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ON THE MARCINKIEWICZ–ZYGMUND LAW OF LARGE NUMBERS
IN BANACH LATTICES

I. K. Matsak 
1  and  A. M. Plichko 

2 UDC 519.21

We strengthen the well-known Marcinkiewicz–Zygmund law of large numbers in the case of Ba-
nach lattices.  Examples of applications to empirical distributions are presented. 

1.  Introduction.  Main Theorem

Let  ξ , ξ1 , ξ2 , …  be independent identically distributed random variables in  R.  In [1], Marcinkiewicz

and Zygmund obtained the following generalization of the Kolmogorov law of large numbers:  For  1 ≤ p < 2,
one has 

lim
n p i

i

n

n→∞ =
=∑1

01
1

/ ξ     almost surely (a.s.)

if  E ξ p  < ∞  and  Eξ = 0 . 

Let  ( )Xi   be a sequence of independent copies of a random element  X  with values in a separable Banach
space  B  and let 

Sn   =  Xi
i

n

=
∑

1

.

It is known [2, p. 259] that, for Banach spaces of the type  p,  1 ≤ p < 2,  under the conditions 

E X p < ∞ (1)

and  EX = 0 ,  the Marcinkiewicz–Zygmund law of large numbers of the form 

lim
n p n

n
S

→∞
=

1
01/     a.s. (2)

is also true. 
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In what follows,  B   denotes a separable Banach lattice with modulus  ⋅ .  We set 

S Sn
k n

k
∗

≤
= sup ,     n = 1, 2, …

(here and in what follows, the relation  k ≤ n  means that  1 ≤ k ≤ n ).
The following question naturally arises:  Is it possible to strengthen the law of large numbers (2) in the case

of Banach lattices to the equality 

lim
n p n

n
S

→∞
∗ =

1
01/     a.s. (3)

and what conditions should be imposed on the random element  X  for this purpose? 

Let  1 ≤ p, q < ∞.  A Banach lattice  B  is called  p-convex [3, p. 46] if there exists a constant  D p( )  =

D Bp( )( )   such that, for each  n  and any elements  ( )x Bi
n
1 ⊂ ,  one has 

x D xi
p

i

n p
p

i
p

i

n p

= =
∑ ∑
⎛

⎝⎜
⎞

⎠⎟
≤

⎛

⎝⎜
⎞

⎠⎟1

1

1

1/
( )

/

,

and, similarly, it is called  q-concave if, for a certain constant  D q( )  = D Bq( )( ) ,  the inverse inequality is true,

i.e., 

x D xi
q

i

n q

q i
q

i

n q

= =
∑ ∑⎛

⎝⎜
⎞
⎠⎟

≤
⎛
⎝⎜

⎞
⎠⎟1

1

1

1/

( )

/

.

Theorem 1.  Let  B  be a  p-convex  (1 ≤ p  < 2)  and  q-concave  (q  < ∞)  Banach lattice and let  X
be a random element with values in  B  such that  EX = 0 .  Then condition (1) is equivalent to equality (3). 

Corollary 1.  Let  X  be a random element with values in the space  Lp   o r  � p   for   1 ≤ p  < 2  and

let  EX = 0 .  Then conditions (1) and (3) are equivalent. 

Remark 1.  For general separable Banach lattices, Theorem 1 is not true.  However, it was shown in [4]
that the Kolmogorov-type law of large numbers 

lim
n

n
n

S
→∞

∗ =
1

0     a.s.,

provided that  E X < ∞   and  EX = 0 . 

Recall that a sequence  ( )xn   of elements of a Banach lattice  B  is called  o-convergent to an element  x,
which is denoted by 

x  =  o – lim
n

nx
→∞

,
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if there exists a sequence of nonnegative elements  vn B∈   such that  x xn −  ≤ vn   and  vn ↓ 0 ,  i.e.,  v1 ≥
v2 ≥  …  and 

inf
n

n≥1
v   =  0.

