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a b s t r a c t

Let µ be a probability measure on a separable Banach space X . A subset U ⊂ X is
µ-continuous if µ(∂U) = 0. In the paper the µ-continuity and uniform µ-continuity of
convex bodies in X , especially of balls and half-spaces, is considered. The µ-continuity
is interesting for study of the Glivenko–Cantelli theorem in Banach spaces. Answer to a
question of F. Topsøe is given.
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1. Introduction

We consider real separable Banach spaces X only, and do not mention this explicitly. By Br(z) we denote the closed ball
of X with radius r and center z, by SX the unit sphere of X , by X∗ the dual of X . Given subset U ⊂ X and δ > 0, ∂δU stands
for the δ-neighborhood of its boundary ∂U . All measures are assumed to be probability measures and are defined on Borel
subsets of X . Let measure µ be defined on a Banach space X . Our purpose is to analyze the following concepts.

Definition 1.1. A subset U of a Banach space X is called µ-continuous if µ(∂U) = 0. A class U of subsets in X is called
µ-continuous if each set U ∈ U is µ-continuous [13, p. 149].

We call a class U uniformly µ-continuous if for every ε > 0 there is a δ > 0 such that µ(∂δU) < ε for all U ∈ U. We call
a class U uniformly discontinuous if it is not µ-uniformly continuous with respect to any measure µ.

A Banach space X is said to be U-ideal if µ-continuity of U implies its uniform µ-continuity, for any measure µ [14,
p. 283].

These notions have their origin in the theory of empirical distributions and are connected with generalizations of the
Glivenko–Cantelli theorem to metric spaces [11,3,14,15,13,16,12,8]. Sometimes (see e.g. [14, p. 279]) one talks about the
U-continuity of a measure µ instead of the µ-continuity of sets U . Uniform µ-continuity was repeatedly used without a
name (see e.g. [11], [3, p. 2], [14, p. 282], [13, p. 151]), and is equivalent to so-calledµ-uniformity, which we do not consider.
Of course, every uniformly µ-continuous class is µ-continuous. Examples showing that the opposite statement is false are
well known. We present some such examples below.

Of course, these concepts can be considered (and were considered) for any metric space. We restrict ourselves to Banach
spaces and concentrate on the class of convex bodies C or one of the following subclasses of C:

Half-spaces HF , i.e. sets of the form Hx∗t = {x ∈ X : x∗(x) ≤ t}, x∗
∈ F , x∗

≠ 0, t ∈ R, where F is a subset of X∗. We
denote HX∗ = H , for short. Obviously, ∂δHx∗t = {x ∈ X : |x∗(x) − t| < δ}.

Balls B, and balls with radii ≤ 1 (small balls) B1. Obviously, ∂δBr(z) = {x ∈ X : r − δ < ∥x − z∥ < r + δ}.
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Study of balls with radii ≤ r can be reduced to B1 by introducing of a proportional norm. The B1-ideality is interesting
also for investigation of the Vitali theorem in Banach spaces [13, p. 148]. Study of theµ-continuity for balls leads to questions
on geometry of unit sphere which are interesting by itself. Necessary definitions and results in Banach space theory can be
found in [2,4,6]. However we recall, for the convenience of the reader, relevant definitions.

We know only papers [11,13,16,1] concerning µ-continuity directly. Let us recall some results of the mentioned papers
(mainly of [13]), simultaneously presenting relevant statements of our note.

The situation is rather clear for the classH . Every finite-dimensional normed spaceX isH-ideal (see e.g. [15, Theorem2]).
No infinite-dimensional Banach space isH-ideal (it follows from [11]).Weobtain this result froma simple andmostly known

Proposition 1.2. Let X be an infinite-dimensional Banach space and F ⊂ X∗ be a total linear subspace. Then the class HF is
uniformly discontinuous.

A relation between the µ-continuity of the classes of balls and half-spaces in c0 was considered in [13]. Namely, let HN
be the class of half-spaces of the form Hnt = {(a1, a2, . . .) ∈ c0 : an ≤ t}, n ∈ N, t ∈ R. In the space c0, the class B is
µ-continuous if and only ifHN isµ-continuous. We give an abstract version of this result and show that every Banach space
X admits a measure µ for which B is µ-continuous, but H is not.

