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Abstract. We consider distributions of norms for normal random elementsX in separable Banach spaces, in particular, in
the space C(S) of continuous functions on a compact space S. We prove that, under some nondegeneracy condition, the
functions FX = {P(‖X−z‖ 6 r): z ∈ C(S)}, r > 0, are uniformly Lipschitz and that every separable Banach spaceB
can be ε-renormed so that the family FX becomes uniformly Lipschitz in the new norm for any B-valued nondegenerate
normal random element X .
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1 Introduction

Throughout the paper, X denotes a random element (r.e.) with values in a separable Banach space B. For
every z ∈ B, put Xz = X − z. Let Fz(r) = P{‖Xz‖ 6 r}, r > 0, be the distribution function of ‖Xz‖.
The aim of this paper is to investigate the regularity (continuity, uniform continuity, and Lipschitz property) of
these functions. A real function f(r), defined on a set T ⊂ R, is uniformly continuous on T if for every ε > 0,
there is δ > 0 such that ∣∣f(r)− f(s)∣∣ < ε for all r, s ∈ T with |r − s| < δ. (1.1)

A function f is Lipschitz on T if there exists a constant λ such that |f(r)−f(s)| 6 λ|r−s| for all r, s ∈ T . Each
Lipschitz function is uniformly continuous. The converse statement is false. If a function f is differentiable
on an interval T , then by the mean value theorem, its derivative is bounded on T if and only if f is Lipschitz
on T . A family of functions F is continuous on T if each f ∈ F is. It is uniformly equicontinuous on T ,
provided that (1.1) holds uniformly on f ∈ F . The definition of a uniformly Lipschitz family F on T is clear.

These regularity conditions appear naturally in probability. For instance, the Lipschitz property of Fz plays
an important role in the approximation of sums of independent r.e. by normal distributions; see [10, Chap. 4]
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and [16]. The uniform equicontinuity of the family FX = {Fz(r): z ∈ B}, r > 0, appears in generalizations
of the Glivenko–Cantelli theorem to balls in Banach spaces; see [7] and references therein. The regularity of
Fz was studied mainly for normal r.e., stable r.e., and series of random variables with vector coefficients. We
restrict our attention to normal r.e.

It is reasonable to consider the regularity of Fz in a broader context. Given a subset U of a Banach space
B and δ > 0, we denote by ∂δU the δ-neighborhood of the boundary ∂U . Let a probability measure µ be
defined on Borel subsets of B. A class U of Borel subsets in B is µ-continuous if µ(∂U) = 0 for each set
U ∈ U . This class is uniformly µ-continuous if supU∈U µ(∂δU)→ 0 as δ → 0. We call the class U uniformly
µ-Lipschitz if there exists a constant λ such that supU∈U µ(∂δU) 6 λδ for all δ > 0. These concepts were
considered, e.g., in [10, Chap. 4] and [11]; see also references therein. In particular, the class of convex sets
in Rn is uniformly µ-Lipschitz for any nondegenerate Gaussian measure µ [10, p. 81]. Let B denote the class
of all balls in a space B, and B0 denote the class of all balls with centers at zero. Let µX(A) = P{X ∈ A} be
the distribution of a r.e. X . The continuity of F0(r) on [0,∞) is equivalent to the µX -continuity of B0, and the
continuity of the family FX is equivalent to the µX -continuity of B. The same equivalence holds for uniform
equicontinuity and uniform Lipschitz property.

A closed subspace E ⊂ B is the (linear) support of a probability measure µ if µ(E) = 1 and µ(E′) < 1
for each proper closed subspace E′ ⊂ E. Every probability measure µ on a separable Banach space has
the support, which we denote by suppµ. A measure µ is called nondegenerate if suppµ = B. A r.e. X is
nondegenerate if µX is. If E is a subspace of the space B with µ(E) = 1, then the measure µ is said to be
concentrated on E. A r.e. X is concentrated on E if µX is.

