A. N. Plichko

It is proved that a WCG-space E is conjugate to a Banach space if and only if its conjugate space E' contains a norm-closed total subspace M, consisting of functionals which attain supremum on the unit sphere. Moreover, M' = E in the duality established between E and E'. An example, showing that this statement is in general not true for an arbitrary Banach space, is given.

In [1] a condition of conjugacy of a separable Banach space is given in terms of the set \mathfrak{M} of functionals which attain their suprema on the unit sphere. Here we will prove the validity of this condition for the wider class of WCG-spaces and give an example showing that this is, in general, not true for an arbitrary Banach space. A Banach space is called a WCG-space if it is the closed linear envelope of a weakly compact subset of itself.

LEMMA [2]. Let be a Banach space, β be a number of the interval [0, 1], and f_n be a sequence of elements of the unit ball B(E') of the conjugate space E' such that $||f|| \ge \beta$ for $f \in \operatorname{conv}(f_n)_1^{\infty}$ (conv is the convex envelope). If $\lambda_i > 0$, $\sum_{i=1}^{\infty} \lambda_i = 1$, then there exist $\alpha \in [\beta, 1]$ and $g_n \in \operatorname{conv}(f_i)_n^{\infty}$, such that $\left\|\sum_{i=1}^{\infty} \lambda_n g_n\right\| = \alpha$ and

$$\left\|\sum_{i=1}^{n}\lambda_{i}g_{i}\right\| \leqslant \alpha\left(1-\beta\sum_{n+1}^{\infty}\lambda_{i}\right)$$

for all n.

<u>THEOREM.</u> A WCG-space E is conjugate to a Banach space if and only if E' contains a norm-closed total subspace $M \subset \mathfrak{M}$. Moreover, M' = E in the duality established between E and E'.

<u>Proof.</u> <u>Necessity.</u> The proof of necessity is the same as the proof of necessity in Theorem 4 of [1].

Sufficiency. We will show that M' is isometric with E in the duality established between E and E'. Since M is total over E, it follows that $M' \supset E$. It is also easily seen that $||x||_{M'} \leq ||x||_E$ for $x \in E$. Let us assume that $B(E) \neq B(M')$. Then, by Lemma 2 of [3, Chap. I, §3], there exists an $x_0 \in B(M')$, which does not belong to the closure $\overline{B(E)}$ of the ball B(E) in the space M'. By the Hahn-Banach theorem there exists a continuous linear functional $f_0 \in M''$, $||f_0||_{M''} = 1, 0 < \beta < 1$ and $\varepsilon > 0$ such that

$$\sup \{f_0(x): x \in B(E)\} < \beta^2 - \varepsilon.$$

We will show that B(M) is a dense subset of B(M") in the Mackey topology $\tau(M", M')$. Indeed, B(M) is dense in B(M") in the weak topology $\sigma(M", M')$ [3, Chap. IV, Sec. 5, Proposition 5]. But M", equipped with the topology $\sigma(M", M')$, as well as with $\tau(M", M')$, has conjugate M' [3, Chap. IV, Sec. 2, Corollary to Theorem 2]. By [3, Chap. IV, Sec. 2, Corollary 1 to Proposition 4] the closures of a convex set in the topologies $\sigma(M", M')$ and $\tau(M", M')$ coincide; therefore, B(M) is dense in B(M") in the topology $\tau(M", M')$.

Since E is a WCG-space, there exists a $\sigma(E, E')$ -compact convex subset U such that $\bigcup nU$

is dense in E. Since U is $\sigma(E, E')$ -compact and $||x||_{M'} \leq ||x||_E$ for $x \in E$, it follows that U is also $\sigma(M', M'')$ -compact. Let y_0 be an element of B(M'') such that $f_0(y_0) > \beta$. Since B(M) is dense in B(M'') in the Mackey topology $\tau(M'', M')$, i.e., in the topology of uniform convergence on $\sigma(M', M'')$ -compacta, we can choose a sequence $f_n \in B(M)$ such that $f_n(y_0) = f_0(y_0)$ and $f_n(x) \neq f_0(x)$ as $n \neq \infty$ for $x \in \bigcup_n n U$. It is easily seen that $||f|| > \beta$ for every