For a random element  X  with values in a Banach lattice (with  EX = 0 ),  one can consider the Marcinkie-
wicz–Zygmund order law of large numbers: 

o
n

S
n p n− =
→∞
lim

1
01/     a.s.

Remark 2.  Under the conditions of Theorem 1, the Marcinkiewicz–Zygmund order law of large numbers

is not true.  For instance, the counterexample from [5] considered in the space  � p ,  1 ≤ p < ∞,  satisfies both in-

equality (1) and the following relation: 

sup
n

p n
n

S
p≥
= ∞

1
1

1
/

�
    a.s.

2.  Proof of Theorem 1

First, note that we essentially use here the proof of the Marcinkiewicz–Zygmund law of large numbers in a
Banach space presented in [2, pp. 186, 187].

The implication (3) ⇒ (1) follows from the results of [2, p. 259].  Therefore, it suffices to establish the op-
posite implication (1) ⇒ (3). 

Step 1.  We present here several auxiliary lemmas. 

Lemma 1 [4].  Let  Y  be a random element with values in a finite-dimensional subspace  E  of a Banach

lattice and let  ( )Yi   be its independent copies.  Suppose that  1 < p ≤ 2,  E Y p  < ∞,  and  EY = 0 .  Then 

1
01

1n
Y

p
k n

i
i

k

/ sup
≤ =
∑ →     a.s.      as   n → ∞.

Lemma 2 [6].  Let  B  be a  q-concave  (q  < ∞)  Banach ideal space and let  X  = X t( )( , t T∈ )   be a
random element with values in  B.  Then 

E EX D X tq q
q

q q( ) ≤ ( )1 1/ /
( ) ( ) .

Lemma 3 [2, p. 179].  Let  ( )Xn   and  ( )′Xn   be independent sequences of random variables in a Banach
space such that 

X Xn n− ′ → 0    a.s.      and      Xn
P→ 0       as   n → ∞.



578 I. K. MATSAK  AND  A. M. PLICHKO

Then 

Xn → 0     a.s.

The lemma presented below is similar to the known Prokhorov’s result in  R  [7].  Assume that a number

sequence  an   is such that  an ↑ ∞   and there exist a subsequence  ( )bm  = ( )anm
  and constants  C > c > 1  such

that  C ≥ anm + 1
 / anm

 ≥ c  for sufficiently large  m.  (If, e.g.,  a an n+ 1/  →  1,  then this subsequence exists [8,

p. 330].) 
Let  ( )Xn   be a sequence of independent random elements with values in a Banach lattice  B.  As in the in-

troduction, we determine  Sn   and  Sn
∗   for the sequence  ( )Xn .  We set  Jm  = nm −{ 1  + 1, … , nm} ,  m ∈N ,

and 

U S Sm
n J

n n
m

m
= −

∈
−sup

1
.

Lemma 4.  The following relations are equivalent: 

(i) lim
n n

n
a

S
→∞

∗1
  =  0    a.s.; 

(ii) lim
m m

m
b

U
→∞

1
  =  0    a.s.; 

(iii) ∀ >δ 0 :  P
1

1 b
U

m
mm

>⎧
⎨
⎩

⎫
⎬
⎭≥∑ δ   <  ∞. 

Proof.  It suffices to prove the equivalence of relations (i) and (ii) because the equivalence of relations (ii)
and (iii) follows from the Borel–Cantelli lemma. 

If condition (i) is satisfied, then 

1

b
U

m
m   ≤  

1

b
S

m n J
n

m

sup
∈

  +  
S

b

b

b

n

m

m

m

m −

−

−1

1

1
  →  0    a.s.      as   m → ∞.

Assume, on the contrary, that condition (ii) is satisfied.  Then, for  n Jm∈ ,  we have 

Sn   =  S S S Sn n n n
i

m

m i i
− + −− −

=

−

∑1 1
1

1

( )   ≤  Ui
i

m

=
∑

1

.

