$$
\begin{aligned}
& =O(1) z^{1 / p} \sum_{k=-2\}-;}^{\infty} \frac{\left|\Delta R_{k}\right|}{k+2}+O(1) z^{1 / p} \sum_{k=\{z]-1}^{\infty} R_{k}\left|\frac{P_{k}}{P_{k+1}} \frac{1}{k+1}-\frac{1}{k+2}\right| \\
& =O(1) \frac{z^{1 / p}}{|z|+1} \sum_{k=\{z\}=1}^{\infty}\left|\Delta R_{k}\right|+O(1) z^{1 / p} \sum_{k=\{z \mid-1}^{\infty} \frac{1}{(k+\mid)(k+2)}=O(1) .
\end{aligned}
$$

Finally,

$$
\Sigma_{22^{3}}=O(1) z^{1 / k} \sum_{\sum_{-1 z \mid+i}^{\infty}}^{\infty} \frac{p_{n-1}}{n^{1 / p} P_{n-1}}=O(1) z^{1 / p} \sum_{n=[z /+1}^{\infty} R_{n} \frac{1}{n^{1+1 / p}}=O(1)
$$

Consequently, the condition for the IWN, $p_{n} l_{p}$-method is satisfied. It remains to apply Theorem A.

LITERATURE CITED

1. O. P. Varshney, "On the absolute Nörlund summability of a Fourier series," Math. Z., 83, 18-24 (1964).
2. G. H. Hardy, Divergent Series, Oxford Univ. Press, London (1949).
3. K. M. Slepenchuk, "Absolute p-summability of Fourier series by triangular matrix methods, ${ }^{\pi}$ in: Investigations in Contemporary Problems of Summability and Approximation of Functions and Their Applications [in Russian], No. 5, Izd. Dnepropetrovsk State Univ., Dnepropetrovsk (1974), pp. 132-136.

M-BASES IN SEPARABLE AND REFLEXIVE BANACH SPACES
A. N. Plichko

UDC 519.9

Let E be a normed linear space, E^{\prime} its dual. A set $\left\{e_{\alpha}, f_{\alpha}\right\}_{\alpha \in I}$ is called a total biorthogonal system if $f_{\alpha}\left(e_{\beta}\right)=\delta_{\alpha \beta}$ and $\left\{f_{\alpha}\right\}$ is total in E^{\prime}. If, in addition, $\left\{e_{\alpha}\right\}$ is total in $E,\left\{e_{\alpha}, f_{\alpha}\right\}$ is called an M-basis (Markushevich basis). We say that an M-basis is bounded if $\sup _{\alpha}\left\|f_{\alpha}\right\|\left\|e_{\alpha}\right\|<\infty, \varepsilon-$ normed if $\sup _{\alpha}\left\|f_{\alpha}\right\| i f e_{\alpha} \| \leqslant 1+\varepsilon$, and normed if $\varepsilon=0$.

The following two problems are posed in [1, p. 205]: 1) does there exist a normed M-basis, in every separable Banach space, and 2) does there exist a bounded M-basis in such a space.

We prove a proposition which is weaker than the first problem, but stronger than the second, along with other closely related assertions. In this paper we use the following notation; [M] is the closure of the linear span of the set $M, M^{\perp}=\left\{f \in E^{\prime}: f(M)=0\right\}$ if $M \subset E$ and $M^{\perp}=\{x \in E: x(M)=0\}$ if $M \subset E^{\prime} ; d(M, N)$ is the distance between the sets M and N.

