ON THE MARCINKIEWICZ-ZYGMUND LAW OF LARGE NUMBERS IN BANACH LATTICES

I. K. Matsak ${ }^{1}$ and A. M. Plichko ${ }^{2}$

We strengthen the well-known Marcinkiewicz-Zygmund law of large numbers in the case of Banach lattices. Examples of applications to empirical distributions are presented.

1. Introduction. Main Theorem

Let $\xi, \xi_{1}, \xi_{2}, \ldots$ be independent identically distributed random variables in \mathbb{R}. In [1], Marcinkiewicz and Zygmund obtained the following generalization of the Kolmogorov law of large numbers: For $1 \leq p<2$, one has

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{1 / p}} \sum_{i=1}^{n} \xi_{i}=0 \quad \text { almost surely (a.s.) }
$$

if $\mathbf{E}|\xi|^{p}<\infty$ and $\mathbf{E} \xi=0$.
Let $\left(X_{i}\right)$ be a sequence of independent copies of a random element X with values in a separable Banach space B and let

$$
S_{n}=\sum_{i=1}^{n} X_{i} .
$$

It is known [2, p. 259] that, for Banach spaces of the type $p, 1 \leq p<2$, under the conditions

$$
\begin{equation*}
\mathbf{E}\|X\|^{p}<\infty \tag{1}
\end{equation*}
$$

and $\mathbf{E} X=0$, the Marcinkiewicz-Zygmund law of large numbers of the form

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{1 / p}}\left\|S_{n}\right\|=0 \quad \text { a.s. } \tag{2}
\end{equation*}
$$

is also true.

[^0]Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 62, No. 4, pp. 504-513, April, 2010. Original article submitted August 18, 2009.

In what follows, B denotes a separable Banach lattice with modulus $|\cdot|$. We set

$$
S_{n}^{*}=\sup _{k \leq n}\left|S_{k}\right|, \quad n=1,2, \ldots
$$

(here and in what follows, the relation $k \leq n$ means that $1 \leq k \leq n$).
The following question naturally arises: Is it possible to strengthen the law of large numbers (2) in the case of Banach lattices to the equality

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{1 / p}}\left\|S_{n}^{*}\right\|=0 \quad \text { a.s. } \tag{3}
\end{equation*}
$$

and what conditions should be imposed on the random element X for this purpose?
Let $1 \leq p, q<\infty$. A Banach lattice B is called p-convex [3, p.46] if there exists a constant $D^{(p)}=$ $D^{(p)}(B)$ such that, for each n and any elements $\left(x_{i}\right)_{1}^{n} \subset B$, one has

$$
\left\|\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}\right\| \leq D^{(p)}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p}
$$

and, similarly, it is called q-concave if, for a certain constant $D_{(q)}=D_{(q)}(B)$, the inverse inequality is true, i.e.,

$$
\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q}\right)^{1 / q} \leq D_{(q)}\left\|\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / q}\right\|
$$

Theorem 1. Let B be a p-convex $(1 \leq p<2)$ and q-concave $(q<\infty)$ Banach lattice and let X be a random element with values in B such that $\mathbf{E} X=0$. Then condition (1) is equivalent to equality (3).

Corollary 1. Let X be a random element with values in the space L_{p} or ℓ_{p} for $1 \leq p<2$ and let $\mathbf{E} X=0$. Then conditions (1) and (3) are equivalent.

Remark 1. For general separable Banach lattices, Theorem 1 is not true. However, it was shown in [4] that the Kolmogorov-type law of large numbers

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left\|S_{n}^{*}\right\|=0 \quad \text { a.s. }
$$

provided that $\mathbf{E}\|X\|<\infty$ and $\mathbf{E} X=0$.
Recall that a sequence $\left(x_{n}\right)$ of elements of a Banach lattice B is called o-convergent to an element x, which is denoted by

$$
x=o-\lim _{n \rightarrow \infty} x_{n},
$$

if there exists a sequence of nonnegative elements $v_{n} \in B$ such that $\left|x_{n}-x\right| \leq v_{n}$ and $v_{n} \downarrow 0$, i.e., $v_{1} \geq$ $v_{2} \geq \ldots$ and

$$
\inf _{n \geq 1} v_{n}=0
$$

For a random element X with values in a Banach lattice (with $\mathbf{E} X=0$), one can consider the Marcinkie-wicz-Zygmund order law of large numbers:

$$
o-\lim _{n \rightarrow \infty} \frac{1}{n^{1 / p}} S_{n}=0 \quad \text { a.s. }
$$

