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Abstract: We find conditions for a smooth nonlinear map f : U → V between open subsets of Hilbert or Banach spaces to be
locally convex in the sense that for some c and each positive ε < c the image f(Bε(x)) of each ε-ball Bε(x) ⊂ U is
convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constantLipo(f) of f , and the 2-convexity number conv2(X ) of the Banach space X .
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Introduction

The local convexity of nonlinear mappings of Banach spaces is important in many branches of applied mathemat-ics [1, 12, 17–21], in particular, in the theory of nonlinear differential-operator equations, optimization and control
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theory, etc. Locally convex maps appear naturally in various problems of Fixed Point Theory [6–8] and NonlinearAnalysis [11, 15, 16, 22].Let X, Y be Banach spaces. A map f : U → Y defined on an open subset U ⊂ X is called locally convex at a point
x ∈ U if there is a positive constant c > 0 such that for each positive ε ≤ c and each point x ∈ U with Bε(x) ⊂ Uthe image f(Bε(x)) is convex. Here Bε(x) = {y ∈ X : ‖x − y‖ < ε} stands for the open ε-ball centered at x. The localconvexity of f at x can be expressed via the local convexity radius

lcrx (f) = sup{c ∈ [0,+∞) : for all ε ≤ c and x ∈ U with Bε(x) ⊂ U the set f(Bε(x)) is convex}.
It follows that f is locally convex at x ∈ U if and only if lcrx (f) > 0.A map f : U → Y is defined to be• locally convex if f is locally convex at each point x ∈ U;

• uniformly locally convex if its local convexity radius lcr(f) = inf
x∈U

lcrx (f) is not equal to zero.
For example, if a homeomorphism f : U → V between open subsets U ⊂ X , V ⊂ Y with f(0) = 0 ∈ U is norm convex inthe sense that ∥∥∥∥f(x + x ′2

)∥∥∥∥ ≤ 12 (‖f(x)‖+ ‖f(x ′)‖) for all x, x ′ ∈ f(U),
then the inverse map f−1 is locally convex at the point y = 0. In particular, if Y is a Banach lattice with the order ≤and a homeomorphism f : U → V is Jensen convex, i.e.

f
(
x + x ′2

)
≤ 12 (f(x) + f(x ′))

for all x, x ′ ∈ U , then the inverse map f−1 is locally convex at the point y = 0.In this paper we find some conditions on a map f : U → Y guaranteeing that f is uniformly locally convex, and give alower bound on the local convexity radius lcr(f) of f . This bound depends on the second order Lipschitz constant Lip2(f)of f , the Lipschitz-open constant Lipo(f) of f , and the 2-convexity number conv2(X ) of the Banach space X .
1. Banach spaces with modulus of convexity of power type 2
The modulus of convexity of a Banach space X is the function δX : [0, 2]→ [0, 1] assigning to each number t ≥ 0 the realnumber

δX (t) = inf{1− ∥∥∥∥x + y2
∥∥∥∥ : x, y ∈ SX , ‖x − y‖ ≥ t},

where SX = {x ∈ X : ‖x‖ = 1} is the unit sphere of the Banach space X . By [14, p. 60], the modulus of convexity canbe equivalently defined as
δX (t) = inf{1− ∥∥∥∥x + y2

∥∥∥∥ : x, y ∈ BX , ‖x − y‖ ≥ t},
where BX = {x ∈ X : ‖x‖ ≤ 1} is the closed unit ball of X .Any Hilbert space E of dimension dimE > 1 has modulus δE (t) of convexity

18 t2 ≤ δE (t) = 1−√1− ( t2
)2
≤ 14 t2.

By [14, p. 63] or [9], δX (t) ≤ δ`2 (t) ≤ t2/4 for each Banach space X .
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Following [14, p. 63] and [4, p. 154], we say that a Banach space X has modulus of convexity of power type p if there isa constant L > 0 such that δX (t) ≥ Ltp for all t ∈ [0, 2]. It follows from Ltp ≤ δX (t) ≤ t2/4 that p ≥ 2. Hilbert spaceshave modulus of convexity of power type 2. Many examples of Banach spaces with modulus of convexity of power type 2can be found in [14, § 1.e], [4, Chapter V], [2, 10, 13]. In particular, the class of Banach spaces with modulus of convexityof power type 2 includes the Banach spaces Lp for 1 < p ≤ 2, and reflexive subspaces of the Banach space L1. By [9],a Banach space X has modulus of convexity of power type 2 if and only if for any sequences (xn)n∈ω and (yn)n∈ω in Xthe convergence 2(‖xn‖2 + ‖yn‖2)− ‖xn + yn‖2 → 0 implies ‖xn − yn‖ → 0.For a Banach space X consider the constant
conv2(X ) = inf{1− ‖(x+y)/2‖

