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It is proved that a WCG-space E is conjugate to a Banach space if and only if its 
conjugate space E' contains a norm-closed total subspace M, consisting of func- 
tionals which attain supremum on the unit sphere. Moreover, M' = E in the duality 
established between E and E'. An example, showing that this statement is in gen- 
eral not true for an arbitrary Banach space, is given. 

In [i] a condition of conjugacy of a separable Banach space is given in terms of the 
set ~ of functionals which attain their suprema on the unit sphere. Here we will prove the 
validity of this condition for the wider class of WCG-spaces and give an example showing 
that this is, in general, not true for an arbitrary Banach space. A Banach space is called 
a WCG-space if it is the closed linear envelope of a weakly compact subset of itself. 

LEMMA [2]. Let be a Banach space, B be a number of the interval [0, i], and fn be a 
sequence of elements of the unit ball B(E') of the conjugate space E' such that l]fll ~ 

oo 

for ] E cony (f~)~ (conv is the convex envelope). If Ei ~j 0, ~i ~q ---- i, then there exist = 

[[$, t]  a n d  g,~ ~ cony  ( I i ) - ,  s u c h  t h a t  = a a n d  

for all n. 

oo 

THEOREM. A WCG-space E is conjugate to a Banach space if and only if E' contains a 
norm-closed total subspace M c~. Moreover, M' = E in the duality established between E 
and E'. 

Proof. Necessity. The proof of necessity is the same as the proof of necessity in 
Theorem 4 of [i]. 

Sufficiency. We will show that M' is isometric with E in the duality established be- 
tween E and E'. Since M is total over E, it follows that M'~E. It is also easily seen 
that 11 z IIM' ~< II x lie for x ~ E. Let us assume that B (E) v e B(M'). Then, by Lemma 2 of [3, 
Chap. i, w there exists an xo~B (M'), which does not belong to the closure B(E---~ of 
the ball B(E) in the space M'. By the Hahn--Banach theorem there exists a continuous linear 
functional f0EM", l]f011~- =I, 0<~<I and e > 0 such that 

sup {fo (x): x ~ B (E)} < ~2 __ 8. 

We will show that B(M) is a dense subset of B(M") in the Mackey topology T(M", M'). 
Indeed, B(M) is dense in B(M") in the weak topology o(M", M') [3, Chap. IV, Sec. 5, Propo- 
sition 5]. But M", equipped with the topology o(M", M'), as well as with T(M", M'), has con- 
jugate M' [3, Chap. IV, Sec. 2, Corollary to Theorem 2]. By [3, Chap. IV, Sec. 2, Corollary 
1 to Proposition 4] the closures of a convex set in the topologies o(M", M') and T(M", M') 
coincide; therefore, B(M) is dense in B(M") in the topology T(M", M'). 

Since E is a WCG-space, there exists a o(E, E')-compact convex subset U such that U nU 
n 

is dense in E. Since U is o(E, E')-compact and II x II~" ~< II x lie for x ~ E, it follows that U 
is also o(M', M")-compact. Let yo be an element of B(M") such that /0 (Y0)> ~. Since B(M) 
is dense in B(M") in the Mackey topology T(M", M'), i.e., in the topology of uniform con- 
vergence on o(M', M")-compacta, we can choose a sequence /n~B (M) such that fn(Yo) = 
fo(yo) and fn(x) § fo(x) as n § ~ for x E U n U.  It is easily seen that IIf]l~ for every 

n 
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functional f.Econv(/n)~. Let %n be a sequence of positive numbers such that ~:%== I. By 

virtue of the lemma, there exist a number a (8<u< i) and a sequence gn such that g~conv 

(/i)~, ~l' 7 ~igi I = a , and 

for every n. 

It follows immediately from the choice of gn that gn(x) + fo(x) as n § = for every 

x~ nU. We would arrive at a contradiction if we show that the element g =~,7~i, be- 

longing to M, does not attain supremum on the unit sphere S(E). Let x~$ (E). ~ince ~ n 

'is dense in E, there exists a sequence xj of elements of ~ nU, which converges to x in the 

norm of the space E. ~e choose j such that H x--xJ[l<e, and n such that gi (xj)<~--8 
for i > n. Then for i > n 

gt(x) = g , ( x j )  + g~ (x - x j ) < ~ -  ~ + I1 g,  ttl x - xj  11 < g '  < =~. 
Thus, 

nA I ~t 

Hence, it follows from inequality (i) that 

The theorem is proved. 

In conclusion, wegive an example of a norm-closed total subspace M C~J~CE', such 
that M'~=E in the duality established between E and E'. Let /I[0, I] be the space of func- 

tions x(t) such that ~tE[0,1]~X(t)I<~ with the natural norm. Its conjugate is the space of 

bounded functions with the norm equal to the supremum (see [4]), and the duality is given 

by the equation ](x) =~,t~[o,1]x(t)f(t). It is easily seen that the subspace of continuous func- 

tions C [0, i]Cl= [0, I] is closed, total, and consists of functionals which attain supremum. 
But (C [0, i])' ~e 11 [0, I] in the duality established between 11 {0, i] and l= [0, I] since, e.g., 

? the functional ~(f)= o[(t)dt does not coincide with any functional of the form x([) =~t~[0.1] 

x(t)](t). We do not know any example of a space E and a closed total subspace MC~, such 

that M'=/=E in any duality. 

The author thanks M. I. Kadets, who turned his attention to this problem. 
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