Remark 2. Under the conditions of Theorem 1, the Marcinkiewicz-Zygmund order law of large numbers is not true. For instance, the counterexample from [5] considered in the space $\ell_{p}, 1 \leq p<\infty$, satisfies both inequality (1) and the following relation:

$$
\left\|\sup _{n \geq 1} \frac{1}{n^{1 / p}}\left|S_{n}\right|\right\|_{\ell_{p}}=\infty \quad \text { a.s. }
$$

2. Proof of Theorem 1

First, note that we essentially use here the proof of the Marcinkiewicz-Zygmund law of large numbers in a Banach space presented in [2, pp. 186, 187].

The implication $(3) \Rightarrow(1)$ follows from the results of $[2$, p. 259]. Therefore, it suffices to establish the opposite implication (1) \Rightarrow (3).

Step 1. We present here several auxiliary lemmas.
Lemma 1 [4]. Let Y be a random element with values in a finite-dimensional subspace E of a Banach lattice and let $\left(Y_{i}\right)$ be its independent copies. Suppose that $1<p \leq 2, \mathbf{E}\|Y\|^{p}<\infty$, and $\mathbf{E} Y=0$. Then

$$
\frac{1}{n^{1 / p}}\left\|\sup _{k \leq n}\left|\sum_{i=1}^{k} Y_{i}\right|\right\| \rightarrow 0 \quad \text { a.s. } \quad \text { as } n \rightarrow \infty
$$

Lemma 2 [6]. Let B be a q-concave $(q<\infty)$ Banach ideal space and let $X=(X(t), t \in T)$ be a random element with values in B. Then

$$
\left(\mathbf{E}\|X\|^{q}\right)^{1 / q} \leq D_{(q)}\left\|\left(\mathbf{E}|X(t)|^{q}\right)^{1 / q}\right\|
$$

Lemma 3 [2, p. 179]. Let $\left(X_{n}\right)$ and (X_{n}^{\prime}) be independent sequences of random variables in a Banach space such that

$$
\left\|X_{n}-X_{n}^{\prime}\right\| \rightarrow 0 \text { a.s. and }\left\|X_{n}\right\| \xrightarrow{P} 0 \quad \text { as } n \rightarrow \infty .
$$

Then

$$
\left\|X_{n}\right\| \rightarrow 0 \quad \text { a.s. }
$$

The lemma presented below is similar to the known Prokhorov's result in \mathbb{R} [7]. Assume that a number sequence a_{n} is such that $a_{n} \uparrow \infty$ and there exist a subsequence $\left(b_{m}\right)=\left(a_{n_{m}}\right)$ and constants $C>c>1$ such that $C \geq a_{n_{m+1}} / a_{n_{m}} \geq c$ for sufficiently large m. (If, e.g., $a_{n+1} / a_{n} \rightarrow 1$, then this subsequence exists [8, p. 330].)

Let $\left(X_{n}\right)$ be a sequence of independent random elements with values in a Banach lattice B. As in the introduction, we determine S_{n} and S_{n}^{*} for the sequence $\left(X_{n}\right)$. We set $J_{m}=\left\{n_{m-1}+1, \ldots, n_{m}\right\}, m \in \mathbb{N}$, and

$$
U_{m}=\sup _{n \in J_{m}}\left|S_{n}-S_{n_{m-1}}\right| .
$$

Lemma 4. The following relations are equivalent:
(i) $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}\left\|S_{n}^{*}\right\|=0 \quad$ a.s.;
(ii) $\lim _{m \rightarrow \infty} \frac{1}{b_{m}}\left\|U_{m}\right\|=0 \quad$ a.s.;
(iii) $\forall \delta>0: \sum_{m \geq 1} \mathbf{P}\left\{\frac{1}{b_{m}}\left\|U_{m}\right\|>\delta\right\}<\infty$.

Proof. It suffices to prove the equivalence of relations (i) and (ii) because the equivalence of relations (ii) and (iii) follows from the Borel-Cantelli lemma.