Separable Spaces. The following statement was announced in [2].
THEOREM 1. For every separable normed linear space E and $\varepsilon>0$, there exists an ε-normed Mmbas is.
Proof. Construction. Let $\left\{n_{i}\right\}$ be a strictly increasing sequence of natural numbers and write $P_{i}=$ $\left\{n: \sum_{s=1}^{n_{i}-1} n_{s}<n \leqslant \sum_{s=1}^{t_{i}} n_{s}\right\}$. On the basis of Lemma 1 of [3], we choose a biorthogonal system $\left\{\mathrm{x}_{\mathrm{n}}, \mathrm{g}_{\mathrm{n}}\right\}$ in which $\left\|x_{n}\right\|=\left\|g_{n}\right\|=1$ and
a) $d\left(x,\left[x_{n}: n \in P_{S}, s>i\right]\right)>\|x\| / 2$ for $x \in\left[x_{n}: n \in P_{S}, s \leq i\right]$, and hence $d\left(x,\left[x_{n}: n \notin P_{i}\right]\right)>\|x\| / 8$ for $x \in\left[x_{n}: n \in P_{i}\right] ;$
b) $1 / 2\|\mathrm{x}\|_{l_{2}} \leq\|\mathrm{x}\| \leq 3 / 2\|\mathrm{x}\|_{l_{2}}$, where $x=\sum_{n \in P_{i}} \alpha_{n} x_{n},\|x\|_{l_{2}}=\sqrt{\sum_{v \in P_{i}}\left(\alpha_{n}\right)^{2}}$;
c) $\left[\left[\mathrm{x}_{\mathrm{n}}\right]_{1}^{\infty}+\left\{\mathrm{g}_{\mathrm{n}}\right\}^{\perp}\right]=\mathrm{E},\left[\mathrm{x}_{\mathrm{n}}\right]_{1}^{\infty} \cap\left\{\mathrm{g}_{\mathrm{n}}\right\}^{\perp}=0$.

Kiev State University. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 29, No. 5, pp. 681685, September-October, 1977. Original article submitted February 17, 1975.

According to Theorem 3 in [4], $\left\{x_{n}, g_{n}\right\}$ can be extended to an M-basis using sets $\left\{y_{j}\right\} \subset\left\{g_{n}\right\} \not{ }^{\perp}$ and $\left\{h_{j}\right\} \subset\left(\left[x_{n}\right]_{1}^{\infty}\right)^{\perp}$ with $\left\|y_{j}\right\|=1$.

Let $d\left(y_{j}, h_{j}^{\perp}\right)=a_{j}$. We choose a double sequence $\left\{n_{j}^{k}\right\}_{j, k=1}^{\infty},\left\{n_{j}^{k}\right\} \subset\left\{n_{i}\right\}$ in such a way that for all k and j

$$
\frac{6}{\sqrt{n_{i}^{k}}} \leqslant \varepsilon ; \quad \frac{\left(n_{j}^{k}-1\right) \varepsilon}{8}-\frac{2^{9}}{\varepsilon}> \begin{cases}n_{i}^{k-1} \text { for } & k \neq 1 \tag{1}\\ \sqrt{\frac{n_{j}^{1}}{a_{j}}} \text { for } & k=1\end{cases}
$$

We denote by P_{j}^{k} that P_{i} for which $n_{j}^{k}=n_{i}$. We put

$$
e_{n}=\left\{\begin{array}{cl}
x_{n} & \text { for } n \notin \bigcup_{j k} P_{i}^{k}, \tag{2}\\
x_{n}+y_{j} / \sqrt{n_{i}^{1}} & \text { for } n \in P_{i}^{\mathrm{l}}, \\
x_{n}+\left(\sum_{s \in P_{i}^{k-1}} x_{s}\right) / n_{i}^{k-1} & \text { for } n \in P_{i}^{k}, \quad k \neq 1
\end{array}\right.
$$

and $D_{n}=\left[\left\{e_{m}\right\}_{1}^{\infty} \backslash e_{n}\right]$. Choose $\left\{f_{n}\right\}$ such that $f_{m}\left(e_{n}\right)=\delta_{m n}$ (it will be shown below that $e_{n} \notin D_{n}$, and hence such a choice is possible).

