ON AUTOMORPHIC BANACH SPACES

BY
Yolanda Moreno*
Departamento de Matemáticas, Escuela Politécnica, Universidad de Extremadura, Avenida de la Universdad s/n, 10071 Cáceres, España.
e-mail: ymoreno@unex.es
AND
Anatolij Plichko
Instytut Matematyki, Politechnika Krakowska im. Tadeusza Kościuszki, ul. Warszawska 24, 31-155 Kraków, Poland. e-mail: aplichko@usk.pk.edu.pl

Abstract

A Banach space X will be called extensible if every operator $E \rightarrow X$ from a subspace $E \subset X$ can be extended to an operator $X \rightarrow X$. Denote by dens X. The smallest cardinal of a subset of X whose linear span is dense in X, the space X will be called automorphic when for every subspace $E \subset X$ every into isomorphism $T: E \rightarrow X$ for which dens $X / E=$ dens $X / T E$ can be extended to an automorphism $X \rightarrow X$. Lindenstrauss and Rosenthal proved that c_{0} is automorphic and conjectured that c_{0} and ℓ_{2} are the only separable automorphic spaces. Moreover, they ask about the extensible or automorphic character of $c_{0}(\Gamma)$, for Γ uncountable. That $c_{0}(\Gamma)$ is extensible was proved by Johnson and Zippin, and we prove here that it is automorphic and that, moreover, every automorphic space is extensible while the converse fails. We then study the local structure of extensible spaces, showing in particular that an infinite dimensional extensible space cannot contain uniformly complemented copies of $\ell_{p}^{n}, 1 \leq p<\infty, p \neq 2$. We derive that infinite dimensional spaces such as $L_{p}(\mu), p \neq 2, C(K)$ spaces not isomorphic to c_{0} for K metric compact, subspaces of c_{0} which are not isomorphic to c_{0}, the Gurarij space, Tsirelson spaces or the Argyros-Deliyanni HI space cannot be automorphic.

[^0]Received August 10, 2005 and in revised form June 1, 2007

1. Introduction

In [13] it was proved that:
Theorem 1.1 (Lindenstrauss-Rosenthal): Let E be a subspace of c_{0} and let $T: E \rightarrow c_{0}$ be an into isomorphism such that $\operatorname{dim} c_{0} / E=\operatorname{dim} c_{0} / T E=\infty$. There is an automorphism \widehat{T} of c_{0} such that $\left.\widehat{T}\right|_{E}=T$.

Let us call a Banach space automorphic if for every closed subspace $E \subset X$ and every into isomorphism $T: E \rightarrow X$ with $\operatorname{dens}(X / E)=\operatorname{dens}(X / T E)$ there is an automorphism \widehat{T} of X such that $\left.\widehat{T}\right|_{E}=T$.

Let us notice that the condition on the quotient spaces is necessary for the existence of the automorphism \widehat{T} of X since it naturally induces an isomorphism between the quotient spaces X / E and $X / T E$. We remark that the definition of the density character we handle is slightly unusual: for a Banach space X, by dens X we mean the smallest cardinal of a subset of X whose linear span is dense in X. This definition coincides with the standard one when X is infinite dimensional and is more adequate to the problems considered here since it coincides with the dimension when the space is finite dimensional.

In [13] the following still unsolved conjecture is formulated: The Banach spaces c_{0} and ℓ_{2} are the only separable infinite dimensional automorphic spaces. This paper is mostly devoted to the study of aspects of the LindenstraussRosenthal conjecture related to the local structure of automorphic spaces as well as their properties regarding the extension of operators. In the literature there are several examples of "partially automorphic" spaces: for instance, it is known that for every subspace $E \subset \ell_{1}$ and every into isomorphism $T: E \rightarrow \ell_{1}$ such that ℓ_{1} / E and $\ell_{1} / T E$ are infinite dimensional \mathcal{L}_{1}-spaces there is an automorphism \widehat{T} of ℓ_{1} extending T (see [9] or [5]); and the space $C[0,1]$ has the analogous property for subspaces of c_{0} (see [12] or [5]). A homological approach to the study of automorphic and partially automorphic spaces appears in [5], including a unified method of proof for all the previous results.