Only a few results about B-ideal spaces were known. Topsøe [13, p. 149] writes ‘‘(practically) never Banach space is
B-ideal; just consider a measure concentrated on a line in R2’’. This idea is realized in the following statement.

Corollary 1.3. No smooth and no rotund (infinite- or finite-dimensional) Banach space is B-ideal.

Further, B is uniformly discontinuous in the space ℓp of p-summable sequences, 1 ≤ p < ∞ [13, p. 155]. We generalize
a part of this fact for p > 1.

Corollary 1.4. The class B is uniformly discontinuous in every infinite-dimensional Banach space X having a smooth norm.

The only known B-ideal space is the space C(S) of continuous functions over a compact metric set S. More precisely,
using some reasoning of Topsøe [14, pp. 285–286], Aniszczyk proved [1] that C(S) is B1-ideal and claimed that his proof
implies the B-ideality of C(S).

As for B1-ideality, every finite-dimensional normed space is B1-ideal [13, p. 153]. The spaces ℓp, 1 ≤ p < ∞, are
B1-ideal, but c0 is not [13, p. 154]. Moreover, the class B1 is uniformly discontinuous for c0 [13, p. 151]. Similarly, the space
L1 of absolutely integrable on [0, 1] functions is notB1-ideal [16, p. 144]. The authors of [16] conjectured thatB1 is uniformly
discontinuous in L1.

We show that every infinite-dimensional Banach space can be (equivalently) renormed in such a way that B1 becomes
uniformly discontinuous in the new norm. However, it is not knownwhether every Banach space X can be renormed so that
X becomes B1-ideal in the new norm.

Topsøe [13, p. 157] asked whether every subspace of ℓp, 1 ≤ p < ∞, is B1-ideal? The almost positive answer follows
from the next statement (see Corollary 2.32 for details).

Corollary 1.5. Every dual Banach space with property (m∗) is B1-ideal.

See Section 2 for the definition of property (m∗). Here we note only that it is similar to Kalton’s property (M) from [7].
Proofs of this paper are simple and geometrically clear. We try to single out geometrical properties of Banach spaces

‘‘responsible’’ for various properties of µ-continuity.

2. Main results

First we make some general remarks. Intersections of the form


n ∂δnUn, where Un ∈ U and δn ↓ 0, play a decisive role
for the establishing of uniform µ-continuity. We call these intersections Topsøe U-sets.

Lemma 2.1 ([14, p. 151]). A class U is uniformly µ-continuous if and only if µ(A) = 0 for each Topsøe U-set A.

We will use well known

Lemma 2.2. Let µ be a measure in a Banach space X and let ε, δ > 0. Then there exists a finite-dimensional subspace E ⊂ X so
that µ(Eδ) > 1 − ε, where Eδ is the δ-neighborhood of E.

Lemma 2.3. Let a classU be shift invariant in a Banach space X, i.e. U+x ∈ U for all U ∈ U and x ∈ X. ThenU isµ-continuous
(uniformly µ-continuous) if and only if it is µx-continuous (resp. uniformly µx-continuous), where

µx(U) := µ(U + x), U ∈ U, x ∈ X .
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Most classes and properties we consider are shift invariant.We often use this fact, withoutmentioning it explicitly. Using
Lemma 2.3, we also talk about ‘‘shifting of a picture’’.

1. Classes C and HF . The class of convex sets in Rn is an important object of study in the theory of empirical distributions.
Since eachmeasure is almost concentrated on a compact set (theUlam theorem) and a compact set in an infinite-dimensional
Banach space coincides with its boundary, the consideration of the class C of convex bodies, i.e. of all convex closed sets
having interior points, is natural. Formally, if there is no measure µ, respect to which U is µ-continuous, the space X is
assumed to be U-ideal too. So, to avoid this uninteresting situation, one wishes to be sure of the existence of at least one
suchmeasure. The following (in fact,well known) proposition guarantees the existence of thementionedmeasure for convex
bodies.