If condition (i) is satisfied, then

$$
\frac{1}{b_{m}}\left\|U_{m}\right\| \leq \frac{1}{b_{m}}\left\|\sup _{n \in J_{m}}\left|S_{n}\right|\right\|+\frac{\left\|S_{n_{m-1}}\right\|}{b_{m-1}} \frac{b_{m-1}}{b_{m}} \rightarrow 0 \quad \text { a.s. } \quad \text { as } m \rightarrow \infty .
$$

Assume, on the contrary, that condition (ii) is satisfied. Then, for $n \in J_{m}$, we have

$$
\left|S_{n}\right|=\left|S_{n}-S_{n_{m-1}}+\sum_{i=1}^{m-1}\left(S_{n_{i}}-S_{n_{i-1}}\right)\right| \leq \sum_{i=1}^{m} U_{i}
$$

Hence,

$$
\begin{equation*}
\frac{1}{a_{n}}\left\|S_{n}^{*}\right\| \leq \frac{C}{b_{m}} \sum_{i=1}^{m}\left\|U_{i}\right\| \tag{4}
\end{equation*}
$$

It follows from the properties of the sequence $\left(b_{m}\right)$ that

$$
\begin{equation*}
\sum_{i=1}^{m} b_{i} \leq \frac{b_{m}}{1-1 / c} \tag{5}
\end{equation*}
$$

Finally, we use the following elementary number relation (see Lemma 9 in [8, p. 327]):

$$
\frac{1}{a_{n}} \sum_{i=1}^{n} b_{i} y_{i} \rightarrow 0
$$

if

$$
a_{n}=\sum_{i=1}^{n} b_{i} \uparrow \infty \quad \text { and } \quad y_{n} \rightarrow 0
$$

as $n \rightarrow \infty$. This relation, condition (ii), and estimates (4) and (5) yield relation (i).
The lemma is proved.
Remark 3. We set

$$
T_{m}=\left|S_{n_{m}}-S_{n_{m-1}}\right|
$$

and consider the following conditions:

$$
\begin{aligned}
& \text { (ii') } \lim _{m \rightarrow \infty} \frac{1}{b_{m}}\left\|T_{m}\right\|=0 \text { a.s.; } \\
& \text { (iii') } \forall \delta>0: \sum_{m \geq 1} \mathbf{P}\left\{\frac{1}{b_{m}}\left\|T_{m}\right\|>\delta\right\}<\infty .
\end{aligned}
$$

If $B=\mathbb{R}$ and the random elements X_{n} are symmetric in the conditions of Lemma 4, then conditions (ii) and (iii) can be replaced by (ii') and (iii').

Step 2. First, we establish a weakened version of the implication (1) \Rightarrow (3), namely, we show that convergence in probability holds in (3).

It is known that the set of simple random elements is dense in $L_{p}(B)$ (see, e.g., Exercise 3 in [9, p. 97]). Therefore, for any $\epsilon>0$, there exists a simple (i.e., finite-dimensional) random element Y such that

$$
\left(\mathbf{E}\|X-Y\|^{p}\right)^{1 / p}<\epsilon
$$

Since

$$
\|\mathbf{E} Y\| \leq\|\mathbf{E}(Y-X)\|+\|\mathbf{E} X\| \leq\left(\mathbf{E}\|X-Y\|^{p}\right)^{1 / p}<\epsilon
$$

using $Y-\mathbf{E} Y$ instead of Y we can assume that $\mathbf{E} Y=0$. We set $R=X-Y$. It is clear that

$$
\begin{equation*}
\mathbf{E} R=0 \quad \text { and } \quad\left(\mathbf{E}\|R\|^{p}\right)^{1 / p}<\epsilon \tag{6}
\end{equation*}
$$

For independent copies $X_{n}, n \geq 1$, of X, we write $X_{n}=Y_{n}+R_{n}$, where Y_{n} are independent copies of Y and R_{n} are independent copies of R. We set

$$
S_{n}^{\prime}=\sup _{k \leq n}\left|\sum_{i=1}^{k} Y_{i}\right| \quad \text { and } \quad S_{n}^{\prime \prime}=\sup _{k \leq n}\left|\sum_{i=1}^{k} R_{i}\right| .
$$

It is obvious that

$$
\begin{equation*}
\left\|S_{n}^{*}\right\| \leq\left\|S_{n}^{\prime}\right\|+\left\|S_{n}^{\prime \prime}\right\| \tag{7}
\end{equation*}
$$

By virtue of Lemma 1, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{1 / p}}\left\|S_{n}^{\prime}\right\|=0 \quad \text { a.s. } \tag{8}
\end{equation*}
$$