The continuity of Fz is well known for normal X and z ∈ suppµX ; see, e.g., [4, Prop. 3.2]. If X is normal
and symmetric (∼ EX = 0), and the measure µX is not concentrated at a single point, then the function F0 is
uniformly continuous; see, e.g., [10, p. 83] or [11, Prop. 2.4 and Cor. 2.26]. Separability is essential here. The
well-known Marcus and Shepp [6] example shows that the previous statement is false in the (nonseparable)
space `∞. If a measure µX is degenerate, then the continuity of Fz essentially depends on geometry of B and
on the subspace suppµX . Some relevant results are presented in [11]. Below, in Lemma 1, we present one
more positive result. On the other hand, the following simple negative result holds.

Remark 1. If the norm of a spaceB is nonrotund, then there exists a (degenerate) normal r.e.X inB and z ∈ B
such that the corresponding function Fz is discontinuous.

Indeed, since the norm is nonrotund, there exist a one-dimensional subspace L ⊂ B, an element z ∈ B,
and r0 > 0 such that the sphere S with center z and radius r0 intersects L by a nontrivial segment. Take a
normal r.e. X with distribution concentrated on L. Then the corresponding function Fz(r) is discontinuous at
the point r0.

Note also that on any (finite- or infinite-dimensional) Banach space, there exists a (degenerate) normal r.e.
X 6= const for which the family FX is not uniformly equicontinuous [11, Prop. 2.14].

Now we turn to the Lipschitz property. Convexity conditions on a norm, under which the function Fz(r)
has bounded on [0,∞) derivative, were studied in many papers. To the best of our knowledge, the first in
this direction was Vakhania’s [17, pp. 96–97] result that the derivative of Fz(r) for a normal r.e. in a Hilbert
space is bounded. For further progress, see [2] and [10]. Finally, Rhee and Talagrand [14] proved that Fz(r)
is Lipschitz on [0,∞), provided that the norm of B is uniformly convex with modulus of uniform convexity
> εp for some p.

In the opposite direction, Paulauskas [9] and Rhee and Talagrand [13] showed independently that F0(r)
may be non-Lipschitz on [0,∞). Paulauskas’ example concerned a c0-valued r.e., while Rhee–Talagrand’s
example related to some equivalent renorming of `2. Paulauskas [9] noted that the idea how to construct a
normal r.e. in C[0, 1] having unbounded density belongs to Tsirelson (1977). The Paulauskas example shows
that in c0 there is a normal symmetric r.e. for which the function F0(r) is uniformly continuous but non-
Lipschitz. One may ask to what extent F0 is “non-Lipschitz”? Paulauskas and Račkauskas [10, p. 88] proved
that for every continuous increasing function ω(r), ω(0) = 0, there exists a normal symmetric c0-valued r.e.
X with independent components for which

sup
r>s>0

F0(r)− F0(s)

ω(r − s)
=∞.



On distribution of the norm for normal random elements in the space of continuous functions 3

As far as we know, the dependence of Lipschitz constant on ‖z‖ has been considered for the first time by
Paulauskas [8]. He proved that for a normal symmetric r.e. in a Hilbert space,

sup
r>0

∣∣F ′z(r)∣∣ 6 c
(
1 + ‖z‖

)
. (1.2)

Hence, the family {Fz(r): ‖z‖ < C}, r > 0, is uniformly Lipschitz for every C > 0. The same concerns `p,
p > 1, but for these spaces, we have in inequality (1.2) ‖z‖k instead of ‖z‖, where k > 0 depends on p (see
[9]). On the other hand, the familyFX cannot be uniformly equicontinuous in any smooth infinite-dimensional
Banach space (see [11, Cor. 1.4]) and, hence, cannot be uniformly Lipschitz. Until now, no Banach space was
known for which FX is uniformly Lipschitz for all nondegenerate normal X . Each nondegenerate normal X
in the space `1 having at least one independent component has this property (see [10, p. 100]). We show, in
particular, that the existence of an independent component is superfluous here.