Hence, 

1

a
S

n
n
∗   ≤  

C

b
U

m
i

i

m

=
∑

1

. (4)
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It follows from the properties of the sequence  ( )bm   that 

bi
i

m

=
∑

1

  ≤  
b

c
m

1 1− /
. (5)

Finally, we use the following elementary number relation (see Lemma 9 in [8, p. 327]): 

1
0

1a
b y

n
i i

i

n

→
=
∑

if 

an   =  bi
i

n

=
∑

1

  ↑  ∞      and      yn → 0

as  n → ∞.  This relation, condition (ii), and estimates (4) and (5) yield relation (i). 
The lemma is proved. 

Remark 3.  We set 

T S Sm n nm m
= − − 1

and consider the following conditions: 

(ii′ ) lim
m m

m
b

T
→∞

1
  =  0   a.s.; 

(iii′ ) ∀ >δ 0 :  P 1

1 b
T

m
m

m

>⎧
⎨
⎩

⎫
⎬
⎭≥

∑ δ   <  ∞.

If  B = R   and the random elements  Xn   are symmetric in the conditions of Lemma 4, then conditions (ii)

and (iii) can be replaced by  (ii′ )  and  (iii′ ). 

Step 2.  First, we establish a weakened version of the implication (1) ⇒ (3), namely, we show that conver-
gence in probability holds in (3).

It is known that the set of simple random elements is dense in  L Bp ( )   (see, e.g., Exercise 3 in [9, p. 97]).

Therefore, for any  ε > 0,  there exists a simple (i.e., finite-dimensional) random element  Y  such that 

E X Y p p
−( )1/   <  ε.

Since 

EY   ≤  E(Y  – X)  + EX   ≤  E X Y p p
−( )1/   <  ε,
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using  Y – EY   instead of  Y  we can assume that  EY  = 0.  We set  R = X – Y.  It is clear that 

ER = 0       and      E R p p( )1/   <  ε. (6)

For independent copies  Xn ,  n ≥ 1,  of  X,  we write  Xn  = Yn  + Rn ,  where  Yn   are independent copies of
Y  and  Rn   are independent copies of  R.  We set 

′ =
≤ =
∑S Yn

k n
i

i

k

sup
1

      and      ′′ =
≤ =
∑S Rn

k n
i

i

k

sup
1

.

It is obvious that 

S S Sn n n
∗ ≤ ′ + ′′ . (7)

By virtue of Lemma 1, we have 

lim
n p n

n
S

→∞
′ =

1
01/     a.s. (8)

We now estimate  ′′Sn   from above.  Note that a separable  σ-complete Banach lattice is order isometric to

a certain Banach ideal space [3, p. 25] (in [3], the similar term “Köthe functional space” was used).  Since a  q-

concave Banach lattice is  σ-complete [3] (Theorem 1.a.5), we can assume, without loss of generality, that  B  is

a separable,  p-convex,  q-concave Banach ideal space defined on a certain measurable space  (T , Λ, μ) .  Let 

X X tn n= ( ) ,      ′′ = ′′S S tn n ( ) ,      R R tn n= ( ) ,

and let  � �R R tn n= ( ) , t T∈ ,  be an independent copy of  Rn .  Using the symmetrization procedure, we get [9,
p. 222] (Lemma 3.4) 

E ′′Sn   ≤  E sup
k n

i i

k

R R
≤

−( )∑ �
1

.

We can assume that  Rn  – �Rn  = εn nR̂ ,  where  εn   are independent symmetric Bernoulli random variables

and  R̂n   are independent copies of  R – �R   ( �R   is an independent copy of  R  )  that do not depend on  (εn ).
Using the last inequality and Lemma 2, we get 

E ′′Sn   ≤  D R tq
k n

i i

k q q

( )
ˆ sup ˆ ( )E E

≤
∑

⎛

⎝
⎜

⎞

⎠
⎟ε

1

1/

, (9)
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where  ˆ ( ˆ )Eϕ εn nR   denotes the mathematical expectation of the random variable  ϕ ε( ˆ )n nR   for fixed values of

the random variable  ( ˆ )Rn .  Further, for fixed values of  R̂n ,  we successively use the Lévy moment inequality

for symmetric random variables in  R  [2, p. 48] 