We now estimate $\left\|S_{n}^{\prime \prime}\right\|$ from above. Note that a separable σ-complete Banach lattice is order isometric to a certain Banach ideal space [3, p. 25] (in [3], the similar term "Köthe functional space" was used). Since a q concave Banach lattice is σ-complete [3] (Theorem 1.a.5), we can assume, without loss of generality, that B is a separable, p-convex, q-concave Banach ideal space defined on a certain measurable space (T, Λ, μ). Let

$$
X_{n}=X_{n}(t), \quad S_{n}^{\prime \prime}=S_{n}^{\prime \prime}(t), \quad R_{n}=R_{n}(t)
$$

and let $\tilde{R}_{n}=\tilde{R}_{n}(t), t \in T$, be an independent copy of R_{n}. Using the symmetrization procedure, we get [9, p. 222] (Lemma 3.4)

$$
\mathbf{E}\left\|S_{n}^{\prime \prime}\right\| \leq \mathbf{E}\left\|\sup _{k \leq n}\left|\sum_{1}^{k}\left(R_{i}-\tilde{R}_{i}\right)\right|\right\|
$$

We can assume that $R_{n}-\tilde{R}_{n}=\varepsilon_{n} \hat{R}_{n}$, where ε_{n} are independent symmetric Bernoulli random variables and \hat{R}_{n} are independent copies of $R-\tilde{R} \quad\left(\tilde{R}\right.$ is an independent copy of R) that do not depend on (ε_{n}). Using the last inequality and Lemma 2, we get

$$
\begin{equation*}
\mathbf{E}\left\|S_{n}^{\prime \prime}\right\| \leq D_{(q)} \mathbf{E}\left\|\left(\hat{\mathbf{E}} \sup _{k \leq n}\left|\sum_{1}^{k} \varepsilon_{i} \hat{R}_{i}(t)\right|^{q}\right)^{1 / q}\right\| \tag{9}
\end{equation*}
$$

where $\hat{\mathbf{E}} \varphi\left(\varepsilon_{n} \hat{R}_{n}\right)$ denotes the mathematical expectation of the random variable $\varphi\left(\varepsilon_{n} \hat{R}_{n}\right)$ for fixed values of the random variable $\left(\hat{R}_{n}\right)$. Further, for fixed values of \hat{R}_{n}, we successively use the Lévy moment inequality for symmetric random variables in \mathbb{R} [2, p. 48]

$$
\mathbf{E} \max _{k \leq n}\left|\sum_{1}^{k} \xi_{i}\right|^{q} \leq 2 \mathbf{E}\left|\sum_{1}^{n} \xi_{i}\right|^{q}
$$

and the well-known Kahane inequality [3] (Theorem 1.e.13)

$$
\left(\hat{\mathbf{E}} \sup _{k \leq n}\left|\sum_{i=1}^{k} \varepsilon_{i} \hat{R}_{i}(t)\right|^{q}\right)^{1 / q} \leq\left(2 \hat{\mathbf{E}}\left|\sum_{1}^{n} \varepsilon_{i} \hat{R}_{i}(t)\right|^{q}\right)^{1 / q} \leq C_{K}\left(\hat{\mathbf{E}}\left|\sum_{1}^{n} \varepsilon_{i} \hat{R}_{i}(t)\right|^{p}\right)^{1 / p} \leq C_{K}\left(\sum_{1}^{n}\left|\hat{R}_{i}(t)\right|^{p}\right)^{1 / p},
$$

where $C_{K}=C_{K}(p, q)$ depends on the constant in the Kahane inequality.
Using estimate (9), the last inequality, and the p-convexity of B, we obtain (for certain absolute constants C_{1} and C)

$$
\begin{equation*}
\mathbf{E}\left\|S_{n}^{\prime \prime}\right\| \leq C_{1} \mathbf{E}\left\|\left(\sum_{i=1}^{n}\left|\hat{R}_{i}\right|^{p}\right)^{1 / p}\right\| \leq C \mathbf{E}\left(\sum_{i=1}^{n}\left\|\hat{R}_{i}\right\|^{p}\right)^{1 / p} \leq C n^{1 / p}\left(\mathbf{E}\left\|\hat{R}_{i}\right\|^{p}\right)^{1 / p} \leq C n^{1 / p} \epsilon \tag{10}
\end{equation*}
$$

In the last inequality, we have also used the inequality from (6).
Since ϵ is arbitrary, using (7), (8), and (10) we establish that

$$
\begin{equation*}
\frac{1}{n^{1 / p}}\left\|S_{n}^{*}\right\| \xrightarrow{P} 0 . \tag{11}
\end{equation*}
$$