Apart from c_{0} and the trivially automorphic spaces $\ell_{2}(\Gamma)$, no other automorphic space has been discovered so far. From [13] we know that ℓ_{∞} is pretty close to being automorphic although it is not: the automorphism could not exist when the quotient spaces ℓ_{∞} / E and $\ell_{\infty} / T E$ are both infinite dimensional separable reflexive spaces. The space $c_{0}(\Gamma)$, with Γ a non-countable set, seems to be a natural candidate to be automorphic. Lindenstrauss and Rosenthal ask in [13]
whether that is true and Zippin suggests in [26, Remark 5.8] that $c_{0}(\Gamma)$ is likely to be automorphic. The main theorem in Section 2 (Theorem 2.1) shows that $c_{0}(\Gamma)$ is indeed an automorphic space. In Section 3 we carry out an approach to the conjecture that c_{0} and ℓ_{2} are the only separable infinite dimensional automorphic spaces by studying extension of operator properties of automorphic spaces. As we will show, a necessary condition for a Banach space to be automorphic is to be extensible in the following sense

Definition 1.1 (Extensible space): An infinite dimensional Banach space X is said to be extensible if for every subspace $E \subset X$, every operator $T: E \rightarrow X$ can be extended to an operator on X.

Although c_{0} and ℓ_{2} are extensible, not every extensible space is automorphic, as ℓ_{∞} shows. On the other hand, we will show that any automorphic space is extensible. Hence, $c_{0}(\Gamma)$ is also extensible; this was asked by Lindenstrauss and Rosenthal in [13] and answered by Johnson and Zippin in [8]. In Section 4, we study the local structure of extensible spaces. For this purpose we introduce and study the notion of uniformly finitely extensible pair of Banach spaces. Denote $\lambda(E, X)$ the relative projection constant of a subspace E of X. We prove that an extensible space cannot contain sequences of uniformly pairwise isomorphic finite dimensional subspaces $E_{n} \subset X$ and $F_{n} \subset X$ such that $\sup _{n} \lambda\left(E_{n}, X\right)<\infty$ and $\lim _{n} \lambda\left(F_{n}, X\right)=+\infty$. In particular, if X contains uniformly complemented copies of $\ell_{p}^{n}, 1 \leq p<\infty, p \neq 2$; then X cannot be extensible. We then present a list of Banach spaces which cannot be extensible (hence they cannot be automorphic); among those, and contrary to Zippin's expectations (see [26, p. 1729]), hereditarily indecomposable spaces need not be automorphic. The list of non-automorphic spaces includes $L_{p}(\mu)$ spaces, $p \neq 2$, which answers a question of Lindenstrauss and Rosenthal in [13]; all subspaces of c_{0} other than c_{0} itself; Tsirelson spaces and the Gurarij space, against Tokarev's expectations in [23]. The local approach to the Lindenstrauss-Rosenthal conjecture in Section 4 suggests that automorphic spaces should be locally similar to either ℓ_{2}, c_{0} or to spaces with "badly-normed" finite rank projections. According to this remark, we formulate in Section 5 some open questions.

By operator we mean bounded linear operator, by space we mean Banach space. An into isomorphism is an injective operator $T: Y \rightarrow X$ with closed image. We shall use the notation $X \sim Y$ to mean that X and Y are isomorphic spaces.

2. $c_{0}(\Gamma)$ is automorphic

Let Γ be any set. We shall use for a subset $X \subset c_{0}(\Gamma)$ the notation

$$
\operatorname{supp} X=\{\gamma \in \Gamma: x(\gamma) \neq 0 \text { for some } x \in X\}
$$

For a subset $\Delta \subset \Gamma$, let $\neg \Delta=\Gamma \backslash \Delta$; the space $c_{0}(\Delta)$ denotes the set of elements of $c_{0}(\Gamma)$ having support in Δ; by P_{Δ} we denote the natural projection of $c_{0}(\Gamma)$ onto $c_{0}(\Delta)$ and for a subspace $X \subset c_{0}(\Gamma), X_{\Delta}=X \cap c_{0}(\Delta)$. Let A be an arbitrary set of indices. For a collection $\left(X_{\alpha}\right), \alpha \in A$, of (linearly independent) closed subspaces of a closed subspace $X \subset c_{0}(\Gamma)$ one has $X=c_{0}\left(X_{\alpha}, A\right)$ when the closed linear span of $\bigcup_{\alpha} X_{\alpha}$ is equal to X and for any $\alpha \neq \beta$

$$
\operatorname{supp} X_{\alpha} \cap \operatorname{supp} X_{\beta}=\emptyset
$$

Theorem 2.1: Let Γ be an uncountable set. The space $c_{0}(\Gamma)$ is automorphic.
Indeed, in [26, Remark 5.8] Zippin pointed to the following decomposition lemma [8, Lemma 2] as an instrument for proving Theorem 2.1 (also, Castillo and Johnson suggested that possibility in private communications).