Recall that a subset D of a Banach space X is called directionally porous [2, p. 166] if there exists a 0 < λ < 1 so that for
every x ∈ D there is a direction e ∈ SX , and points xn = x + εne with εn → 0, for which D intersects no ball Bλεn(xn). A
hyperplane in a Banach space X is a shift of a closed one-codimensional subspace by some vector.

Proposition 2.4. The class C is µ-continuous for every non-degenerated (i.e. non-concentrated on any hyperplane) Gaussian
measure µ.

Proof. Simple application of the Hahn–Banach theorem and the Riesz lemma shows that the boundary of any convex body
is directionally porous with an arbitrary λ ⊂ (0, 1). But for sets with directionally porous boundaries, the property of
Proposition 2.4 holds (see e.g. [2, p. 167]). �

Remark 2.5. Simple examples show that the non-degeneracy of a (non-Gaussian)measure does not guaranteeµ-continuity,
even for the class B.

Let us pass to the class HF . A subspace F ⊂ X∗ is said to be total if for every x ∈ SX there is a functional x∗
∈ F such that

x∗(x) ≠ 0.

Proof of Proposition 1.2. Suppose, on the contrary, that HF is uniformly µ-continuous for some measure µ. Every finite-
dimensional subspace E ⊂ X is closed in theweak topologyw(X, F) for a total subspace F . So, by the Hahn–Banach theorem,
F is contained in a hyperplane of a form {x ∈ X : x∗(x) = 0}, x∗

∈ F . This hyperplane is, of course, a boundary of the half-
space Hx∗0. Therefore, by the definition of uniform µ-continuity, ∀ ε > 0 there is a δ > 0 such that µ(Eδ) < ε for each
finite-dimensional subspace E ⊂ X , where Eδ is the δ-neighborhood of E. But µ(Eδ) > 1 − ε for the subspace E from
Lemma 2.2. If ε < 1

2 , we get a contradiction. �

For spaces ℓp, 1 ≤ p < ∞, and F = X∗ Proposition 1.2 is a part of [13, Proposition 3].

Corollary 2.6. No infinite-dimensional Banach space X is HF -ideal for any total linear subspace F ⊂ X∗.

Proof. According to Proposition 2.4, every half-space is µ-continuous for each non-degenerated Gaussian measure µ on X .
However, by Proposition 1.2, the class HF is not uniformly µ-continuous. Therefore, X is not HF -ideal. �

In connection with Corollary 2.6, it is interesting to localize natural measures µ and uniformly µ-continuous subclasses
U ⊂ H . Two such examples were presented in [11,8]; we will present one more. The following statement shows a relation
between the uniform µ-continuity of balls and the uniform µ-continuity of half-spaces whose boundaries are tangent to
these balls. Let us recall necessary definitions.

A hyperplane D is tangent to a ball B at a point x if x ∈ D ∩ B ⊂ ∂B. A point x ∈ ∂B is called a smooth point of B if for
every y ∈ X there exists limλ→0 λ−1(∥x + λy∥ − ∥x∥) [2, p. 409]. Geometrically it means that if (for example) a hyperplane
D touches a ball B1(z) (∥z∥ = 1) at 0 and x ∈ D then the distance dist(x, ∂Bk(kz)) → 0 as k → ∞. A norm of a Banach space
is called smooth if each x ∈ ∂B is a smooth point.

Denote by HS the class of half-spaces whose boundaries are tangent to balls of a Banach space X at smooth points of
these balls.

Proposition 2.7. If the class of ballsB in a Banach space X is uniformlyµ-continuous then the class of half-spacesHS is uniformly
µ-continuous too.