Step 3. We now pass to the proof of the implication (1) \Rightarrow (3).
By virtue of Lemma 3 and relation (11), we can restrict ourselves to the case of symmetric random elements X_{n}. By analogy with Step 2, we represent them in the form

$$
X_{n}=\varepsilon_{n} X_{n}^{\prime}=\varepsilon_{n}\left(Y_{n}+R_{n}\right),
$$

where the symmetric Bernoulli random variables ε_{n} are independent of X_{n}^{\prime}. We set

$$
S_{n}^{\prime}=\sup _{k \leq n}\left|\sum_{i=1}^{k} \varepsilon_{i} Y_{i}\right|, \quad S_{n}^{\prime \prime}=\sup _{k \leq n}\left|\sum_{i=1}^{k} \varepsilon_{i} R_{i}\right| .
$$

It is clear that S_{n}^{\prime} and $S_{n}^{\prime \prime}$ satisfy inequality (7), and S_{n}^{\prime} satisfies equality (8). Thus, to prove Theorem 1 it remains to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{1 / p}}\left\|S_{n}^{\prime \prime}\right\|=0 \quad \text { a.s. } \tag{12}
\end{equation*}
$$

For each $m \in \mathbb{N}$, we denote $J_{m}=\left\{2^{m-1}+1, \ldots, 2^{m}\right\}$. For each $j \in J_{m}$, we set

$$
V_{j}=\varepsilon_{j} R_{j} \mathbb{I}\left(\left\|R_{j}\right\| \leq 2^{m / p}\right),
$$

where $\mathbb{I}(A)=1$ if the event A takes place, and $\mathbb{I}(A)=0$ otherwise. The random element R_{j} satisfies condition (6). Therefore,

$$
\sum_{m \geq 1} \mathbf{P}\left\{\exists j \in J_{m}, V_{j} \neq \varepsilon_{j} R_{j}\right\} \leq \sum_{m \geq 1} 2^{m} \mathbf{P}\left\{\|R\|>2^{m / p}\right\}<\infty .
$$

According to the Borel-Cantelli lemma, this means that, almost surely, the inequality $V_{j} \neq \varepsilon_{j} R_{j}$ holds finitely many times. Thus, equality (12) is true if

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{1 / p}}\left\|\sup _{k \leq n}\left|\sum_{1}^{k} V_{i}\right|\right\|=0 \quad \text { a.s. }
$$

Using Lemma 4 for $a_{n}=n^{1 / p}$ and $n_{m}=2^{m}$, we establish that the last equality is equivalent to the condition

$$
\begin{equation*}
\forall \delta>0: \sum_{m \geq 1} \mathbf{P}\left\{\left\|U_{m}\right\|>\delta 2^{m / p}\right\}<\infty \tag{13}
\end{equation*}
$$

where

$$
U_{m}=\sup _{j \in J_{m}}\left|\sum_{i=2^{m-1}+1}^{j} V_{i}\right| .
$$

Using estimate (10), we get

$$
\mathbf{E}\left\|U_{m}\right\| \leq C 2^{m / p} \epsilon
$$

Taking $\epsilon=\delta /(2 C)$, we establish that the condition

$$
\begin{equation*}
\forall \delta>0: \sum_{m \geq 1} \mathbf{P}\left\{\left\|U_{m}\right\|-\mathbf{E}\left\|U_{m}\right\|>\delta 2^{(m / p)-1}\right\}<\infty \tag{14}
\end{equation*}
$$

is sufficient for (13).
To estimate the m th term of sum (14), we use a modification of the Yurinskii method [10] for sums of independent random elements in Banach spaces. For every $j \in J_{m}$, we denote

$$
\begin{gathered}
U_{m, j}=\sup _{i \in J_{m}}\left|\sum_{s \in J_{m}, s<i, s \neq j} V_{s}\right|, \\
\zeta_{j}=\mathbf{E}_{j}\left\|U_{m}\right\|-\mathbf{E}_{j-1}\left\|U_{m}\right\|, \\
\mathbf{E}_{j} \eta=\mathbf{E}\left(\eta \mid \mathcal{F}_{j}\right),
\end{gathered}
$$

where \mathcal{F}_{j} is the σ-algebra spanned by the random elements $V_{i}: i \in J_{m}, i \leq j$, and $\mathcal{F}_{2^{(m-1)}}$ is the trivial σ algebra. Then the following martingale representation takes place:

$$
\begin{equation*}
\left\|U_{m}\right\|-\mathbf{E}\left\|U_{m}\right\|=\sum_{j \in J_{m}} \zeta_{j} \tag{15}
\end{equation*}
$$

