(A ∈ B(E)→ µ(A) =
∫

A
f (z)dµ∞(z)).

It is obvious that µ is a Borel probability measure on E. We have to show that µ is quasiin-
variant with respect to the group of all translation.

Let µ(A)> 0 and h ∈ E. µ(A)> 0 implies that µ∞(A)> 0 because an integral of a posi-
tive measurable function over a set of µ∞- measure zero is zero. A translation-invariance of
µ∞ implies that µ∞(A+h) = µ∞(A)> 0. Since f is positive at all points of E we deduce that
µ(A+ h) =

∫
A+h f (z)dµ∞(z) > 0. It is obvious that µ is a quasi-invariant Borel probability

measure in E which is a contradiction3 and thus Theorem 5.1 is proved.

Theorem 5.2. For every α=(ni)i∈N ∈NN, let consider ordinary and standard Lebesgue
measures να and µα, respectively. Let (σk)k∈N be such a sequence of positive numbers that
the series ∑∞

k=1 ln( 1√
2πσk

) is convergent. Let Φ : R∞ → R be defined by

Φ((xk)k∈N) =
∞

∏
k=1

1√
2πσk

e
− x2

k
2σ2

k .

Then the following conditions∫
R∞

Φ(z)dνα(z) =
∫
R∞

Φ(z)dµα(z) = 0

hold.

Proof. Indeed, An := Rn ×∏k>n[−1/3,1/3] for each n ∈ N.
Obviously, ℓ2 ⊆∪n∈NAn. Clearly, να(An) = µα(An) = 0 for each n∈N. Hence να(ℓ2)≤

∑k∈N να(An) = 0 as well µα(ℓ2)≤ ∑k∈N µα(An) = 0.
We put M := |∑∞

k=1 ln( 1√
2πσk

)|.
Since Borel subsets ℓ2 and R∞ \ ℓ2 form a partition of R∞, we deduce that a function

h : R∞ → R, defined by

h(z) = eM ×χℓ2(z)+0×χR∞
I \ℓ2(z),

where χ(·) denotes a characteristic function of a set in R∞, is a simple function for which
the following conditions ∫

R∞
hdνα =

∫
R∞

hdµα = 0

hold, because να(ℓ2) = µα(ℓ2) = 0.
Since

3It is well known that in infinite dimensional separable Polish vector space there does not exist a non-zero
quasiinvariant σ-finite Borel measure.
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0 ≤
∞

∏
k=1

1√
2πσk

e
− x2

k
2σ2

k ≤ eM ×χℓ2(z)+0×χR∞
I \ℓ2

we claim that
0 ≤

∫
R∞

Φ(z)dνα(z)≤
∫
R∞

hdνα =
∫
R∞

hdµα = 0.

Theorem 5.3. Let G be a Polish group and Φ : G → R be a bounded positive real
valued measurable function. Let µ∞ be a quasi-finite two-sided(left or right)-invariant Borel
measure in G. Then a measure λ∞ defined by

(∀X)(X ∈ B(G)→ λ∞(X) =
∫

X
Φdµ∞)

is such a quasi-finite two-sided(left or right) quasi-invariant Borel measure in G which is
equivalent to the measure µ∞. In addition, if G is a non-locally compact Polish group then
λ∞ is non-σ-finite.

Proof. It is obvious that µ is a Borel measure in G. We have to show that µ is two-sided(left
or right) quasi-invariant with respect to the group of all translation of G. Without loss of
generality we can assume that µ∞ is a quasi-finite two-sided-invariant Borel measure in G

Let λ∞(A) > 0 and h ∈ G. λ∞(A) > 0 implies that µ∞(A) > 0 because an integral of a
positive measurable function over a set of µ∞- measure zero is zero. Hence µ∞(A) > 0. A
two-sided-invariance of µ∞ implies that µ∞(hAg) = µ∞(A)> 0. for each h,g ∈ G.

Since Φ is positive at all points of G we deduce that λ∞(hAg) =
∫

hAg Φ(z)dµ∞(z) > 0.
The latter relation means that λ∞ is a two-sided-quasiinvariant Borel probability measure in
G.

Let us show that λ∞ is quasi-finite. Indeed, since µ∞ is quasi-finite there is a Borel
subset A0 of G such that 0 < µ∞(A0)<+∞. Hence

0 < λ∞(A0) =
∫

A0

Φdµ∞ <+∞

because Φ is positive and bounded.
In the case when G is non-locally compact, the proof of the fact that λ∞ is non-σ-finite

follows from the proposition asserted that in a non-locally compact Polish group there does
not exist a non-zero two-sided quasiinvariant σ-finite Borel measure.

The proof of the fact that λ∞ and µ∞ are equivalent is obvious.

Example 5.1. Let (σk)k∈N be such a sequence of positive numbers that the series
∑∞

k=1 ln( 1√
2πσk

) is convergent. Let Φ : ℓ2 → R be an infinite-dimensional Gaussian density
function defined by

Φ((xk)k∈N) =
∞

∏
k=1

1√
2πσk

e
− x2

k
2σ2

k .
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Let µ∞ be an arbitrary quasi-finite translation-invariant Borel measure in an infinite-
dimensional separable Hilbert space ℓ2. Then the measure λ∞ defined by Theorem 5.3
is a quasi-finite quasi-invariant non-σ-finite Borel measure in ℓ2. That measure is called
a ”Generalized Gaussian Measure” in ℓ2 defined by an infinite-dimensional Gaussian den-
sity function Φ and a quasi-finite translation-invariant Borel measure µ∞ and is denoted by
Γ(Φ,µ∞). As we see parameters which uniquely define a ”Generalized Gaussian Measure”
stand a sequence of positive numbers (σk)k∈N and a quasi-finite translation-invariant Borel
measure µ∞.