Proof. Suppose that HS is not µ-continuous. Then there exists ε > 0 such that ∀ δ > 0 there is a half-space H ∈ HS
(depending on δ) with µ(∂δH) > ε. Since X is separable, there exists a finite collection of balls (Ki)

n
1 (depending on δ), with

centers (zi)n1 ⊂ ∂H , each of radius < δ, such that µ(∪n
1 Ki) > ε. Let B1(z) be a ball for which ∂H is tangent and let x be a

point of tangency. Shifting, by Lemma 2.3, the whole picture on −x, one may assume x = 0. Since x = 0 is a smooth point
of B1(z), for all i

dist(zi, ∂Bk(kz)) → 0 as k → ∞.

Hence, for sufficiently large k,

∪
n
1 Ki ⊂ ∂δBk(kz), so µ(∂δBk(kz)) > ε.

This contradicts the uniform µ-continuity of B. �
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Remark 2.8. This proof uses an idea from [12, Lemma 3], where it was proved that the uniformµ-continuity of balls implies
the uniform µ-continuity of half-spaces in a Hilbert space. I would like to mention that the word ‘‘uniform’’ is missing in
the statement of [12, Lemma 3]. Without this word the statement is false, an easy example can be constructed even in
two-dimensional Euclidean space. We will return below to relations between the µ-continuity of balls and half-spaces.

From now on by HS we denote the class of half-spaces of the form Hst = {x ∈ C(S) : x(s) ≤ t}, s ∈ S, t ∈ R. By
argumentation of the following remark, for C(S) this ‘‘new’’ class HS is contained in the ‘‘old one’’.

Remark 2.9. If the above mentioned result of Aniszczyk is true then the space C(S) is HS-ideal.

Indeed, each half-space Hst touches the ball Bt(0) at a smooth point—a continuous function whose modulus attains
maximum at the unique point s. Since, by Aniszczyk’s result [1], the space C(S) is B-ideal, Proposition 2.7 implies the HS-
ideality of C(S).

Remark 2.10. Remark 2.9 together with Corollary 2.6 show that a space X can be HF -ideal but not HlinF -ideal.

We return to relations between theµ-continuity of balls and half-spaces. Let X be a Banach space. A point x of an arbitrary
ball B ⊂ X is called exposed if there is a functional x∗

∈ X∗ so that x∗(x) > x∗(y) for all y ∈ B, y ≠ x [2, p. 108].

Proposition 2.11. Any Banach space X admits a measure µ for which the class B is µ-continuous, but H is not.
Proof. If X is reflexive then its unit ball contains an exposed point [2, p. 110], i.e. there exists a point x ∈ SX and a hyperplane
D such that D ∩ SX = {x}. If X is not reflexive then, by the James theorem, there exists a functional x∗

∈ X∗ which does not
attain its norm [4, p. 14]. In both cases there is a hyperplane D such that for every ball B, the intersection D ∩ B either is
empty or contains a single point or is a convex body in D.

Take a Gaussian measure µ which is concentrated and non-generated on D. By Proposition 2.4, the class B is
µ-continuous and, by Proposition 1.2, H is not. �

The above mentioned result of Topsøe [13, p. 152] shows, that the converse to the previous statement is false. In c0, even
the µ-continuity of the subclass HN ⊂ H already implies the µ-continuity of B (see Section 1). However, under additional
conditions a converse to Proposition 2.11 is valid. A Banach space X is called rotund if ∥x + y∥ < ∥x∥ + ∥y∥ for all linearly
independent elements x, y ∈ X .

Proposition 2.12. Every rotund Banach space X admits a measure ν for which the class H is ν-continuous, but B is not.
Proof. Let µ be a non-degenerated Gaussian measure on X . Given arbitrary Borel subsets A ⊂ SX and U ⊂ X , put

ν(A) := µ{tx : x ∈ A, t ≥ 0} and ν(U) := ν(U ∩ SX ).

Of course, ν is a measure on X and ν(SX ) = 1. Since X is rotund, given a hyperplane D,D∩ SX is either empty or contains
a single point, or is a boundary of the convex body D ∩ B1(0) in D. The first and second cases are not interesting, and for the
third

ν(D) = ν(D ∩ SX ) = µ{tx : x ∈ D ∩ SX , t ≥ 0}.