The mentioned results were generalized to stable r.e., series of scalar random variables with vector coeffi-
cients, and seminorms in topological vector spaces; see, e.g., [15] and the references therein.

In this paper, we prove the following three theorems.

Theorem 1. (a) Let X be a r.e. in the space C(S), where S is a metric compact space, and let the class CE of
all convex bodies in the subspace E = suppµX be µ-continuous. Then the family FX is continuous, provided
that the following condition is satisfied:

(M) P{X(s0) = 0} < 1 for every s0 ∈ S.

(b) IfX is an arbitrary r.e. inC(S) and the condition (M) is not satisfied, thenFX contains a discontinuous
function.

Remark 2. The class CB is µ-continuous for every nondegenerate Gaussian measure µ on B; see, e.g., [11,
Prop. 2.4]. So, Theorem 1(a) implies immediately the well-known result of Ylvisaker [19] that, for normal X
with EX = 0, the condition (M) guarantees the continuity of the family FX .

Let W and W 0 be the Brownian process and Brownian bridge process on [0, 1]. For X = W and W 0, the
Lipschitz property is especially important in the approximation of sums of independent C[0, 1]-valued r.e. by
normal distributions. Theorem 1(b) confirms the well-known fact that the function Fz(r) for these r.e. is even
discontinuous for some z ∈ C[0, 1].

The following question is natural: Can the above-mentioned Ylvisaker result be improved to obtain uniform
equicontinuity or even uniform Lipschitz property? By an Aniszczyk statement [1], the µ-continuity of the
class B in C(S) implies its uniform µ-continuity. Unfortunately, we do not know a proof of this statement.
Nevertheless, the following result is true.

Theorem 2. Let X be a normal r.e. with EX = 0 in the space C(S). If (M) holds, then the family FX is
uniformly Lipschitz, i.e., there is a constant λ such that, uniformly on z ∈ B and r, δ > 0,

P
{
‖Xz‖ ∈ (r, r + δ)

}
6 λδ. (1.3)

Therefore, for symmetric Gaussian measures, Theorems 1(b) and 2 give a sharpening of the Aniszczyk
statement to the uniform Lipschitz property. Theorem 1(b) and Proposition 1 below show that the same is true
for other distributions.

Theorem 3. Each separable Banach space B can be ε-renormed so that, for every nondegenerate normal
symmetric r.e. in B, the family FX becomes uniformly Lipschitz in the new norm.

Compare this “nice” renorming to Rhee’s [12] “bad” renorming: any Banach space can be ε-renormed so
that, for some symmetric normal r.e. X , the corresponding function F0(r) is non-Lipschitz on [0,∞).
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2 Proofs of the main results

Proof of Theorem 1. Part (a). We obtain part (a) of Theorem 1 as a corollary of the following general
statement. Denote by UB∗ the dual unit ball of a Banach space B.

Lemma 1. Assume that a probability measure µ on a separable Banach space B has the support E and the
class CE is µ-continuous. The class B of all balls in B is µ-continuous, provided that there exists a weakly*
closed subset Γ ⊂ UB∗ such that:

(m) for every x ∈ B, there is x∗ ∈ Γ with |x∗(x)| = ‖x‖, and, for every x∗ ∈ Γ , there is x ∈ E with
x∗(x) 6= 0.

Proof. Take an arbitrary ball U of B with center z and radius r. There are two nontrivial possibilities:
(1) C := U ∩ E 6⊂ ∂U , where ∂U denotes the boundary in B. Then C is a convex body in E; moreover,

there exists a point x0 ∈ C that is interior both for U in B and for C in E. Hence, any point x of ∂U is a
unique intersection of a ray R starting in x0 with ∂U . Therefore, any neighborhood of x in R contains pints
from B \ U . If R ⊂ E, then, by the definition of C, the point x contains pints from E \ C and so belongs
to ∂C. So,

µ(∂U) = µ(∂U ∩ E) = µ(∂C) = 0.