Totality of $\left\{e_{n}\right\}$. Applying (2), condition b), and (1) in succession, we obtain

$$
\left\|\sum_{k=1}(-1)^{k}\left(\sum_{n \in P_{i}^{k}} e_{n}\right) / n_{i}^{k}+\frac{1}{\sqrt{n_{i}^{t}}} y_{j}\right\|=\left\|\frac{1}{n_{i}^{t}}\left(\sum_{n \in P_{i}^{t}} x_{n}\right)\right\| \leqslant \frac{3}{2 \sqrt{n_{i}^{t}} \rightarrow \infty} \rightarrow 0
$$

Thus $\left\{y_{j}\right\} \subset\left[e_{n}\right]_{1}^{\infty}$; by (2) and condition $\left.c\right),\left\{x_{n}\right\} \subset\left[e_{n}\right]_{1}^{\infty}$ and $\left[e_{n}\right]_{1}^{\infty}=E$.
Totality of $\left\{\mathrm{f}_{\mathrm{n}}\right\}$. By the construction of $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ and the density of $\left\{\mathrm{e}_{\mathrm{n}}\right\}$ in the space E , the totality of $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ is equivalent to the equality $\bigcap_{m}\left[e_{n}\right]_{m}^{\infty}=0$.

But $\bigcap_{m}\left[e_{n}\right]_{m}^{\infty} \subset\left(\left\{g_{n}\right\} U\left\{h_{j}\right\}\right)^{\perp}=0$ and hence $\left\{f_{n}\right\}^{\perp}=0$.
Inequality $\sup _{n}\left\|f_{n}\right\|\left\|e_{n}\right\| \leqslant 1+\varepsilon$. We first show that

$$
\begin{equation*}
d\left(e_{n}, D_{n}\right) \geqslant 1-\varepsilon / 2 \tag{3}
\end{equation*}
$$

Choose any element z in the linear span of the set $\left\{e_{m}\right\}_{1}^{\infty} \backslash e_{n}$:

$$
\begin{equation*}
z=\sum_{i=1} z_{i}, \quad z_{i} \in\left[e_{s}: s \in P_{i}\right] \tag{4}
\end{equation*}
$$

If $n \in \bigcup_{i k} P_{j}^{k}$, then (3) follows at once from the construction; assume that $\mathrm{n} \in \mathrm{P}_{\mathrm{j}}^{\mathrm{k}}$. By (2), condition b), and (1), $\left\|e_{n}-z\right\| \geq\left\|x_{n}-z\right\|-\varepsilon / 4$. Assume that

$$
\begin{equation*}
\left\|x_{n}-2\right\|<1-\varepsilon / 4 \tag{5}
\end{equation*}
$$

Then by (2) there exists a term $z_{j}^{k+1}=\sum_{s \in P_{i}^{k+1}} \alpha_{s} e_{s}$ in the sum (4) for which

$$
\begin{equation*}
b_{i}^{k}=\left(\sum_{s \in P_{i}^{k+1}} \alpha_{s}\right) / n_{i}^{k}>\varepsilon / 4 \tag{6}
\end{equation*}
$$

1. We show that there exists a term $z_{i}^{k}=\sum_{s \in P^{k}} \alpha_{s} e_{s}$. in sum (4) for which

$$
\left|\sum_{s \in P_{i}^{P}} \alpha_{s}\right|>\left\{\begin{array}{cc}
n_{i}^{k-1} & \text { for } k \neq 1 \tag{7}\\
\sqrt{n_{i}^{1}} / a_{j} & \text { for } k=1
\end{array}\right.
$$