‖x − y‖2 : x, y ∈ BX , x 6= y
}
≥ 0

called the 2-convexity number of X and observe that conv2(X ) > 0 if and only if X has modulus of convexity of powertype 2. It follows from [14, p. 63] or [9] that
0 ≤ conv2(X ) ≤ conv2(`2) = 18

for each Banach space X .
2. Moduli of smoothness of maps of Banach spaces

In this section we recall known information [5, § 2.7] on the moduli of smoothness ωn(f, t) of a function f : U → Y definedon a subset U ⊂ X of a Banach space X with values in a Banach space Y .The n-th modulus of smoothness of f is defined as
ωn(f, t) = sup{‖∆n

h(f, x)‖ : h ∈ X, ‖h‖ ≤ t, [x, x + nh] ⊂ U},
where ∆n

h(f, x) = n∑
k=0 (−1)k(nk

)
f(x + kh)

is the n-th difference of f . In particular,
ω1(f, t) = sup{‖f(x+h)− f(x)‖ : ‖h‖ ≤ t, [x, x + h] ⊂ U} and
ω2(f, t) = sup{‖f(x+h)− 2f(x) + f(x−h)‖ : ‖h‖ ≤ t, [x − h, x + h] ⊂ U}.

Here [x, y] = {tx + (1− t)y : t ∈ [0, 1]} stands for the segment connecting two points x, y ∈ X . The constants
Lip1(f) = sup

t>0
ω1(f, t)
t and Lip2(f) = sup

t>0
ω2(f, t)
t2

are called the Lipschitz constant and the second order Lipschitz constant of f , respectively.A function f : U → Y is called (second order) Lipschitz if its (second order) Lipschitz constant Lip1(f) (resp. Lip2(f))is finite. The second order Lipschitz property of a weakly Gâteaux differentiable function f can be deduced from theLipschitz property of its derivative f ′.Let us recall [3, p. 154] that a function f : U → Y is weakly Gâteaux differentiable at a point x ∈ U if there is a boundedlinear operator f ′x : X → Y (called the derivative of f at x) such that for each h ∈ X and each linear continuous functional
y∗ ∈ Y ∗ we get lim

t→0 y
∗(f(x+ th)− f(x))

t = y∗◦ f ′x (h).
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If lim
h→0 ‖f(x+h)− f(x)− f ′x (h)‖

‖h‖ = 0,
then f is Fréchet differentiable at x. The derivative f ′x belongs to the Banach space L(X, Y ) of all bounded linearoperators from X to Y , endowed with the operator norm ‖T‖ = sup

‖x‖≤1 ‖T (x)‖.
Even though the following two propositions are known, we present for completeness their short proofs, useful for ourfurther analysis.
Proposition 2.1.
Let X, Y be Banach spaces and U ⊂ X be an open subset. A function f : U → Y is Lipschitz if f is weakly Gâteaux
differentiable at each point of U and the derivative map f ′ : U → L(X, Y ), f ′ : x 7→ f ′x , is bounded. In this caseLip1(f) ≤ ‖f ′‖∞ = sup

x∈U
‖f ′x‖.

Proof. Let L = ‖f ′‖∞. The inequality Lip1(f) ≤ L = ‖f ′‖∞ will follow as soon as we check that
‖f(x+h)− f(x)‖ ≤ L‖h‖

for any x ∈ U and h ∈ X with [x, x + h] ⊂ U . Using the Hahn–Banach Theorem, find a linear continuous functional
y∗ ∈ Y ∗ with unit norm ‖y∗‖ = 1 such that y∗(f(x+h) − f(x)) = ‖f(x+h) − f(x)‖. The weak Gâteaux differentiabilityof f implies that the function

g : [0, 1]→ C, g : t 7→ y∗(f(x+ th)− f(x)),
is differentiable and g′(t) = y∗◦ f ′x+th(h) for each t ∈ [0, 1]. Then

‖g′‖∞ ≤ ‖y∗‖ · ‖f ′x+th‖ · ‖h‖ ≤ 1 · ‖f ′‖∞ · ‖h‖ = L · ‖h‖

and
‖f(x+h)− f(x)‖ = |g(1)− g(0)| = ∣∣∣∣∫ 1

0 g′(t)dt
∣∣∣∣ ≤ ∫ 1

0 |g′(t)|dt ≤ L‖h‖
∫ 1

0 dt = L‖h‖.