Since ζ_{j} can be represented in the form

$$
\zeta_{j}=\left(\mathbf{E}_{j}-\mathbf{E}_{j-1}\right)\left(\left\|U_{m}\right\|-\left\|U_{m, j}\right\|\right),
$$

using the inequality

$$
\left\|U_{m}\right\|-\left\|U_{m, j}\right\| \leq\left\|V_{j}\right\|
$$

we obtain

$$
\begin{equation*}
\left|\zeta_{j}\right| \leq\left\|V_{j}\right\|+\mathbf{E}\left\|V_{j}\right\| \tag{16}
\end{equation*}
$$

However, $\left(\zeta_{j}\right)$ is a sequence of martingale differences. Therefore, according to estimate (16), we have

$$
\mathbf{E}\left|\sum_{j \in J_{m}} \zeta_{j}\right|^{2} \leq \sum_{j \in J_{m}} \mathbf{E}\left|\zeta_{j}\right|^{2} \leq C \sum_{j \in J_{m}} \mathbf{E}\left\|V_{j}\right\|^{2} \leq C 2^{m} \mathbf{E}\left\|V_{j}\right\|^{2}
$$

Using this result and equality (15), we establish that the series in (14) can be estimated from above as follows:

$$
\begin{equation*}
\frac{C}{\delta^{2}} \sum_{m \geq 1} \frac{1}{2^{2 m / p}} \sum_{j \in J_{m}} \mathbf{E}\left\|V_{j}\right\|^{2} \leq \frac{C}{\delta^{2}} \sum_{m \geq 1} \frac{1}{2^{m(2 / p-1)}} \mathbf{E}\left(\|R\|^{2} \mathbb{I}\left(\|R\| \leq 2^{m / p}\right)\right) \tag{17}
\end{equation*}
$$

It is known (see the proof of Theorem 7.9 in [2, p. 187]) that, for a random variable ξ in \mathbb{R}, under the condition $\mathbf{E}|\xi|^{p}<\infty, 1 \leq p<2$, one has

$$
\sum_{m \geq 1} \frac{1}{2^{m(2 / p-1)}} \mathbf{E}\left(\xi^{2} \mathbb{I}\left(|\xi|^{p} \leq 2^{m}\right)\right)<\infty
$$

Since the random variable $\|R\|$ satisfies condition (6), we conclude that series (17) converges, and, hence, series (14) also converges.

The theorem is proved.

3. Examples of Application to Empirical Distributions

1. Sampling in \mathbb{R}. For independent identically distributed random variables $\xi_{,} \xi_{1}, \xi_{2}, \ldots$ in \mathbb{R} with distribution function $F(t)$, we introduce the empirical distribution function

$$
F_{n}^{*}(t)=\frac{1}{n} \sum_{i=1}^{n} I_{(-\infty, t)}\left(\xi_{i}\right), \quad t \in \mathbb{R},
$$

where $I_{(-\infty, t)}(\xi)=1$ if $\xi<t$, and $I_{(-\infty, t)}(\xi)=0$ if $\xi \geq t$.
According to the known Glivenko-Cantelli theorem, we have

$$
\sup _{t \in \mathbb{R}}\left|F_{n}^{*}(t)-F(t)\right| \rightarrow 0 \quad \text { a.s. }
$$

We consider the random processes

$$
\begin{equation*}
X_{n}(t)=I_{(-\infty, t)}\left(\xi_{n}\right)-F(t), \quad t \in \mathbb{R} \tag{18}
\end{equation*}
$$

as random elements with values in the space $L_{p}(\mathbb{R}), \quad 1 \leq p<\infty$ (of course, this is true only under certain restrictions on the random variables ξ [4]). For the random elements X_{n} defined by (18) and satisfying the condition

$$
\begin{equation*}
\mathbf{E}\left\|X_{n}\right\|_{L_{p}(\mathbb{R})}^{p}<\infty \tag{19}
\end{equation*}
$$

the law of large numbers (2) in the space $L_{p}(\mathbb{R})$ can be rewritten in the following form:

$$
\begin{equation*}
\frac{1}{n} \int_{-\infty}^{\infty} n^{p}\left|F_{n}^{*}(t)-F(t)\right|^{p} d t \rightarrow 0 \quad \text { a.s. } \quad \text { as } n \rightarrow \infty \tag{20}
\end{equation*}
$$

Theorem 1 enables us to strengthen the last relation as follows: If condition (19) is satisfied, then

$$
\frac{1}{n} \int_{-\infty}^{\infty} \max _{k \leq n} k^{p}\left|F_{k}^{*}(t)-F(t)\right|^{p} d t \rightarrow 0 \quad \text { a.s. } \quad \text { as } n \rightarrow \infty
$$

On the other hand, equalities (20) and (21) can be regarded as certain versions of the Glivenko-Cantelli theorem in the space $L_{p}(\mathbb{R})$.