E max
k n

i

k q

≤ ∑ ξ
1

  ≤  2 E ξi

n q

1
∑

and the well-known Kahane inequality [3] (Theorem 1.e.13) 

ˆ sup ˆ ( )E
k n

i i
i

k q q

R t
≤ =
∑

⎛

⎝
⎜

⎞

⎠
⎟ε

1

1/

  ≤  2 ˆ ˆ ( )E εi i

n q q

R t
1

1

∑
⎛

⎝
⎜

⎞

⎠
⎟

/

  ≤  C R tK i i

n p p
ˆ ˆ ( )E ε

1

1

∑⎛
⎝⎜

⎞
⎠⎟

/
  ≤  C R tK i

p
n p

ˆ ( )
1

1

∑⎛⎝⎜
⎞
⎠⎟

/

,

where  CK  = C p qK ( , )   depends on the constant in the Kahane inequality. 
Using estimate (9), the last inequality, and the  p-convexity of  B,  we obtain (for certain absolute constants

C1   and  C ) 

E ′′Sn   ≤  C Ri
p

i

n p

1
1

1

E ˆ
=
∑⎛⎝⎜

⎞
⎠⎟

/

  ≤  C Ri
p

i

n p

E ˆ
=
∑⎛⎝⎜

⎞
⎠⎟1

1/
  ≤  Cn Rp

i
p p

1
1

/
/

E ˆ( )   ≤  Cn p1/ ε . (10)

In the last inequality, we have also used the inequality from (6). 
Since  ε  is arbitrary, using (7), (8), and (10) we establish that 

1
01n

S
p n

P
/

∗ → . (11)

Step 3.  We now pass to the proof of the implication (1) ⇒ (3). 
By virtue of Lemma 3 and relation (11), we can restrict ourselves to the case of symmetric random ele-

ments  Xn .  By analogy with Step 2, we represent them in the form 

Xn   =  ε εn n n n nX Y R′ = +( ) ,

where the symmetric Bernoulli random variables  εn   are independent of  ′Xn .  We set 

′Sn   =  sup
k n

i i
i

k

Y
≤ =
∑ ε

1

,      ′′Sn   =  sup
k n

i i
i

k

R
≤ =
∑ ε

1

.

It is clear that  ′Sn   and  ′′Sn   satisfy inequality (7), and  ′Sn   satisfies equality (8).  Thus, to prove Theorem 1 it
remains to show that 

lim /n p n
n

S
→∞

′′ =
1

01     a.s. (12)
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For each  m ∈N ,  we denote  Jm  = 2 1m −{  + 1, … , 2m} .  For each  j Jm∈ ,  we set 

V R Rj j j j
m p= ≤( )ε I 2 / ,

where  I( )A  = 1  if the event  A  takes place, and  I( )A  = 0  otherwise.  The random element  Rj   satisfies

condition (6).  Therefore,

P ∃ ∈ ≠{ }
≥
∑ j J V Rm j j j

m

, ε
1

  ≤  2 2
1

m m p

m

RP >{ }
≥
∑ /   <  ∞.

According to the Borel–Cantelli lemma, this means that, almost surely, the inequality  V Rj j j≠ ε   holds finitely

many times.  Thus, equality (12) is true if 

lim sup
n p

k n
i

k

n
V

→∞ ≤
∑ =

1
01

1
/     a.s.

Using Lemma 4 for  a nn
p= 1/   and  nm

m= 2 ,  we establish that the last equality is equivalent to the con-
dition 

∀ > >{ } < ∞
≥
∑δ δ0 2

1

: P Um
m p

m

/ , (13)

where 

Um   =  sup j J i
i

j

m
m

V∈
= +−
∑

2 11

.

Using estimate (10), we get

E U Cm
m p≤ 2 / ε .