Proposition 2.2.
Let X, Y be Banach spaces and U ⊂ X be an open subset. Assume that a function f : U → Y is weakly Gâteaux
differentiable at each point of U and the derivative map f ′ : U → L(X, Y ), f ′ : x 7→ f ′x , is Lipschitz. Then(1) f is Fréchet differentiable at each point of U;(2) f is second order Lipschitz with Lip2(f) ≤ Lip1(f ′).
Proof. Let L = Lip1(f ′). The Fréchet differentiability of f at a point x ∈ U will follow as soon as we check that

‖f(x+h)− f(x)− f ′x (h)‖ ≤ 12 L‖h‖2
for each h ∈ X with [x, x + h] ⊂ U . Using the Hahn–Banach Theorem, choose a linear continuous functional y∗ ∈ Y ∗such that ‖y∗‖ = 1 and y∗(f(x+h) − f(x) − f ′x (h)) = ‖f(x+h) − f(x) − f ′x (h)‖. The weak Gâteaux differentiability of fimplies that the function

g : [0, 1]→ C, g : t 7→ y∗(f(x+ th)− tf ′x (h)),
is differentiable. Moreover, for each t ∈ [0, 1] we get g′(t) = y∗◦ f ′x+th(h)− y∗◦ f ′x (h) and

|g′(t)| = |y∗(f ′x+th(h)− f ′x (h))| ≤ ‖y∗‖ · ‖f ′x+th(h)− f ′x (h)‖ ≤ ‖f ′x+th − f ′x‖ · ‖h‖ ≤ Lip1(f ′) · ‖th‖ · ‖h‖ = tL‖h‖2.
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Then
‖f(x+h)− f(x)− f ′x (h)‖ = |g(1)− g(0)| = ∣∣∣∣∫ 1

0 g′(t)dt
∣∣∣∣ ≤ ∫ 1

0 |g′(t)|dt ≤
∫ 1

0 tL‖h‖2dt = 12 L‖h‖2.To see that f is second order Lipschitz, observe that for each h ∈ X with [x − h, x + h] ⊂ U we get
‖f(x+h)− 2f(x) + f(x−h)‖ = ∥∥f(x+h)− f(x)− f ′x (h) + f(x−h)− f(x)− f ′x (−h)∥∥ ≤

≤ ‖f(x+h)− f(x)− f ′x (h)‖+ ‖f(x−h)− f(x)− f ′x (−h)‖ ≤ 2 12 L‖h‖2 = L‖h‖2,
which implies that Lip2(f) ≤ L = Lip1(f ′).
3. Lipschitz-open maps

Let X, Y be Banach spaces. A map f : U → Y defined on an open subset U ⊂ X is called Lipschitz-open if there is apositive constant c such that for each x ∈ X and ε > 0 with Bε(x) ⊂ U we get Bcε(f(x)) ⊂ f(Bε(x)). Observe that a map
f : U → Y is Lipschitz-open if and only if its Lipschitz-open constant

Lipo(f) = sup{c ∈ [0,∞) : for all x ∈ U and ε > 0, Bε(x) ⊂ U ⇒ Bcε(f(x)) ⊂ f(Bε(x))}
is strictly positive.A map f : U → Y is locally Lipschitz-open if each point x ∈ U has an open neighborhood W ⊂ U such that the restriction
f�W : W → Y is Lipschitz-open. Observe that a bijective map f : X → Y between Banach spaces is Lipschitz-open ifand only if the inverse map f−1 : Y → X is Lipschitz. In this case Lipo(f) = Lip1(f−1).The following proposition can be derived from [3, Theorem 15.5].
Proposition 3.1.
Let X, Y be Banach spaces. A map f : U → Y defined on an open subspace U of X is locally Lipschitz-open if it satisfies
the following two conditions:(1) f is weakly Gâteaux differentiable,(2) the derivative f ′x : X → Y is surjective at each point x ∈ U , and(3) the derivative f ′ : U → L(X, Y ) is Lipschitz.

4. Main results

Theorem 4.1.
Let X, Y be Banach spaces. A map f : U → Y defined on an open subset U ⊂ X is uniformly locally convex if(1) the Banach space X has modulus of convexity of power type 2,(2) f is second order Lipschitz, and(3) f is Lipschitz-open.

Moreover, in this case f has local convexity radius lcr(f) ≥ 8 · Lipo(f) · conv2(X )/Lip2(f) > 0.