Lemma 2.2 (Johnson-Zippin): Let Γ be an uncountable set and let X be a closed subspace of $c_{0}(\Gamma)$. For every countable subset $\Gamma^{\prime} \subset \Gamma$ there is a countable subset $\Gamma^{\prime} \subset \Delta \subset \Gamma$ such that $P_{\Delta} x \in X$ for every $x \in X$.

We shall use for the proof of Theorem 2.1 a refined versions of this lemma. For the rest of this section, X and Y will be isomorphic infinite dimensional closed subspaces of $c_{0}(\Gamma)$ such that $c_{0}(\Gamma) / X$ and $c_{0}(\Gamma) / Y$ are infinite dimensional spaces and $T: X \rightarrow Y$ will be an isomorphism. Let us notice that if dens $X<$ $\operatorname{card} \Gamma$ then there is a subset $\Delta \subset \Gamma$ such that $X \cup Y \subset c_{0}(\Delta)$ and $\operatorname{card} \Delta=$ dens X. Therefore, one can assume that dens $X=\operatorname{card} \Gamma$ and $\operatorname{supp}(X \cup Y)=\Gamma$.

Lemma 2.3: For every countable subset $\Gamma^{\prime} \subset \Gamma$ there is a countable subset $\Gamma^{\prime} \subset \Delta \subset \Gamma$ such that
(1) $P_{\Delta} X \subset X$ and $P_{\Delta} Y \subset Y$;
(2) $P_{\neg \Delta} X \subset X$ and $P_{\neg \Delta} Y \subset Y$.

Proof. Let us construct a sequence $\left(\Delta_{n}\right)$ of countable sets as follows: Let $\Delta_{1} \supset$ Γ^{\prime} be a countable set for which $P_{\Delta_{1}} x \in X$ for every $x \in X$ (Lemma 2.2). Let $\Delta_{2} \supset \Delta_{1}$ be a countable set such that $P_{\Delta_{2}} y \in Y$ for every $y \in Y$. Let $\Delta_{3} \supset \Delta_{2}$ be such that $P_{\Delta_{3}} x \in X$ for every $x \in X$. We obtain in this way an
increasing sequence $\left(\Delta_{n}\right)$ of countable sets such that for every $n, P_{\Delta_{2 n-1}} X \subset X$ and $P_{\Delta_{2 n}} Y \subset Y$. The set $\Delta=\bigcup_{n=1}^{\infty} \Delta_{n}$ has the properties (1) and (2).

Lemma 2.4: For every countable set $\Gamma^{\prime} \subset \Gamma$ there is a countable set $\Gamma^{\prime} \subset \Delta \subset \Gamma$ such that (1) and (2) hold and $T X_{\Delta}=Y_{\Delta}$ and $T X_{\neg \Delta}=Y_{\neg \Delta}$.

Proof. Let us construct an increasing sequence $\left(\Delta_{n}\right)$ of countable sets as follows: Take a countable set $\Delta_{1} \supset \Gamma^{\prime}$ for which (1) and (2) hold and $T X_{\Gamma^{\prime}} \subset Y_{\Delta_{1}}$. Take $\Delta_{2} \supset \Delta_{1}$ for which (1) and (2) hold and $T^{-1} Y_{\Delta_{1}} \subset X_{\Delta_{2}}$. Take $\Delta_{3} \supset \Delta_{2}$ such that (1) and (2) hold and $T X_{\Delta_{2}} \subset Y_{\Delta_{3}}$. Take $\Delta_{4} \supset \Delta_{3}$ for which (1) and (2) hold and $T^{-1} Y_{\Delta_{3}} \subset X_{\Delta_{4}}$ and so on. The set $\Delta=\bigcup_{n=1}^{\infty} \Delta_{n}$ verifies conditions (1) and (2). Obviously $T X_{\Delta} \subset Y_{\Delta}$ and $T X_{\neg \Delta} \subset Y_{\neg \Delta}$. Let us see that $T X_{\Delta}=Y_{\Delta}$: let $y \in Y_{\Delta}$, then $y=T x$ for some $x=x_{1}+x_{2}$ with $x_{1} \in X_{\Delta}$ and $x_{2} \in X_{\neg \Delta}$. So, $y=T x_{1}+T x_{2}$ and $T x_{2} \in Y_{\Delta} \subset P_{\Delta}\left(c_{0}(\Gamma)\right)$. But $T x_{2} \in Y_{\neg \Delta} \subset P_{\neg \Delta}\left(c_{0}(\Gamma)\right)$, therefore $T x_{2}=0$ and $y=T x_{1} \in T X_{\Delta}$. The equality $T X_{\neg \Delta}=Y_{\neg \Delta}$ can be checked in the same way.