Indeed, applying (5), condition a), and condition b) successívely, we get:

$$
\begin{gathered}
1-\varepsilon / 4>\left\|x_{n}-z\right\|=\|\left(x_{n}-\sum_{s \in P_{i}^{k}}\left(b_{i}^{k}+\alpha_{s}\right) x_{s}\right) \\
\left(z-b_{i}^{k} \sum_{s \in P_{i}^{k}} x_{s}-\sum_{s \in P_{j}^{k}} \alpha_{s} x_{s}\right)\left\|\geqslant \frac{1}{8}\right\| x_{n}-\sum_{s \in P_{i}^{k}}\left(b_{i}^{k}+\alpha_{s}\right) x_{s}\left\|\geqslant \frac{1}{16}\right\| x_{n}-\sum_{\substack{s \in P_{i}^{k}}}\left(b_{i}^{k}+\alpha_{s}\right) x_{s} \|_{l_{s}} \geqslant \frac{1}{16} \sum_{\substack{s \in P^{k} \\
s \neq n}}\left(b_{i}^{k}+\alpha_{s} s^{2^{2}}\right.
\end{gathered}
$$

Hence $\left(1-\varepsilon^{\prime / A}\right)^{2} \geqslant 2^{-8} \sum_{s \in P_{j}^{k} . s \neq n}\left(b_{j}^{k}+\alpha_{s}\right)^{2}$. Making some algebraic transformations, we have

$$
-2 b_{j}^{k} \sum_{\substack{x \\ \in P_{i}^{2}, s \neq n}} \alpha_{s} \geqslant\left(n_{i}^{k}-1\right)\left(b_{i}^{k}\right)^{2}-\mathscr{\Sigma}^{\varepsilon}(1-\varepsilon / 4)^{2} .
$$

Dividing the last inequality by $2\left|\mathrm{~b}_{\mathrm{j}}^{\mathrm{k}}\right|$ and using (6) and (1), we obtain

$$
\left|\sum_{\substack{s \in P_{j}^{k} \tag{8}\\
s+n}} \alpha_{s}\right|>\left\{\begin{array}{lll}
n_{j}^{k-1} & \text { for } & k \neq 1 \\
\sqrt{n_{i}^{1}} / a_{j} & \text { for } & k=1
\end{array}\right.
$$

It follows from the choice of z that $\alpha_{\mathfrak{n}}=0$ and hence (7) is proved. For $k \neq 1$ we go to Part 2 below, for $k=1$, to Part 3 below.
2. Thus,

$$
\begin{equation*}
\left|b_{i}^{k-1}\right| \geqslant 1 \tag{9}
\end{equation*}
$$

where $b_{i}^{k-1}=\left(\sum_{s \in P_{i}^{k}} \alpha_{s}\right) / n_{i}^{k-1} ;$ put $u_{i}^{k-1}=b_{i}^{k-1} \sum_$$$
\in P_{i}^{k-1}
$$$x_{s} \text {. We use once more arguments similar to those of } 1 \text {. We show }$ that there exists a term $z_{i}^{k-1}=\sum_{s \in P_{j}^{k-1}} \alpha_{s} e_{s}$ in the sum (4) for which

$$
\left|\sum_{s \in P_{i}^{k-1}} a_{s}\right|>\left\{\begin{array}{ll}
n_{i}^{k-2} & \text { for } k \neq 2 \tag{10}\\
\sqrt{n^{1}} / a_{j} & \text { for }
\end{array} \quad k=2\right.
$$

Indeed, applying (5) and conditions a) and b) in succession, we obtain

$$
\begin{gathered}
1-e^{14} \geqslant\left\|x_{n}-z\right\|=\left\|x_{n}-u_{j}^{k-1}-\sum_{\in \in P_{j}^{k-1}} a_{s} x_{s}-\left(2-u_{i}^{k-1}-\sum_{s \in P_{i}^{k-1}} a_{s} x_{s}\right)\right\| \\
\geqslant \frac{1}{8}\left\|u_{i}^{k-1}+\sum_{s \in P_{i}^{k-1}} \alpha_{s} x_{s}\right\| \geqslant \frac{1}{16}\left\|u_{i}^{k-1}+\sum_{s \in P_{i}^{k-1}} \alpha_{s} x_{s}\right\|=\frac{1}{16} \sqrt{\sum_{s \in P_{i}^{k}-1}\left(b_{i}^{k-1}+a_{s}\right)^{2}}
\end{gathered}
$$