However, the set {tx : x ∈ D ∩ SX , t ≥ 0} is a boundary of the convex body {tx : x ∈ D ∩ B1(0), t ≥ 0}. According
to Proposition 2.4, µ-measure of such boundary equals to zero. So, the class H is ν-continuous. Obviously, B is not
ν-continuous. �

Now we present the promised abstract version of Topsøe’s statement on c0. A Banach space X is called polyhedral [5] if a
ball of every of its finite-dimensional subspace is a polyhedron.

Proposition 2.13. For any polyhedral Banach space X there is a countable subset F ⊂ SX∗ so that the class B is µ-continuous if
and only if HF is.
Proof. Put Dx∗ = {x ∈ X : x∗(x) = 1}. In view of the Fonf theorem on the structure of a sphere in a polyhedral space
[5, p. 655], there is a countable subset F ⊂ SX∗ so that:
(a) SX =


x∗∈F (SX ∩ Dx∗) and

(b) each set SX ∩ Dx∗ , x∗
∈ F , has an interior point in Dx∗ .

Now, let µ(∂Br(z)) > 0 for some r and z. Then, by (a), there are x∗
∈ F and t ∈ R such that

µ{∂Hx∗t ∩ ∂Br(z)} > 0

hence, µ(∂Hx∗t) > 0.
Conversely, let µ(∂Hx∗t) > 0 for some x∗

∈ F and t ∈ R. By (b), for some r and z the intersection ∂Hx∗t ∩ ∂Br(z) has an
interior point in ∂Hx∗t . Then

µ{∂Hx∗t ∩ ∂Br(z ′)} > 0

for a translate Br(z ′) of the ball Br(z). Hence, µ(∂Br(z ′)) > 0. �
2. Class B.
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Proof of Corollary 1.4. In fact, if the class B was uniformly µ-continuous then, according to Proposition 2.7, H would be
uniformly µ-continuous too. This contradicts Proposition 1.2. �

Corollary 1.4 implies the uniform discontinuity of B in the spaces ℓp and Lp for 1 < p < ∞.

Proposition 2.14. Every (infinite- or finite-dimensional) Banach space X admits a (degenerated) Gaussian measure µ for which
the class B is not uniformly µ-continuous.

Proof. According to theMazur theorem [2, p. 91], each ball B1(z) ofX has a smooth point x (of course,we assumedim X > 1).
Let D be a hyperplane in X , tangent the ball B1(z) at a point x. Take a Gaussian measure concentrated on D. Below we repeat
the arguments of Proposition 2.7. Namely, given 0 < ε < 1, for every δ > 0 there exist balls (Ki)

n
1 of D (depending on δ),

with centers (zi)n1, each of radius < δ, such that µ(∪n
1 Ki) > ε. Shifting, by Lemma 2.3, the whole picture on −x, one may

assume x = 0 (then ∥z∥ = 1). Since B1(z) is smooth at point 0, the distance dist(zi, ∂Bk(kz)) → 0 as k → ∞, for all i. Hence,
for sufficiently large k, ∪

n
1 Ki ⊂ ∂δBk(kz), so µ(∂δBk(kz)) > ε. Therefore, B is not uniformly µ-continuous. �

Proposition 2.15. Suppose the unit ball of a Banach space X contains a point x which is exposed and smooth simultaneously.
Then X is not B-ideal.

Proof. LetDbe a hyperplane, tangent to the unit ball ofX at the point x. Take ameasureµ concentrated andnon-degenerated
on D. By Proposition 2.14, the class B is not uniformly µ-continuous. Let B be an arbitrary ball in X . Since x is exposed,
B ∩ D (provided it is nonempty and does not consist of a single point) is a convex body in D, and ∂B ∩ D = ∂(B ∩ D).
By Proposition 2.4, µ(∂(B ∩ D)) = 0. Hence, µ vanished on each sphere of X , so B is µ-continuous. Therefore X is not
B-ideal. �

Note that every Banach space X can be renormed so that in the new norm the sets of exposed and smooth points are
disjoint. To verify this, one can introduce first a smooth norm in X [2, p. 89], and then the new norm as in (2.1) below.