Lemma 2.5: Let dens $c_{0}(\Gamma) / X=$ dens $c_{0}(\Gamma) / Y$. There is a set A of cardinality card Γ such that the set Γ admits a decomposition $\Gamma=\bigcup_{\alpha \in A} \Delta_{\alpha}$ in pairwise disjoint countable sets such that for every $\alpha \in A$:
a) $T X_{\Delta_{\alpha}}=Y_{\Delta_{\alpha}}$;
b) $X=c_{0}\left(X_{\Delta_{\alpha}}, A\right)$ and $Y=c_{0}\left(Y_{\Delta_{\alpha}}, A\right)$.

Proof. In the set of families $F_{A}=\left(\Delta_{\alpha}\right)_{\alpha \in A}$ of pairwise disjoint subsets of Γ verifying the four conditions of Lemma 2.4 , for which A is a set of cardinality card Γ we introduce the natural order: $\left(\Delta_{\alpha}\right)_{\alpha \in A} \leq\left(\Delta_{\alpha}^{\prime}\right)_{\alpha \in A^{\prime}}$ if and only if $A \subset A^{\prime}$ and for all $\alpha \in A$ one has $\Delta_{\alpha}=\Delta_{\alpha}^{\prime}$. This is an inductive order, since if $\left(F_{A_{j}}\right)$ is a chain, then one can set as its upper bound the family $F_{\cup A_{j}}$: whenever $\alpha \in A_{j}$ the set Δ_{α} is uniquely defined. That card $\bigcup_{j} A_{j}=\operatorname{card} \Gamma$ is guaranteed by card $\bigcup_{j} A_{j}=\operatorname{card} \bigcup_{j} \bigcup_{\alpha \in A_{j}} \Delta_{\alpha} \leq$ card Γ. Therefore, there must be a maximal family $\left(\Delta_{\alpha}^{m}\right)_{\alpha \in A}$. If $\Gamma \backslash \bigcup_{\alpha \in A} \Delta_{\alpha}^{m}$ is empty, we are done; if it is countable, Lemma 2.4 and the maximality of the family yield a contradiction. If it is finite then add this finite set of points to some set Δ_{α}^{m}.

Lemma 2.6: Let A be an infinite index set. Let $\left\{B_{\alpha}\right\}_{\alpha \in A}$ and $\left\{C_{\alpha}\right\}_{\alpha \in A}$ be families of pairwise disjoint sets, each of them countable (finite or infinite) or empty, in such a way that $\bigcup_{\alpha \in A} B_{\alpha}$ and $\bigcup_{\alpha \in A} C_{\alpha}$ have the same infinite cardinal. Then A can be decomposed into a disjoint union of countable sets,
$A=\bigcup_{i \in I} A_{i}$, such that for any i either both $\bigcup_{\alpha \in A_{i}} B_{\alpha}$ and $\bigcup_{\alpha \in A_{i}} C_{\alpha}$ are infinite or both are empty.