An interesting partial case of the ”Generalized Gaussian Measure” in ℓ2 can be obtained
when σk =

1√
2

for each k ∈ N. In that case we have

(∀Y )(Y ∈ B(ℓ2)→ Γ(Φ,µ∞)(Y ) =
∫

Y
exp{−π||z||2} dµ∞(z)),

where || · || denotes a usual norm in ℓ2.
Example 5.2. Let X be an infinite-dimensional separable Banach space, A ∈ R+ and

Φ : X → R be defined as follows

(∀z)(z ∈ X → Φ(z) = e−A||z||2),

where || · || denotes a usual norm in X . Let µ∞ be an arbitrary quasi-finite translation-
invariant Borel measure in X . Then the measure λ∞ defined by Theorem 5.3 is is a quasi-
finite quasi-invariant non-σ-finite Borel measure in X and is called a ”Generalized Gaussian
Measure” in X .

Example 5.3. Let X be an infinite-dimensional separable Banach space, A,B ∈R+ and
Φ : X → R be defined as follows

(∀z)(z ∈ X → Φ(z) =
A

B+ ||x||2
)

where || · || denotes a usual norm in X . Let µ∞ be an arbitrary quasi-finite translation-
invariant Borel measure in X . Then the measure λ∞ defined by Theorem 5.3 is is a quasi-
finite quasi-invariant non-σ-finite Borel measure in X and is called a ”Generalized Cauchy
Measure” in X .

Example 5.4. Let R∞ be an infinite-dimensional topological vector space of all real-
valued sequence equipped with Tychonoff topology. Let Φ : R∞ →R be defined as follows

(∀(xk)k∈N)((xk)k∈N ∈ R∞ → Φ((xk)k∈N) = exp{− ∑
k∈N

|xk|
2k(1+ |xk|)

}).

Let µ∞ be an arbitrary quasi-finite translation-invariant Borel measure in R∞. Then the mea-
sure λ∞ defined by Theorem 5.3 is a quasi-finite quasi-invariant non-σ-finite Borel measure
in R∞.

Example 5.5. Let R∞ be an infinite-dimensional topological vector space of all real-
valued sequence equipped with Tychonoff topology and A∈R+. Let Φ :R∞ →R be defined
as follows

(∀(xk)k∈N)((xk)k∈N ∈ R∞ → Φ((xk)k∈N) = exp{−A
(

∑
k∈N

|xk|
2k(1+ |xk|)

)2}).
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Let µ∞ be an arbitrary quasi-finite translation-invariant Borel measure in R∞. Then the mea-
sure λ∞ defined by Theorem 5.3 is a quasi-finite quasi-invariant non-σ-finite Borel measure
in R∞ and is called a ”Generalized Gaussian Measure” in R∞.

Example 5.6. Let R∞ be an infinite-dimensional topological vector space of all real-
valued sequence equipped with Tychonoff topology. Let Φ : R∞ →R be defined as follows

(∀(xk)k∈N)((xk)k∈N ∈ R∞ → Φ((xk)k∈N) =
A

B+(∑k∈N
|xk|

2k(1+|xk|)
)2
),

where A,B ∈ R+.
Let µ∞ be an arbitrary quasi-finite translation-invariant Borel measure in R∞. Then

the measure λ∞ defined by Theorem 5.3 is a quasi-finite quasi-invariant non-σ-finite Borel
measure in R∞ and called a ”Generalized Cauchy Measure” in R∞.

Example 5.7. Let (G,ρ) be a non-locally compact Polish group and let Φ : G → R be
defined as follows

(∀g)(g ∈ G → Φ(g) = exp{−πρ(e,g)2}),

where e denotes a unit element of the group G. Let µ∞ be an arbitrary quasi-finite
translation-invariant Borel measure in G. Then the measure λ∞ defined by Theorem 5.3
is a quasi-finite quasi-invariant non-σ-finite Borel measure in G and called a ”Generalized
Gaussian Measure” in a group G.

Example 5.8. Let (G,ρ) be a non-locally compact Polish group and let Φ : G → R be
defined as follows

(∀g)(g ∈ G → Φ(g) =
A

B+ρ(e,g)2 ),

where e denotes a unit element of the group G and A,B ∈R+. Let µ∞ be an arbitrary quasi-
finite translation-invariant Borel measure in G. Then the measure λ∞ defined by Theorem
5.3 is a quasi-finite quasi-invariant non-σ-finite Borel measure in G and called a ”General-
ized Cauchy Measure” in a group G.

Remark 5.2. Following Lemma 5.1, all measures, constructed in Examples 5.1-5.8 are
generators of two-sided (left or right) shy sets.

In context of Theorem 5.3 we state the following

Problem 5.1 Let (G,ρ) be a non-locally compact Polish group and λ∞ be a quasi-finite
quasi-invariant Borel measure in G. Does there exist a quasi-finite translation-invariant
Borel measure µ∞ in G which is equivalent to the measure λ∞?

Acknowledgment. The work partially was supported by the Sh. Rustaveli National
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