Taking  ε = δ/( )2C ,  we establish that the condition 

∀ > − >{ } < ∞−

≥
∑δ δ0 2 1

1

: ( )P EU Um m
m p

m

/ (14)

is sufficient for (13). 
To estimate the  m th term of sum (14), we use a modification of the Yurinskii method [10] for sums of in-

dependent random elements in Banach spaces.  For every  j Jm∈ ,  we denote 
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U Vm j
i J

s
s J s i s jm m

,
, ,

sup=
∈ ∈ < ≠

∑ ,

ζ j j m j mU U= − −E E 1 ,

E Ej jη η= ( )F ,

where  Fj   is the  σ-algebra spanned by the random elements  Vi  : i Jm∈ ,  i ≤ j,  and  F2 1( )m −   is the trivial  σ-

algebra.  Then the following martingale representation takes place: 

U Um m j
j Jm

− =
∈
∑E ζ . (15)

Since  ζ j   can be represented in the form 

ζ j   =  E Ej j m m jU U−( ) −( )− 1 , ,

using the inequality 

U U Vm m j j− ≤,

we obtain 

ζ j j jV V≤ + E . (16)

However,  ( )ζ j   is a sequence of martingale differences.  Therefore, according to estimate (16), we have

E ζ j
j Jm∈
∑

2

  ≤  E ζ j
j Jm

2

∈
∑   ≤  C Vj

j Jm

E
2

∈
∑   ≤  C Vm

j2
2

E .

Using this result and equality (15), we establish that the series in (14) can be estimated from above as follows: 

C
V

m p
m

j
j Jm

δ2 2
1

21

2 /
≥ ∈
∑ ∑ E   ≤  

C
R R

m p
m

m p

δ2 2 1
1

21

2
2( )/

/
−

≥
∑ ≤( )( )E I . (17)

It is known (see the proof of Theorem 7.9 in [2, p. 187]) that, for a random variable  ξ  in  R ,  under the

condition  E ξ p  < ∞,  1 ≤ p < 2,  one has 

1

2
22 1

1

2
m p

m

p m
( )/ −

≥
∑ ≤( )( )E ξ ξI   <  ∞.
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Since the random variable  R   satisfies condition (6), we conclude that series (17) converges, and, hence,
series (14) also converges. 

The theorem is proved. 

3.  Examples of Application to Empirical Distributions

1. Sampling in  R.  For independent identically distributed random variables  ξ , ξ1 , ξ2 , …  in  R  with
distribution function  F t( ) ,  we introduce the empirical distribution function

F t
n

In t i
i

n
∗

−∞
=

= ∑( ) ( )( , )
1

1

ξ ,      t ∈R ,

where  I t( , )( )−∞ ξ  = 1  if  ξ < t,  and  I t( , )( )−∞ =ξ 0   if  ξ ≥ t. 

According to the known Glivenko–Cantelli theorem, we have 

sup ( ) ( )
t

nF t F t
∈

∗ − →
R

0     a.s.

We consider the random processes 

X t I F tn t n( ) ( ) ( )( , )= −−∞ ξ ,     t ∈R , (18)

as random elements with values in the space  Lp ( )R ,  1 ≤ p < ∞  (of course, this is true only under certain re-

strictions on the random variables  ξ  [4]).  For the random elements  Xn   defined by (18) and satisfying the con-
dition 

E Xn L
p

p ( )R < ∞ , (19)

the law of large numbers (2) in the space  Lp ( )R   can be rewritten in the following form: 

1
0

n
n F t F t dtp

n
p∗

−∞

∞

− →∫ ( ) ( )     a.s.      as   n → ∞. (20)

Theorem 1 enables us to strengthen the last relation as follows:  If condition (19) is satisfied, then 

1
0

n
k F t F t dt

k n

p
k

p
max ( ) ( )
≤

∗

−∞

∞

− →∫     a.s.      as   n → ∞.