Proof. Let ε0 = 8 · Lipo(f) · conv2(X )/Lip2(f). Given any point x0 ∈ U and a positive ε ≤ ε0 with Bε(x0) ⊂ U , we needto prove that the image f(Bε(x0)) is convex. Without loss of generality, x0 = 0.
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Claim 1. For any points a, b ∈ f(Bε(x0)) we get (a+b)/2 ∈ clY (f(Bε(x0))).
Find two points x, y ∈ Bε(x0) = Bε(0) with a = f(x) and b = f(y), and consider the midpoint z = (x+y)/2. Observethat the points xε = x/ε, yε = y/ε, and zε = z/ε have norms ≤ 1.The definition of the 2-convexity number conv2(X ) guarantees that

1− 1
ε ‖z‖ = 1− ‖zε‖ ≥ conv2(X )‖xε − yε‖2 = 1

ε2 conv2(X )‖x − y‖2
and thus

ε − ‖z‖ ≥ 1
ε conv2(X )‖x − y‖2.

Then Bδ (z) ⊂ Bε(x0), where
δ = 1

ε conv2(X )‖x − y‖2 ≥ Lip2(f)8Lipo(f) · conv2(X ) conv2(X )‖x − y‖2 = Lip2(f)8Lipo(f) ‖x − y‖2
and hence

f(Bε(x0)) ⊃ f(Bδ (z)) ⊃ BLipo(f)δ (f(z)) = Bη(f(z)),where η = Lipo(f)δ ≥ Lip2(f)‖x − y‖2/8.The definition of the constant Lip2(f) implies that for h = z − x, we get∥∥∥∥a+ b2 − f(z)∥∥∥∥ = ∥∥∥∥ f(x) + f(y)2 − f(z)∥∥∥∥ = 12 ‖f(z−h)− 2f(z) + f(z+h)‖ ≤ 12 Lip2(f)‖h‖2 = 18 Lip2(f)‖x − y‖2 ≤ η
and hence (a+b)/2 ∈ clY (Bη(f(z))) ⊂ clY (f(Bε(x0))). �

Claim 2. For any positive numbers δ < η we get clY (f(Bδ (x0))) ⊂ f(Bη(x0)).
Given any point y ∈ clY (f(Bδ (x0)), find a point x ∈ Bδ (x0) such that ‖y− f(x)‖ < (η− δ) · Lipo(f). The definition of theLipschitz-open constant guarantees that

y ∈ B(η−δ)Lipo(f)(f(x)) ⊂ f(Bη−δ (x)) ⊂ f(Bη−δ (Bδ (x0))) ⊂ f(Bη(x0)).
The claim is proved. �

Claim 1 implies that for each δ < ε0 the closure clY (f(Bδ (x0)) is convex. Then the open set f(Bε(x0)) is convex, being theunion
f(Bε(x0)) = f

( ⋃
0<δ<εBδ (x0)) = ⋃

0<δ<εclY (f(Bδ (x0))
of a linearly ordered chain of convex sets.
Taking into account that each Hilbert space X has 2-convexity number conv2(E) ≥ 1/8, and applying Theorem 4.1,we get:
Corollary 4.2.
Let Y be a Banach space and U be an open subspace of a Hilbert space X . Each Lipschitz-open second order Lipschitz
map f : U → Y is uniformly locally convex and has local convexity radius lcr(f) ≥ Lipo(f)/Lip2(f) > 0.

Theorem 4.1 combined with Propositions 2.2 and 3.1 implies the following two corollaries.
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Corollary 4.3.
Let X, Y be Banach spaces. A map f : U → Y defined on an open subspace U ⊂ X is uniformly locally convex if(1) the Banach space X has modulus of convexity of power type 2,(2) f is weakly Gâteaux differentiable and the derivative f ′ : U → L(X, Y ) is Lipschitz;(3) f is Lipschitz-open.

Corollary 4.4.
Let X, Y be Banach spaces. A map f : U → Y defined on an open subspace U ⊂ X is locally convex if(1) the Banach space X has modulus of convexity of power type 2,(2) f is weakly Gâteaux differentiable and the derivative f ′ : U → L(X, Y ) is Lipschitz;(3) for each x ∈ U the derivative f ′x : X → Y is surjective.

5. An open problem

We do not know if the requirement on the convexity modulus of the Banach space X is essential in Theorem 4.1 andCorollaries 4.3, 4.4.
Problem 5.1.Assume that X is a Banach space such that any Lipschitz-open second order Lipschitz map f : U → X defined on anopen subset U ⊂ X is locally convex. Has X the modulus of convexity of power type 2? Is X (super)reflexive?
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