Kiev State University. Translated from Matematicheskie Zametki, Vol. 23, No. 2, pp. 281-284, February, 1978. Original article submitted October 6, 1976.

functional $f \in \operatorname{conv} (f_n)_1^{\infty}$. Let λ_n be a sequence of positive numbers such that $\sum_i^{\infty} \lambda_n = 1$. By virtue of the lemma, there exist a number α ($\beta \leqslant \alpha \leqslant 1$) and a sequence g_n such that $g_n \in \operatorname{conv} (f_i)_n^{\infty}$, $\left\| \sum_{i=1}^{\infty} \lambda_i g_i \right\| = \alpha$, and

$$\left\|\sum_{i=1}^{n}\lambda_{i}g_{i}\right\| \leq \alpha \left(1-\beta\sum_{n+1}^{\infty}\lambda_{i}\right)$$

$$(1)$$

for every n.

It follows immediately from the choice of g_n that $g_n(x) \to f_0(x)$ as $n \to \infty$ for every $x \in \bigcup_n nU$. We would arrive at a contradiction if we show that the element $g = \sum_{i=1}^{\infty} \lambda_i g_i$, belonging to M, does not attain supremum on the unit sphere S(E). Let $x \in S(E)$. Since $\bigcup_n nU$ is dense in E, there exists a sequence x_j of elements of $\bigcup_n nU$, which converges to x in the norm of the space E. We choose j such that $||x - x_j|| < \varepsilon$, and n such that $g_i(x_j) < \beta^2 - \varepsilon$ for i > n. Then for i > n

$$g_i(x) = g_i(x_j) + g_i(x - x_j) < \beta^2 - \epsilon + ||g_i|||x - x_j|| < \beta^2 < \alpha\beta$$

Thus,

$$\sum_{i=1}^{\infty} \lambda_{i} g_{i}(x) < \sum_{i=1}^{n} \lambda_{i} g_{i}(x) + \alpha \beta \sum_{n+1}^{\infty} \lambda_{i} \leq \left\| \sum_{i=1}^{n} \lambda_{i} g_{i} \right\| + \alpha \beta \sum_{n+1}^{\infty} \lambda_{i}$$

Hence, it follows from inequality (1) that

$$\sum_{i=1}^{\infty} \lambda_i g_i(x) < \alpha \left(1 - \beta \sum_{n+1}^{\infty} \lambda_i\right) + \alpha \beta \sum_{n+1}^{\infty} \lambda_i = \alpha.$$

The theorem is proved.

In conclusion, we give an example of a norm-closed total subspace $M \subset \mathfrak{N} \subset E'$, such that $M' \neq E$ in the duality established between E and E'. Let $l_1[0, 1]$ be the space of functions x(t) such that $\sum_{l \in [0, 1]} |x(t)| < \infty$ with the natural norm. Its conjugate is the space of bounded functions with the norm equal to the supremum (see [4]), and the duality is given by the equation $f(x) = \sum_{l \in [0, 1]} x(t) f(t)$. It is easily seen that the subspace of continuous functions $C[0, 1] \subset l_{\infty}[0, 1]$ is closed, total, and consists of functionals which attain supremum. But $(C[0, 1])' \neq l_1[0, 1]$ in the duality established between $l_1[0, 1]$ and $l_{\infty}[0, 1]$ since, e.g., the functional $\varphi(f) = \int_0^1 f(t) dt$ does not coincide with any functional of the form $x(f) = \sum_{l \in [0, 1]} x(t) f(t)$. We do not know any example of a space E and a closed total subspace $M \subset \mathfrak{N}$, such that $M' \neq E$ in any duality.

The author thanks M. I. Kadets, who turned his attention to this problem.

LITERATURE CITED

- Yu. I. Petunin and A. N. Plichko, "Some properties of functionals, attaining supremum on the unit sphere," Ukr. Mat. Zh., <u>26</u>, No. 1, 102-106 (1974).
- R. C. James, "Reflexivity and the sup of linear functionals," Israel J. Math., <u>13</u>, 289-300 (1972).
- 3. N. Bourbaki, Topological Vector Spaces, Addison-Wesley.
- 4. M. M. Day, Normal Linear Spaces, Springer-Verlag, Berlin-New York (1967).