Proof of Corollary 1.3. Consider three cases.

1. The space X is smooth and infinite-dimensional. By virtue of Proposition 2.4, each ball of X is µ-continuous for each non-
degenerated Gaussian measure µ. On the other hand, B is uniformly discontinuous, by Corollary 1.4. Hence, X is not
B-ideal.

2. X is smooth and finite-dimensional. Then SX has an exposed point [2, p. 110] which, as all others, is a smooth point. It
remains to apply Proposition 2.15.

3. X is rotund. According to the Hahn–Banach theorem, every point of SX is exposed. By the mentioned Mazur theorem, SX
contains a smooth point. We apply Proposition 2.15 once more. �

The following statement shows that Corollary 1.4 is not valid without additional assumptions.

Proposition 2.16. Suppose a Banach space has the formX = Y⊕L, where Y is a closed subspace, L is a one-dimensional subspace,
and

∥y + l∥ = ∥y∥ + ∥l∥, y ∈ Y , l ∈ L. (2.1)

Let µ be a one-dimensional Gaussian measure on L. Then the class B is uniformly µ-continuous in X.

Proof. Take an arbitrary ball Br(z) of X . Then Br(z) ∩ L ⊂ lin(z, L), moreover, lin(z, L) is isometric to the two-dimensional
ℓ2
1 or to a one-dimensional space. Hence, the sphere ∂Br(z) intersects L at at most two points and the length (in the norm of

X) of ∂δB ∩ L is not greater than 4δ. Therefore, µ(∂δB) → 0 as δ → 0, uniformly on the balls. �

Corollary 2.17. Every Banach space X can be renormed so that in the new norm the class B becomes uniformly µ-continuous
for some (degenerated) measure µ.

Proof. Let Y ⊂ X be a one-codimensional closed subspace, L ⊂ X be a one-dimensional subspace and L∩Y = 0. The desired
norm can be introduced by (2.1). �

We are unaware of publications on B-ideal finite-dimensional spaces. In view of Corollary 1.3, a B-ideal space cannot
be smooth or rotund. On the other hand, by Aniszczyk’s theorem, the n-dimensional space ℓn

∞
is B-ideal. One can advance,

as a working hypothesis, that a finite-dimensional normed space is B-ideal if and only if it is polyhedral.
3. Class B1. We start with negative results and single out a class of norms for which B1 is uniformly discontinuous.

Definition 2.18. We say that a Banach space X has a finite universal sphere if there exists r > 0 such that ∀ δ > 0 and every
finite-dimensional subspace E ⊂ X there is z ∈ X so that the ball K E

r = Br(0) ∩ E of E belongs to ∂δ(B1(z)).

Remark 2.19. Obviously, when we check that the condition of this definition is satisfied for X , it is sufficient to consider E
from an arbitrary increasing sequence (En) of finite-dimensional subspaces whose union is dense in X .
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Remark 2.20. Definition 2.18 can be considered as an ‘‘approximative and uniform’’ version of the following well known
concept: A Banach space X contains no finite-dimensional Haar (or Čebyšev) subspaces if for every finite-dimensional subspace
E ⊂ X and for each x ∈ X \ E there are at least two best approximations in E. For example, L1 contains no finite-dimensional
Haar subspaces [9, Theorem 2.5].

Proposition 2.21. The class B1 is uniformly discontinuous in any Banach space X with a finite universal sphere.

Proof. Let r be the constant fromDefinition 2.18 andµ be ameasure on X . By Lemma 2.3, onemay assumeµ{Br(0)} > ε for
some ε > 0. According to Lemma 2.2, for every δ > 0 there is a finite-dimensional subspace E ⊂ X so that µ(Eδ) > 1 −

ε
2 .

Then

µ{Br(0) \ Eδ} ≤ µ{X \ Eδ} ≤ 1 −


1 −

ε

2


=

ε

2
,

so, since K E
r = Br(0) ∩ E,

µ{(K E
r )δ} ≥ µ{Br(0)} − µ{Br(0) \ Eδ} ≥ ε −

ε

2
=

ε

2
.