(2) C ⊂ ∂U . We show that in this case µ(C) = 0. Let (xn) be a countable dense subset of C. By the
condition (m), for every n, there exists x∗n ∈ Γ such that∣∣∣∣∣x∗n

(
1

n

n∑
1

xk − z

)∣∣∣∣∣ = r.

Then, for some subsequence (ni), the values of the functionals x∗ni
have the same sign, say

x∗ni

(
1

ni

ni∑
1

xk − z

)
= r.

Hence, x∗ni
(xk − z) = r for all k 6 ni. Since the set Γ is weakly* compact, (x∗ni

) contains a subsequence
convergent weakly* to some functional x∗ ∈ Γ . By construction, x∗(C − z) ≡ r, so x∗(C) ≡ r+ x∗(z). Ob-
viously, the µ-continuity of CE implies that the µ-measure of each hyperplane in E is equal to zero. Therefore,
µ(C) = 0, and so µ(∂U) = 0. ut

Part (b). Suppose that the measure µX is concentrated on a subspace {x ∈ C(S): x(s0) = 0}. Pick some
0 < p < 1. The Ulam theorem implies that there exists a convex symmetric compact set K ⊂ {x ∈ C(S):
x(s0) = 0} such that µX(K) > p. By the equicontinuity of any compact set in C(S), the function ω(s) =
supx∈K |x(s)| is continuous. Put a = 2maxS ω(s) and z(s) = ω(s)− a. Then

P
{
∀s ∈ S,

∣∣X(s)
∣∣ 6 ω(s)

}
> p,

and, hence,

P
{
∀s ∈ S,

∣∣Xz(s)
∣∣ = ∣∣X(s)− ω(s) + a

∣∣ 6 a, Xz(s0) = a
}
> p.

So, P{‖Xz‖ = a} > p, and the corresponding function Fz(r) is discontinuous at the point r0 = a. ut

Since EX = 0, X may be represented in the form of an a.s. norm convergent series

X =
∑
m>1

γmxm (2.1)
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[18, p. 262]. Here, (γm) are independent copies of the standard normal random variable γ, and xm ∈ C(S).
The functions (xm) have a few zeros in the following sense.

Lemma 2. (A generalization of Lemma 4 from [5].) Assume that a r.e. X has the form (2.1) and satisfies
condition (M). Then there exist a collection (Sk)

n
1 of compact subsets of S with

⋃n
1 Sk = S and a subset

(xmk
)nk=1 ⊂ (xm) such that every function xmk

(s) is either strictly positive or strictly negative on Sk.

Proof. By condition (M) the sets {s ∈ S: xm(s) > 1/i} and {s ∈ S: xm(s) < −1/i}, m, i = 1, 2, . . . ,
form an open covering of the compact set S. Choose from it a finite subcovering. Now we take the closures of
the elements of this subcovering as the compact sets Sk and the corresponding xm as xmk

. ut

Lemma 3. Let X = γx+ Y , where x ∈ C(S) with c := infS x(s) > 0, and a r.e. Y in C(S) does not depend
on γ. Then, for all z ∈ C(S) and r, δ > 0,

P
{
‖Xz‖L∞ ∈ (r, r + δ)

}
6
δ

c
. (2.2)

Proof. Let us first consider a simple (though discontinuous) function x of the form

x(s) =

n∑
i=1

aiχi(s), (2.3)

where χi are the characteristic functions of Borel disjoint sets Ai with
⋃n

1 Ai = S, and ai > c. Put yi =
sups∈Ai

(Y (s)− z(s)). Then

P+(δ) := P
{
sup
S
Xz(s) ∈ (r, r + δ)

}
= P

{
max
16i6n

(aiγ + yi) ∈ (r, r + δ)
}
. (2.4)

Assume temporary Y to be nonrandom (then yi are constants) and put

g(t) = max
16i6n

(ait+ yi), t ∈ R.