Proof. We set $A_{0}^{0}=\left\{\alpha \in A: B_{\alpha}=\emptyset=C_{\alpha}\right\} ; A_{1}^{0}=\left\{\alpha: B_{\alpha} \neq \emptyset=C_{\alpha}\right\}$; $A_{0}^{1}=\left\{\alpha: B_{\alpha} \emptyset \neq C_{\alpha}\right\}$ and $A_{1}^{1}=\left\{\alpha: B_{\alpha} \neq \emptyset \neq C_{\alpha}\right\}$. Assume that A_{1}^{1} is infinite and set a decomposition $A_{1}^{1}=\bigcup_{i \in I} A_{i}$ into infinite countable sets. If $\operatorname{card} A_{1}^{0}>\operatorname{card} A_{1}^{1}$ then the hypothesis forces $\operatorname{card} A_{1}^{0}=\operatorname{card} A_{0}^{1}$ and let H be a bijection between those sets. If $A_{1}^{0}=\bigcup_{j \in J} A_{j}$ and $A_{0}^{0}=\bigcup_{k \in K} A_{k}$ are decomposition into infinite countable sets then $A=\bigcup_{i} A_{i} \cup \bigcup_{j}\left(A_{j} \cup H\left(A_{j}\right)\right) \cup \bigcup_{k} A_{k}$ is the desired decomposition. If, however, there exist injections $F: A_{1}^{0} \rightarrow A_{1}^{1}$ and $G: A_{0}^{1} \rightarrow A_{1}^{1}$ then the decomposition is $\bigcup_{i}\left(A_{i} \cup F^{-1}\left(A_{i}\right) \cup G^{-1}\left(A_{i}\right)\right) \cup \bigcup_{k} A_{k}$. If A_{1}^{1} is finite and both A_{1}^{0} and A_{0}^{1} are finite, then the decomposition is $A=\bigcup_{k \in K} A_{k} \cup\left(A_{1}^{1} \cup A_{0}^{1} \cup A_{1}^{0}\right)$. If, say, A_{0}^{1} is finite and A_{1}^{0} is infinite, then the same decomposition of A works since now A_{1}^{0} must be countable. Finally, if A_{1}^{0} and A_{0}^{1} are both infinite, then $\operatorname{card} A_{1}^{0}=\operatorname{card} A_{0}^{1}$; fix a bijection $H: A_{1}^{0} \rightarrow A_{0}^{1}$ and an injection $F: A_{1}^{1} \rightarrow A_{1}^{0}$ and the decomposition is $A=\bigcup_{j}\left(A_{j} \cup H\left(A_{j}\right) \cup F^{-1}\left(A_{j}\right)\right) \cup \bigcup_{k} A_{k}$.

Lemma 2.7: Let dens $c_{0}(\Gamma) / X=$ dens $c_{0}(\Gamma) / Y$ be infinite. The set Γ admits a decomposition $\Gamma=\bigcup_{i \in I} \Gamma_{i}$ into pairwise disjoint countable sets such that for every i :
a) $T X_{i}=Y_{i}$ where $X_{i}:=X_{\Gamma_{i}}, Y_{i}:=Y_{\Gamma_{i}}$;
b) either both $c_{0}\left(\Gamma_{i}\right) / X_{i}$ and $c_{0}\left(\Gamma_{i}\right) / Y_{i}$ are infinite dimensional or both are equal to 0 ;
c) $X=c_{0}\left(X_{i}, I\right)$ and $Y=c_{0}\left(Y_{i}, I\right)$.

Proof. Let us take a set A of cardinality equal to Γ and take a decomposition $\Gamma=\bigcup_{\alpha \in A} \Delta_{\alpha}$ like in Lemma 2.5. For every $\alpha \in A$, the embedding $X_{\Delta_{\alpha}} \hookrightarrow$ $c_{0}\left(\Delta_{\alpha}\right)$ induces a separable quotient $c_{0}\left(\Delta_{\alpha}\right) / X_{\Delta_{\alpha}}$ (it could be zero). Consider for every $\alpha \in A$ sets B_{α} and C_{α} of cardinality equal to dens $c_{0}\left(\Delta_{\alpha}\right) / X_{\Delta_{\alpha}}$ and dens $c_{0}\left(\Delta_{\alpha}\right) / Y_{\Delta_{\alpha}}$, respectively, in such a way that the families $\left(B_{\alpha}\right)_{\alpha \in A}$ and $\left(C_{\alpha}\right)_{\alpha \in A}$ are formed by pairwise disjoint elements. By the hypothesis,

$$
\operatorname{card} \bigcup_{\alpha \in A} B_{\alpha}=\operatorname{dens}\left(c_{0}(\Gamma) / X\right)=\operatorname{dens}\left(c_{0}(\Gamma) / Y\right)=\operatorname{card} \bigcup_{\alpha \in A} C_{\alpha}
$$