Hence $(1-\varepsilon / 4)^{2} \geqslant 2^{-8} \sum_{s \in P_{i}^{k-1}}\left(b_{i}^{k-1}+\alpha_{s}\right)^{2}$. Making some algebraic transformations, we have

$$
-2 b_{i}^{k-1} \sum_{s \in P_{i}^{k-i}} a_{s} \geqslant n_{i}^{k-1}\left(b_{i}^{k-1}\right)^{2}-2^{s}(1-\varepsilon / 4)^{2}
$$

Dividing this inequality by $2\left|\mathrm{~b}_{\mathrm{j}}^{\mathrm{k}-1}\right|$ and bearing in mind (9) and (1), we get (10). For $k \neq 2$, we go back to the beginning of Part 2, replacing k by $k-1$; for $k=2$, we go to Part 3 below.
3. After finitely many steps, we come to the conclusion that sum (4) contains a term $z_{j}^{2}=\sum_{s \in p_{j}} a_{s} x_{s}+y_{0}$ $y=\left(\sum_{s \in P_{i}^{l}} \alpha_{s}\right)^{y_{j}} \sqrt{n_{j}^{1}}$ and $\left|\sum_{s \in P_{j}^{1}} \alpha_{s}\right| \geqslant \sqrt{n_{j}^{1}} a_{j}$. Since $x_{n}-(z-y) \in h_{j}^{\perp}$, we have $\left\|x_{n}-(z-y)-y\right\| \geq a_{j}\|y\| \geq 1$, and this contradicts (5), so that (3) holds. As is easily verified, $\left\|f_{n}\right\| \leq 1 / d\left(e_{n}, D_{n}\right)$, and therefore

$$
\left\|f_{n}\right\|\left\|e_{n}\right\| \leqslant(1+\varepsilon / 4) / d\left(e_{n}, D_{n}\right) \leqslant(1+\varepsilon / 4) /(1-\varepsilon / 2) \leqslant 1+\varepsilon
$$

The last inequality holds for $\varepsilon<1 / 2$, which causes no loss of generality. The theorem is proved.
COROLLARY 1. In any separable normed linear space E we can for every $\varepsilon>0$ introduce a norm $\|x\| \leq\|x\| \leq(1+2 \varepsilon) \|$ such that the space ($\mathrm{E},\| \| \cdot \|)$) possesses a normed M-basis.

Indeed, let $\left\{e_{n}, f_{n}\right\}$ be the system constructed in Theorem 1 ; then as the norm $\|\|\cdot\|\|$ we can take the gauge function of the set $\left\{x \in E:\|x\| \leq 1, f_{n}(x) \leq f_{n}\left(e_{n}\right), n=1, \infty\right\}$.

COROLLARY 2. Let $l_{1} \subset c_{0}$ be the natural imbedding of the space of absolutely summable sequences in the space of sequences converging to zero. Every separable Banach space E is ε-isometric to a space E_{1} intermediate between l_{1} and c_{0} (i.e., $l_{1} \subset \mathrm{E}_{1} \subset \mathrm{c}_{0}$, both imbeddings being dense and $\|\mathrm{x}\|_{\mathrm{c}_{0}} \leq\|\mathrm{x}\|_{\mathrm{E}_{1}} \leq\|\mathrm{x}\|_{l_{1}}$ for $\left.\mathrm{x} \in \boldsymbol{l}_{1}\right)$.

WCG-Spaces. A Banach space E is said to be a WCG-space (weakly compactly generated) if it is generated by a set $\mathrm{U},[\mathrm{U}]=\mathrm{E}$ which is compact in the weak topology $\sigma\left(\mathrm{E}, \mathrm{E}^{\prime}\right)$. In particular, separable and reflexive spaces are WCG-spaces.