Obviously, the function g is increasing and continuous, and its graph consists of line segments ait + yi,
i = 1, 2, . . . , n. The derivative g′ exists outside of finite set, and, moreover, g′(t) > c. By the mean value
theorem the length of g−1(r, r + δ) can be estimated as follows:

∣∣g−1(r, r + δ)
∣∣ = g−1(r + δ)− g−1(r) 6 δ

c
. (2.5)

As is well known, the standard normal distribution function is Lipschitz, more precisely,

Φ(r + δ)− Φ(r) 6 Φ(δ)− Φ(0) 6 1√
2π
δ < δ.

This inequality, together with (2.4) and (2.5), gives

P+(δ) = P
{
γ ∈ g−1(r, r + δ)

}
6 P

{
γ ∈

(
0,
δ

c

)}
6
δ

c
.

The right-hand side here does not depend on Y , so by the independence of γ and Y , this inequality is true
for random Y as well.

Lith. Math. J., VV(N):1–8, 20YY.
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Similarly, one can obtain

P−(δ) := P
{
−inf

S
Xz(s) ∈ (r, r + δ)

}
6
δ

c
.

The last two inequalities give estimation (2.2) for functions x of the form (2.3).
Now let x be an arbitrary function satisfying the conditions of Lemma 3. Then there are functions (xn) of

the form (2.3) with ‖xn − x‖L∞ → 0 as n→∞. Obviously, a.s.

‖γxn + Y − z‖L∞ → ‖γx+ Y − z‖L∞ as n→∞.

Hence, inequality (2.2) is valid. ut

Remark 3. Since we have a norm in inequality (2.2), the condition infS x(s) > 0 of Lemma 3 may be replaced
by supS x(s) < 0. This does not change the conclusion of Lemma 3.

Proof of Theorem 2. Estimate (1.3) follows immediately from Lemmas 2, 3, Remark 3, and representa-
tion (2.1). Indeed, the conditions of Lemma 3 or Remark 3 are fulfilled for each set Sk from Lemma 2.
Therefore,

P
{
sup
Sk

∣∣Xz(s)
∣∣ ∈ (r, r + δ)

}
6

δ

ck
,

where ck = infSk
|xmk

(s)|. Hence,

P
{
‖Xz‖ ∈ (r, r + δ)

}
6

n∑
k=1

P
{
sup
Sk

∣∣Xz(s)
∣∣ ∈ (r, r + δ)

}
6

n∑
k=1

1

ck
δ,

so Theorem 2 is proved. ut

Remark 4. Proving Theorem 2, we established the estimate

P
{
sup
s∈S

Xz(s) ∈ (r, r + δ)
}
6 λδ.

The same concerns the random variable infS Xz(s). This estimate is false without condition (M), even for
z ≡ 0. Here is a simple example: S = [0, 1], X(s) = γs,

P
{

sup
s∈[0,1]

X(s) = 0
}
=

1

2
.

Let us present an application of Theorem 2. Let (Xi)
∞
1 be independent copies of a C(S)-valued r.e. X .

Denote by

µnX(U) =
1

n

n∑
i=1

I(Xi ∈ U), U ∈ B,

the empirical distribution of X , where I(Xi ∈ U) = 1 if Xi ∈ U and = 0 if Xi /∈ U . The uniform
µX -continuity of B implies the Glivenko–Cantelli-type theorem: a.s.,

sup
U∈B

∣∣µnX(U)− µX(U)
∣∣→ 0 as n→∞; (2.6)

see, e.g., [7, Thm. 1]. So, Theorem 2 gives the following:
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Corollary 1. If a normalC(S)-valued r.e.X with EX= 0 satisfies condition (M), then the Glivenko–Cantelli
theorem (2.6) holds.

Actually the proof of Theorem 2 gives more; namely, this theorem is valid for other distributions as well.
Proposition 1. LetX be a symmetricC(S)-valued r.e. satisfying condition (M). Assume thatX has form (2.1),
where (γi) are independent (not necessarily normal) random variables having uniformly bounded densities.
Then the family FX is uniformly Lipschitz on [0,∞).