and it is infinite. We can apply Lemma 2.6 to obtain a decomposition $A=$ $\bigcup_{i \in I} A_{i}$ such that for each $i \in I$ if we set $\Gamma_{i}=\bigcup_{\alpha \in A_{i}} \Delta_{\alpha} \subset \Gamma$, then the
decomposition $\Gamma=\bigcup_{i \in I} \Gamma_{i}$ verifies $\left.b\right)$:

$$
\operatorname{dens} c_{0}\left(\Gamma_{i}\right) / X_{i}=\operatorname{card} \bigcup_{\alpha \in A_{i}} B_{\alpha}=\operatorname{card} \bigcup_{\alpha \in A_{i}} C_{\alpha}=\operatorname{dens} c_{0}\left(\Gamma_{i}\right) / Y_{i} .
$$

That a) and c) also hold follows directly from Lemma 2.5 and from the observations $X_{i}=c_{0}\left(X_{\Delta_{\alpha}}, A_{i}\right)$ and $Y_{i}=c_{0}\left(Y_{\Delta_{\alpha}}, A_{i}\right)$.

Proof of Theorem 2.1. If both quotients are finite dimensional, our definition of the density character implies their dimensions coincide and therefore the existence of the automorphism is clear. Otherwise, consider a partition $\left(\Gamma_{i}\right)$ of Γ as in Lemma 2.7. Let us extend every $\left.T\right|_{X_{i}}$ to an automorphism \widehat{T}_{i} of $c_{0}\left(\Gamma_{i}\right)$ using the Lindenstrauss-Rosenthal theorem. Moreover, from the proof of Theorem 1 in [13] one can check that there is a function $g:[1, \infty) \rightarrow[1, \infty)$ such that for some constant C and for every $i,\left\|\widehat{T_{i}}\right\|\left\|\widehat{T}_{i}^{-1}\right\| \leq g\left(\left\|\left.T\right|_{X_{i}}\right\|\| \|\left(\left.T\right|_{X_{i}}\right)^{-1} \|\right) \leq$ $C g\left(\|T\|\left\|T^{-1}\right\|\right)$. The final extension is obvious: for every $x=\sum_{i} x_{i}, x_{i} \in X_{i}$, put $\widehat{T} x=\sum_{i} \widehat{T_{i}} x_{i}$.

3. Extensible spaces

As we mentioned in the introduction, the spaces $\ell_{1}, C[0,1]$ and ℓ_{∞} have a partially automorphic character. If X is one of those spaces, or c_{0} or ℓ_{2}, there is a class \mathcal{T}_{X} of injective isomorphisms into X such that for every $T \in \mathcal{T}_{X}$ there exists an automorphism \widehat{T} of X extending T. Let us observe that in all the previous cases not only the into isomorphisms of the class \mathcal{T}_{X} can be extended to X, but even every operator $S: E \rightarrow X$ defined on a subspace E of X for which the embedding $E \rightarrow X$ is in \mathcal{T}_{X} can also be extended to X : by Lindenstrauss' theorem in [9], given a subspace $E \subset \ell_{1}$, every operator $E \rightarrow \ell_{1}$ extends to ℓ_{1} when ℓ_{1} / E is a \mathcal{L}_{1}-space; by a combination of LindenstraussPełczyński theorem [12] and Sobczyk's theorem [24] if E is a subspace of $C[0,1]$ which embeds into c_{0}, the operators $E \rightarrow C[0,1]$ extend to $C[0,1]$; and, as is well-known, all operators into ℓ_{∞} extend to any superspace. The two already known automorphic spaces also enjoy the corresponding extension of operators property: every operator on a subspace of $\ell_{2}(I)$ extends to $\ell_{2}(I)$ and, finally, operators $E \rightarrow c_{0}$ extend to c_{0}. After these remarks the introduction of the notion of extensible space (Definition 1.1) is meaningful.

Let us prove that every automorphic space is extensible. For $\varepsilon>0$, we call an operator $T: X \rightarrow Y$ an ε-isometry provided for every $x \in X,(1-\varepsilon)\|x\| \leq$ $\|T x\| \leq(1+\varepsilon)\|x\|$.

Proposition 3.1: Let E be a closed subspace of a Banach space X and let $\varepsilon>0$. If every ε-isometry $E \rightarrow X$ can be extended to an operator $X \rightarrow X$, then every operator $E \rightarrow X$ can be extended to an operator $X \rightarrow X$.