THEOREM 2. In any WCG-space there exists a bounded M-basis.
Proof. We denote by dens E the smallest cardinality of the everywhere dense subsets of E, and let α_{0} be the first ordinal number with the same power as dens E .

Let $\left\{n_{i}\right\}$ be a strictly increasing sequence of natural numbers, and let the P_{i} be the same as in Theorem 1. It follows from [3] that in any WCG-space we can choose a bounded biorthogonal system $\left\{\mathrm{x}_{\alpha}^{\mathrm{n}}, \mathrm{f}_{\alpha}^{\mathrm{n}}\right\}_{1}^{\mathrm{n}=1} \leq \alpha<\alpha_{0}$ such that for all α and P_{i} :
a) $\mathrm{d}\left(\mathrm{x},\left[\mathrm{x}_{\beta}^{\mathrm{n}}: \mathrm{n} \in \mathrm{P}_{\mathbf{i}} \vee \beta \neq \alpha\right]\right)>\|\mathbf{x}\| / 8$ for $\mathrm{x} \in\left[\mathrm{x}_{\beta}^{\mathrm{n}}: \mathbf{n} \in \mathrm{P}_{\mathbf{i}} \wedge \beta=\alpha\right]$;
b) $\mathbf{c}\|\mathrm{x}\|_{l_{2}} \leq\|\mathrm{x}\| \leq \mathrm{C}\|\mathrm{x}\|_{l_{2}}$, where $x=\sum_{n \in P} a_{\alpha}^{n} x_{\alpha}^{n},\|x\|_{l_{r}}=\sqrt{\sum_{n \in P}\left(a_{\alpha}^{n}\right)^{2}}, 0<c \leqslant C<\infty$;
c) $M \cap N=0,[M+N]=E$, where $M=\left[x_{\alpha}^{n}\right]_{\alpha, n}, N=\left[f_{\alpha}^{n}\right]_{\alpha, n}^{1}$.

Consider the quotient space E / M. The image $\hat{\mathrm{N}}$ of the subspace N under the canonical mapping K: $\mathrm{E} \rightarrow$ E / M is an everywhere dense subspace of E / M. Carrying out the same arguments as in [5], it can be shown that there exists an M-basis $\left\{\hat{\mathbf{y}}_{\beta}, \mathrm{g}_{\beta}\right\}_{\beta<\alpha_{0}}, \hat{\mathrm{y}}_{\beta} \in \hat{\mathrm{N}}$ in E / M. Choose representatives $\mathrm{y}_{\beta} \in \mathrm{N}$ in $\hat{\mathrm{y}}_{\beta}$. To each y_{β} we associate in one-to-one fashion some sequence $\left\{x_{\alpha}^{n}\right\}_{n=1}^{\infty}$. If we further carry out exactly the same construction as in Theorem 1, we can construct a bounded M-basis in the space E. The theorem is proved.

COROLLARY 3. In any reflexive Banach space there exists a bounded M-basis.
In conclusion, the author expresses his gratitude to Yu. I. Petunin for his interest in this work.

LITERATURE CITED

1. S. Banach, A Course in Functional Analysis [Ukrainian translation], Radyans'ka Shkola, Kiev (1948).
2. A. N. Plichko, "Existence of a complete ε-orthonormal system in a separable normed space," Dokl. Akad. Nauk SSSR, Ser. A, No. 1, 22-23 (1976).
3. W. Davis and W. B. Jonson, "On the existence of fundamental and total bounded biorthogonal systems in Banach spaces," Stud. Math., 45, No. 2, 173-179 (1973).
4. I. Singer, "On biorthogonal systems and total sequences of functionals," Math. Ann., 193, No. 3, 183186 (1971).
5. D. Amir and J. Lindenstrauss, "The structure of weakly compact sets in Banach spaces," Ann. Math., 88, No. 1, 35-46 (1968).