By definition, for some z

K E
r ⊂ ∂δB1(z),

whence

(K E
r )δ ⊂ ∂2δB1(z).

Hence µ{∂2δB1(z)} > ε
2 , i.e. B1 is not uniformly µ-continuous. �

Proposition 2.22. Every infinite-dimensional Banach space X can be renormed so that the new sphere will be finite universal.

Proof. Let (En) be an increasing sequence of finite-dimensional subspaces whose union is dense in X . In just the same way
as in [6, p. 7], one can show the existence in X of infinite Auerbach system, i.e. a biorthogonal sequence (xn, x∗

n), ∥xn∥ =

∥x∗
n∥ = 1, with an additional condition: for all n

x∗

n(x) = 0 as soon as x ∈ En.

The new norm on X can be introduced by the formula

|||x||| = max

∥x∥, 2 sup

n
|x∗

n(x)|


.

We check that the new sphere is finite universal. Fixing n, consider the set

Kn =


x ∈ B1(0) : x∗

n(x) =
1
2
,

x −
1
2
xn

 <
1
2


.

If m ≠ n and x ∈ Kn then

|x∗

m(x)| =

x∗

m


x −

1
2
xn

 ≤

x −
1
2
xn

 <
1
2
,

so |||x||| = 1. Moreover, if e ∈ En and ∥e∥ < 1
2 then

x∗

n


e +

1
2
xn


=

1
2
,

e +
1
2
xn

 ≤ 1 and


e +
1
2
xn


−

1
2
xn

 <
1
2
.

Therefore, K En
1/2 belongs to the new sphere of radius 1 with center 1

2xn. Applying Remark 2.19 we get that the new sphere
is finite universal with r =

1
2 . �

This construction of |||||| is similar to a construction in [10].

Corollary 2.23. If a Banach space is B1-ideal with respect to any equivalent norm then it is finite-dimensional. The sphere of a
finite-dimensional space cannot be finite universal.

Proof. The first part of corollary is a simple combination of Propositions 2.4, 2.21 and 2.22. The second part follows from
Proposition 2.21 and mentioned Topsøe’s result [13, p. 153] (see also Corollary 2.27). �

Example. Let R = ∪n Sn be an increasing sequence of metric compact sets Sn. The space C0(R) of continuous function x(s)
with x(s) → 0 as s → ∞ has finite universal sphere. In particular, the spaces c0 and C0(R) have finite universal sphere.
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The verification is simple. Similarly, one can easily check that every subspace of c0 has finite universal sphere and that
the space C(S), with a compact metric S, has not finite universal sphere. It is not hard to prove the following

Proposition 2.24. Suppose a Banach space Y has finite universal sphere and X = Y ⊕ Z with

∥y + z∥ = max(∥y∥, ∥z∥), y ∈ Y , z ∈ Z .

Then X has finite universal sphere too.

Now we turn to positive results. First we consider a compact set of centers. The following Corollary 2.26 is more or less
known (cf. with [3, Theorem 6]). We present its direct and simple proof.

Lemma 2.25. Let X be a Banach space. Every Topsøe B-set A =


n ∂δnBrn(zn), with a convergent sequence of centers (zn),
belongs to some sphere of X.

Proof. We show that for some sequence (nk) the intersection A =


k ∂δnk
Brnk

(znk) is a sphere. Let zn → z; hence (zn) is
bounded and the sequence (rn) is bounded too (otherwise A would be empty). Take a sequence (nk) so that rnk → r as
k → ∞. Passing to a subsequence, one may assume (znk), (rnk) and (δnk) to be convergent very quickly. More precisely, one
may assume that for all k.

∥znk − z∥ < 2−k−4, |rnk − r| < 2−k−4 and δnk < 2−k.

Now, we slightly increase δnk (namely, take δnk = 2−k). By the triangle inequality, the obtained sequence of ‘‘rings’’
∂δnk

Brnk
(znk) is decreasing and every such ring contains the sphere S with center z and radius r . Hence
k

∂δnk
Brnk

(znk) = S;

so A ⊂ S. �

Corollary 2.26. Let X be a Banach space. Let U be a class consisting of balls Br(z), z ∈ Z, r ∈ R, with a compact set of centers
Z. Then X is U-ideal.