Proof. Assume there is an operator $T: E \rightarrow X,\|T\|=1$, which cannot be extended to an operator $X \rightarrow X$. For every operator $S: X \rightarrow X$ and for every $\varepsilon>0$ the operator $\left.S\right|_{E}+\varepsilon T$ cannot be extended either. In particular, if we take S to be the identity, there is an ε-isometry $E \rightarrow X$ which does not extend to X.

Theorem 3.2: Every automorphic space X is extensible.
Proof. Assume there is a subspace $E \subset X$ and an operator $T: E \rightarrow X,\|T\|=1$, which cannot be extended to X, then X / E is infinite dimensional. Then, by Proposition 3.1, for some $\varepsilon>0$ the operator $R=\left.i d\right|_{E}+\varepsilon T$ is an ε-isometry which cannot be extended to X. Let us show that dens $X / E=\operatorname{dens} X / R E$. Let $\delta>0$ and let $\left\{x_{i}: i \in I\right\}$ be a set in the unit sphere of X such that $\operatorname{card} I=\operatorname{dens} X / E$ and for every $i, j \in I$,

$$
\inf \left\{\left\|x_{i}-x_{j}+y\right\|: y \in E\right\}>1-\delta
$$

Then, because the subspaces E and $R E$ are very close if ε is sufficiently small,

$$
\inf \left\{\left\|x_{i}-x_{j}+y\right\|: y \in R E\right\}>1-\varphi(\varepsilon, \delta)
$$

where $\varphi(\varepsilon, \delta)$ is very small if ε and δ are sufficiently small. Hence, $X / R E$ is also infinite dimensional and dens $X / R E \geq \operatorname{dens} X / E$. Taking R^{-1} instead of R, we obtain dens $X / R E \leq \operatorname{dens} X / E$. So, dens $X / R E=\operatorname{dens} X / E$ and X is not automorphic.

As a corollary of Theorems 2.1 and 3.2 one obtains the result of [8]:
Corollary 3.3: Let Γ be an uncountable set. The space $c_{0}(\Gamma)$ is extensible.
Question 1: Is every separable extensible space automorphic?

Simple examples of non-extensible spaces are given by spaces containing pairs of isomorphic subspaces one of them complemented and the other uncomplemented. The space ℓ_{1}, which admits an uncomplemented copy of itself according to Bourgain's construction in [4], is a natural example. Also, separable $C(K)$ spaces non-isomorphic to c_{0} cannot be extensible; indeed, it follows from a result of Amir [1] and Pełczyński [20, Section 9], that those spaces contain subspaces E and F with E complemented, F uncomplemented and $E \sim F \sim C\left(\omega^{\omega}\right)$.

4. A local approach to extensible spaces

Let us begin this section with more general and more detailed definitions which are in the spirit of [26, Definition 1.9] or those in [7].

Definition 4.1 (Extensible couple): Given a couple (X, Y) of Banach spaces and $\lambda \geq 1$ we will say that it is extensible (resp. compactly extensible) if every operator (resp., compact operator) $T: E \rightarrow Y$ from a subspace $E \subset X$ can be extended to an operator $\widehat{T}: X \rightarrow Y$. If the extension of the operator \widehat{T} verifies $\|\widehat{T}\| \leq \lambda\|T\|$, we say that the couple (X, Y) is λ-extensible (resp., compactly λ-extensible). The couple (X, Y) is said to be finitely λ-extensible if every operator $T: E \rightarrow Y$ from a finite dimensional subspace $E \subset X$ can be extended to an operator $\widehat{T}: X \rightarrow Y$ with $\|\widehat{T}\| \leq \lambda\|T\|$. The couple (X, Y) will be called uniformly extensible (resp., uniformly compactly extensible, uniformly finitely extensible) if it is λ-extensible (resp., compactly λ-extensible, finitely λ-extensible) for some λ.

We give two examples: the Lindenstrauss-Pełczyński theorem [12] asserts that for every $C(K)$-space the couple $\left(c_{0}, C(K)\right)$ is $(1+\varepsilon)$-extensible for every $\varepsilon>0$; while Lindenstrauss' results in [10] mean that for every separable Banach space X and every $\mathcal{L}_{\infty, \lambda}$-space Y the couple (X, Y) is compactly $(\lambda+\varepsilon)$-extensible for every $\varepsilon>0$. It is clear that X is extensible if and only if the couple (X, X) is extensible. The meaning of λ-extensible or compactly λ-extensible space should also be clear. Let us establish some connections between these notions. Note that if F is a finite codimensional closed subspace of a Banach space X, then the couple (X, Y) is uniformly finitely extensible if and only if the couple (F, Y) is uniformly finitely extensible. The proof of the following lemma is rather standard.