On the other hand, equalities (20) and (21) can be regarded as certain versions of the Glivenko–Cantelli
theorem in the space  Lp ( )R . 
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Corollary 2.  For  1 ≤ p < 2,  the empirical distribution function  F tn
∗( )   satisfies the law of large num-

bers (21) if and only if 

E ξ < ∞ . (22)

Remark 4.  It is known [4] that, under the condition  E ξ 1/p  < ∞,  the random element  Xn   belongs al-

most surely to  Lp ( )R  .  Therefore, condition (22) guarantees that  Xn   belongs to all  Lp ( )R   simultaneously. 

Corollary 2 follows directly from Theorem 1 if the equivalence (19) ⇔ (22) is established. 
This can easily be verified.  Indeed, 

E Xn L
p

p ( )R   =  E 1 − < + ≥( )
−∞

∞

∫ F t t F t t dtp p( ) ( ) ( ) ( )I Iξ ξ

=  1 1− + −( )( )
−∞

∞

∫ F t F t F t F t dtp p( ) ( ) ( ) ( ) .

The last integral is bounded if and only if 

1
0

−( )
∞

∫ F t dt( )   +  F t dt( )
−∞
∫
0

  <  ∞.

It is known (see Lemma 2 in [11, p. 179]) that the last inequality is equivalent to condition (22). 

2. Sampling in  Rm .  Let 

b c,   =  b ci i
i

m

=
∑

1

be the scalar product of elements  b  = ( , , )b bm1 …   and  c  = ( , , )c cm1 …   from  Rm ,  let  c  = c c, 1 2/ ,

and let  ξ , ξ1 , ξ2 , …  be independent identically distributed random variables in  Rm .  Out of several possible

definitions of an empirical distribution function in  Rm ,  we choose the following: 

F c tn
∗( , )   =  

1

1n
I ct i

i

n

( , ) ,−∞
=

( )∑ ξ ,      c t D, ∈ ,

where  D = Sm  × R  and  Sm   is the identity sphere of the  m-dimensional Euclidean space.  On  D,  we intro-

duce a measure in a natural way as the product of the (normalized) spherical Lebesgue measure on  Sm   and the

ordinary Lebesgue measure in  R. 
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We set 

F c t( , )  = P ξi c t, <{ }
and consider the random functions 

X c tn ( , )   =  I ct n( , ) ,−∞ ( )ξ   –  F c t( , ) ,      ( , )c t D∈ ,

as random elements  Xn   with values in the (separable) Banach lattice of numerical functions  L Dp ( ) ,  1 ≤
p < ∞.

Applying Theorem 1 to the random elements  Xn ,  we obtain the following corollary: 

Corollary 3.  If 

E ξ < ∞ , (23)

then, for any  1 ≤ p < 2,  one has 

1
0

n
dc k F c t F c t dt

m
k n

p
n

p

S
∫ ∫ ≤

∗

−∞

∞

− →max ( , ) ( , )     a.s.      as   n → ∞. (24)

To prove Corollary 3, it suffices to verify condition (19).  We have 

E Xn L D
p

p ( )   =  E dc F c t c t F c t c t dt
m

p p

S
I I∫ − <( ) + ≥( )( )1 ( , ) , ( , ) ,ξ ξ

−−∞

∞

∫

=  dc F c t F c t F c t F c t dt
m

p p

S
∫ − + −( )

−∞

∞

1 1( , ) ( , ) ( , ) ( , )∫∫

≤  2 1dc F c t F c t dt
mS
∫ ∫ −( )

−∞

∞

( , ) ( , )

≤  2 1
0

0

dc F c t dt F c t dt
mS
∫ ∫∫ −( ) +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−∞

∞

( , ) ( , ) .

Estimating the last two one-dimensional integrals, we get 

1
0

−
∞

∫ F c t dt( , )   ≤  P ξ, c t dt≥{ }
∞

∫
0

  =  E ξ, c   ≤  E ξ
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and 

F c t dt( , )
−∞
∫
0

  =  P ξ, − > −{ }
−∞
∫ c t dt
0

  =  P ξ, − >{ }
∞

∫ c t dt
0

  ≤  E ξ .

Combining the last estimates and condition (23), we obtain (19). 
The corollary is proved.
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