Proof. Let the class U beµ-continuous. Since Z is compact, by Lemma 2.25, each Topsøe U-set belongs to the boundary ∂U
of some set U ∈ U. So, by Lemma 2.1, U is uniformly µ-continuous, hence X is U-ideal. �

Corollary 2.27. Every finite-dimensional normed space is B1-ideal.

Besides, we already know this corollary.

Definition 2.28. We say that a dual Banach space X = Y ∗ has property (m∗) if for every weakly* null sequence xn ∈ X such
that ∥xn∥ → c as n → ∞ there exists a strictly increasing function ϕ(t) ≥ t, t ≥ 0 (depending on c), so that for all x ∈ X

lim
n

∥x + xn∥ = ϕ(∥x∥).

This definition is inspired, on the one hand, by the proof of B1-ideality of ℓp from [13], and on the other hand, by the
following well-known concept. A Banach space Y has property (M∗) of Kalton [7] if for all elements x, y ∈ X = Y ∗ with
∥x∥ = ∥y∥ and every weakly* null sequence (xn)

lim sup
n

∥x + xn∥ = lim sup
n

∥y + xn∥.

We suspect that there is a connection between these properties.

Remark 2.29. Every space ℓp, 1 ≤ p < ∞, has property (m∗). There are spaces, different from ℓp, which have property
(m∗). Such a property has, for example, the James space Jp, 1 < p < ∞. The property (m∗) is hereditary: every weakly*
closed infinite-dimensional subspace of a space with property (m∗) has this property.

The following lemma and Corollary 1.5 generalize [13, Theorem 2].

Lemma 2.30. Suppose a dual Banach space X = Y ∗ has property (m∗). Then every Topsøe B1-set A =


n ∂δnBrn(zn) of X
belongs to a sphere of X with radius ≤ 1.
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Proof. Without loss of generality onemay assume the set (zn) to be bounded, otherwise the intersection Awould be empty.
Take a sequence (nk) so that rnk → r ≤ 1. By weak* compactness, passing to a subsequence, one may assume znk = z + xnk
with weakly* null (xnk) and convergent (∥xnk∥). Then for all x ∈


k ∂δnk

Brnk
(znk)

∥x − z − xnk∥ = ∥x − znk∥ → r as k → ∞.

Since X has property (m∗),

∥x − z − xnk∥ → ϕ(∥x − z∥); as k → ∞.

Hence, for all x ∈


k ∂δnk
Brnk

(znk)

ϕ(∥x − z∥) = r, whence ∥x − z∥ = ϕ−1(r).

So, A belongs to the sphere with the center z and radius ϕ−1(r) ≤ r ≤ 1. �

Proof of Corollary 1.5. The contrary means the existence of a measure µ with respect to which B1 is continuous, scalars
ε, δn → 0 and a sequence of balls Brn(zn), for which µ{


n ∂δnBrn(zn)} > ε. This contradicts Lemma 2.30. �

Remark 2.31. The space Lp, 1 < p < ∞, p ≠ 2 does not have property (m∗). Moreover Elena Riss has noted that for the
Rademacher functions (rn) and δn ↓ 0 the Topsøe set


n ∂δnB1(rn) coincides with the set

E =


x ∈ Lp :

1
2
∥x − 1∥p

+
1
2
∥x + 1∥p

= 1


.

The set E, for p ≠ 2, belongs to no sphere of Lp.

Corollary 2.32 (Of Corollary 1.5). Every weakly* closed subspace of ℓp, 1 ≤ p < ∞, is B1-ideal.

Let us recall, Topsøe [13, p. 157] asked whether every subspace of ℓp, 1 ≤ p < ∞, is B1-ideal? Corollary 2.32 provides
the positive answer for 1 < p < ∞ and for all weakly* closed subspaces of ℓ1.
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