Corollary 2. For $1 \leq p<2$, the empirical distribution function $F_{n}^{*}(t)$ satisfies the law of large numbers (21) if and only if

$$
\begin{equation*}
\mathbf{E}|\xi|<\infty . \tag{22}
\end{equation*}
$$

Remark 4. It is known [4] that, under the condition $\mathbf{E}|\xi|^{1 / p}<\infty$, the random element X_{n} belongs almost surely to $L_{p}(\mathbb{R})$. Therefore, condition (22) guarantees that X_{n} belongs to all $L_{p}(\mathbb{R})$ simultaneously.

Corollary 2 follows directly from Theorem 1 if the equivalence (19) $\Leftrightarrow(22)$ is established.
This can easily be verified. Indeed,

$$
\begin{aligned}
\mathbf{E}\left\|X_{n}\right\|_{L_{p}(\mathbb{R})}^{p} & =\mathbf{E} \int_{-\infty}^{\infty}\left(|1-F(t)|^{p} \mathbb{I}(\xi<t)+|F(t)|^{p} \mathbb{I}(\xi \geq t)\right) d t \\
& =\int_{-\infty}^{\infty}\left(|1-F(t)|^{p} F(t)+|F(t)|^{p}(1-F(t))\right) d t .
\end{aligned}
$$

The last integral is bounded if and only if

$$
\int_{0}^{\infty}(1-F(t)) d t+\int_{-\infty}^{0} F(t) d t<\infty
$$

It is known (see Lemma 2 in [11, p. 179]) that the last inequality is equivalent to condition (22).
2. Sampling in \mathbb{R}^{m}. Let

$$
\langle\bar{b}, \bar{c}\rangle=\sum_{i=1}^{m} b_{i} c_{i}
$$

be the scalar product of elements $\bar{b}=\left(b_{1}, \ldots, b_{m}\right)$ and $\bar{c}=\left(c_{1}, \ldots, c_{m}\right)$ from \mathbb{R}^{m}, let $\|\bar{c}\|=\langle\bar{c}, \bar{c}\rangle^{1 / 2}$, and let $\bar{\xi}, \bar{\xi}_{1}, \bar{\xi}_{2}, \ldots$ be independent identically distributed random variables in \mathbb{R}^{m}. Out of several possible definitions of an empirical distribution function in \mathbb{R}^{m}, we choose the following:

$$
F_{n}^{*}(\bar{c}, t)=\frac{1}{n} \sum_{i=1}^{n} I_{(-\infty, t)}\left(\left\langle\xi_{i}, \bar{c}\right\rangle\right), \quad\langle\bar{c}, t\rangle \in D,
$$

where $D=\mathbb{S}^{m} \times \mathbb{R}$ and \mathbb{S}^{m} is the identity sphere of the m-dimensional Euclidean space. On D, we introduce a measure in a natural way as the product of the (normalized) spherical Lebesgue measure on \mathbb{S}^{m} and the ordinary Lebesgue measure in \mathbb{R}.

We set

$$
F(\bar{c}, t)=\mathbf{P}\left\{\left\langle\bar{\xi}_{i}, \bar{c}\right\rangle<t\right\}
$$

and consider the random functions

$$
X_{n}(\bar{c}, t)=I_{(-\infty, t)}\left(\left\langle\bar{\xi}_{n}, \bar{c}\right\rangle\right)-F(\bar{c}, t), \quad(\bar{c}, t) \in D,
$$

as random elements X_{n} with values in the (separable) Banach lattice of numerical functions $L_{p}(D), \quad 1 \leq$ $p<\infty$.