3 A special subset of dual unit balls

Theorem 2 can be extended to general Banach spaces as follows.

Corollary 2. Let B be a separable Banach space, and Γ be a total weakly* compact set in B∗. Let X be
a normal symmetric B-valued r.e. with P{x∗(X) = 0} < 1 for every x∗ ∈ Γ . Then there exists λ > 0 such
that, for all z ∈ B and r, δ > 0,

P
{
‖Xz‖Γ ∈ (r, r + δ)

}
6 λδ,

where ‖x‖Γ = supx∗∈Γ |x∗(x)|.

Proof. Since the set Γ is total, i.e., for every x ∈ X , x 6= 0, there exists x∗ ∈ Γ such that x∗(x) 6= 0, the
‖·‖Γ indeed is a norm. Let us consider the natural embedding ofB into the spaceC(Γ ) of weakly* continuous
functions on Γ . Since B is separable, by the (trivial part of) Banach theorem (see, e.g., [3, Chap. IV, Sect. 3,
Thm. 4]), Γ is weakly* metrizable. Now one may apply Theorem 2. ut

DEFINITION 1. We say that the space B has property (N ) if there exists a weakly* compact subset 0 /∈ Γ ⊂
UB∗ such that ‖x‖ = max{|x∗(x)|: x∗ ∈ Γ} for all x ∈ B.

Corollary 3. (Of Corollary 2.) Assume that a separable Banach space B has property (N ). Then, for every
nondegenerate normal symmetric r.e. X in B, the corresponding family FX is uniformly Lipschitz on [0,∞).

It is interesting to know which Banach spaces have property (N ) and which do not.

1. Spaces C(S), in particular, the space c, have property (N ).
2. The space `1 has property (N ). Here Γ = {x∗ ∈ U(`∞): |x∗(1)| = 1}.
3. Each Banach space B can be ε-renormed to have property (N ).

Indeed, let x0 ∈ B with ‖x0‖ = 1. Put Γ = {x∗ ∈ U(B∗): |x∗(x0)| > ε} and ‖x‖0 = max{|x∗(x)|:
x∗ ∈ Γ}.

4. Each separable infinite-dimensional Banach space B can be 2-renormed so that B in the new norm does
not have property (N ); see [11, Prop. 2.22].

5. An infinite-dimensional Banach space with a smooth norm does not have property (N ); see [11, Cor. 1.4].
6. The spaces L1[0, 1] and C0(S), where S is an increasing sequence of metric compact sets, in particular,

the space c0, do not have property (N ); see [11, Examples 1, 2].
7. Geometrically, a Banach space B has property (N ) if and only if there are elements (xi)

n
1 ⊂ B and

positive scalars (ai)n1 for which the convex hull

conv
{
x∗ ∈ UB∗ : x∗(xi) > ai

}n
1
= UB∗ .

8. By the Banach–Mazur theorem, every separable Banach space can be isometrically embedded into
C[0, 1]. Theorem 2 and [11, Cor. 1.4] show that for any infinite-dimensional Hilbert subspace H ⊂
C[0, 1], there is s ∈ [0, 1] such that x(s) = 0 for every x ∈ H .

Proof of Theorem 3. Indeed, by property 3, the space B can be ε-renormed so that B in the new norm has
property (N ). By Corollary 3, for every nondegenerate normal symmetric r.e. X in B, the corresponding
family FX is uniformly Lipschitz on [0,∞) in the new norm. ut

Lith. Math. J., VV(N):1–8, 20YY.
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Remark 5. Theorem 3 is also valid for r.e. having representation (2.1), where (γi) are independent (not neces-
sarily normal) random variables having uniformly bounded densities (see Proposition 1).

Acknowledgments. The authors wish to express their thanks to Prof. V. Paulauskas for valuable consulta-
tions and to anonymous referee for valuable remarks.
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