Applying Theorem 1 to the random elements X_{n}, we obtain the following corollary:
Corollary 3. If

$$
\begin{equation*}
\mathbf{E}\|\bar{\xi}\|<\infty \tag{23}
\end{equation*}
$$

then, for any $1 \leq p<2$, one has

$$
\begin{equation*}
\frac{1}{n} \int_{\mathbb{S}^{m}} d \bar{c} \int_{-\infty}^{\infty} \max _{k \leq n} k^{p}\left|F_{n}^{*}(\bar{c}, t)-F(\bar{c}, t)\right|^{p} d t \rightarrow 0 \quad \text { a.s. } \quad \text { as } n \rightarrow \infty . \tag{24}
\end{equation*}
$$

To prove Corollary 3, it suffices to verify condition (19). We have

$$
\begin{aligned}
\mathbf{E}\left\|X_{n}\right\|_{L_{p}(D)}^{p} & =\mathbf{E} \int_{\mathbb{S}^{m}} d \bar{c} \int_{-\infty}^{\infty}\left(|1-F(\bar{c}, t)|^{p} \mathbb{I}\left(\langle\bar{\xi}, \bar{c}\rangle\langle t)+|F(\bar{c}, t)|^{p} \mathbb{I}(\langle\xi, \bar{c}\rangle \geq t)\right) d t\right. \\
& =\int_{\mathbb{S}^{m}} d \bar{c} \int_{-\infty}^{\infty}\left(|1-F(\bar{c}, t)|^{p} F(\bar{c}, t)+|F(\bar{c}, t)|^{p}|1-F(\bar{c}, t)|\right) d t \\
& \leq 2 \int_{\mathbb{S}^{m}} d \bar{c} \int_{-\infty}^{\infty}(1-F(\bar{c}, t)) F(\bar{c}, t) d t \\
& \leq 2 \int_{\mathbb{S}^{m}} d \bar{c}\left(\int_{0}^{\infty}(1-F(\bar{c}, t)) d t+\int_{-\infty}^{0} F(\bar{c}, t) d t\right)
\end{aligned}
$$

Estimating the last two one-dimensional integrals, we get

$$
\left.\int_{0}^{\infty}|1-F(\bar{c}, t)| d t \leq \int_{0}^{\infty} \mathbf{P}\{| | \bar{\xi}, \bar{c}\rangle \mid \geq t\right\} d t=\mathbf{E}|\langle\bar{\xi}, \bar{c}\rangle| \leq \mathbf{E}\|\bar{\xi}\|
$$

and

$$
\int_{-\infty}^{0} F(\bar{c}, t) d t=\int_{-\infty}^{0} \mathbf{P}\{\langle\bar{\xi},-\bar{c}\rangle>-t\} d t=\int_{0}^{\infty} \mathbf{P}\{\langle\bar{\xi},-\bar{c}\rangle>t\} d t \leq \mathbf{E}\|\bar{\xi}\| .
$$

Combining the last estimates and condition (23), we obtain (19).
The corollary is proved.

REFERENCES

1. J. Marcinkiewicz and A. Zygmund, "Sur les fonctions indépendantes," Fund. Math., 39, 60-90 (1937).
2. M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin (1991).
3. J. Lindenstrauss and L.Tsafriri, Classical Banach Spaces, Springer, Berlin (1979).
4. I. K. Matsak and A. M. Plichko, "On the law of large numbers in Banach lattices," Mat. Visn. NTSh, 6, 179-197 (2009).
5. I. K. Matsak, "A remark on the order law of large numbers," Teor. Imovir. Mat. Stat., Issue 72, 84-92 (2005).
6. I. K. Matsak and A. M. Plichko, "On maxima of independent random elements in a functional Banach lattice," Teor. Imovir. Mat. Stat., Issue 61, 105-116 (1999).
7. Yu. V. Prokhorov, "On the strengthened law of large numbers," Izv. Akad. Nauk SSSR, 14, No. 6, 523-536 (1950).
8. V. V. Petrov, Sums of Independent Random Variables [in Russian], Nauka, Moscow (1972).
9. N. N. Vakhaniya, V. I. Tarieladze, and S. A. Chobanyan, Probability Distributions in Banach Spaces [in Russian], Nauka, Moscow (1985).
10. V. V. Yurinskii, "Exponential estimates for large deviations," Teor. Ver. Primen., 19, No. 1, 152-153 (1974).
11. W. Feller, An Introduction to Probability Theory and Its Applications [Russian translation], Vol. 2, Mir, Moscow (1984).

[^0]: ${ }^{1}$ Shevchenko Kyiv National University, Kyiv, Ukraine.
 ${ }^{2}$ Cracow University of Technology, Cracow, Poland.