Lemma 4.1: Assume that (X, Y) is not a uniformly finitely extensible couple. Then there are subspaces $E_{n} \subset X$ which form a finite dimensional Schauder decomposition of its closed linear hull E and operators $T_{n}: E_{n} \rightarrow Y,\left\|T_{n}\right\|=1$, such that the norm of every extension of T_{n} onto X is not smaller than $2^{2 n}$.

Proof. Let $\varepsilon>0$. By hypothesis, there is a finite dimensional subspace $E_{1} \subset X$ and a norm one operator $T_{1}: E_{1} \rightarrow Y$ such that the norm of every extension of T_{1} to X is greater than or equal to 2^{2}. Let Φ_{1} be a finite subset of the unit sphere $S\left(X^{*}\right)$ which $(1-\varepsilon)$-norms E_{1}, and let $\Phi_{1}^{\top} \subset X$ be its (finite codimensional) annihilator. Then the couple (Φ_{1}^{\top}, Y) is not uniformly finitely extensible. So, there is a finite dimensional subspace $E_{2} \subset \Phi_{1}^{\top}$ and a norm one operator $T_{2}: E_{2} \rightarrow Y$ such that the norm of every extension of T_{2} onto Φ_{1}^{\top} is greater than or equal to 2^{4}. Let Φ_{2} be a finite subset of the sphere $S\left(X^{*}\right)$ which $(1-\varepsilon)$-norms $E_{1}+E_{2}$, and let $\Phi_{2}^{\top} \subset X$ be its (finite codimensional) annihilator. The way of continuing the construction is clear. The conditions that $\Phi_{n}(1-\varepsilon)$-norms $\sum_{1}^{n} E_{i}$ and $E_{i} \subset \Phi_{n}^{\top}$ for $i>n$, guarantee that $\left(E_{n}\right)$ forms a finite dimensional Schauder decomposition of E.

Proposition 4.2: If the couple (X, Y) is compactly extensible, then it is uniformly finitely extensible. If the couple (X, Y) is finitely λ-extensible and Y is β-complemented in its bidual, then (X, Y) is $\lambda \beta$-extensible.

Proof. To prove the first assertion, assume that (X, Y) is not uniformly finitely extensible. Let $\left(E_{n}\right)$ be a finite dimensional decomposition for its closed linear hull E and let $\left(T_{n}\right)$ be operators as in Lemma 4.1. We define the operator $T: E \rightarrow Y$ by

$$
T\left(\sum_{1}^{\infty} x_{n}\right)=\sum_{1}^{\infty} 2^{-n} T_{n} x_{n}
$$

where $x_{n} \in E_{n}$ and the series converges. The operator T is compact, and no extension $\hat{T}: X \rightarrow Y$ is possible.

To prove the second assertion, let $E \subset X$ be a subspace and let $T: E \rightarrow Y$ be an operator. Consider for each finite dimensional subspace $j_{\alpha}: E_{\alpha} \rightarrow E$ of E an extension $T_{\alpha}: X \rightarrow Y$ of $T j_{\alpha}$ having norm $\left\|T_{\alpha}\right\| \leq \lambda\left\|T j_{\alpha}\right\|$. If \mathcal{U} denotes a free ultrafilter on the set of finite dimensional subspaces of E that refines the Fréchet filter corresponding to the natural order, define the operator $T^{\mathcal{U}}: X \rightarrow Y^{* *}$ by $T^{\mathcal{U}} x=w^{*}-\lim _{\mathcal{U}} T_{\alpha} x$ (by the Banach-Alaoglu theorem, this limit exists). If $P: Y^{* *} \rightarrow Y$ is a projection with norm at most β, then $P T^{\mathcal{U}}$ extends T and verifies $\left\|P T^{\mathcal{U}}\right\| \leq \beta \lambda$.

It would be interesting to know if extensible implies uniformly extensible. The second part of Proposition 4.2 says that for reflexive Y extensibility, compact extensibility and uniform finite extensibility coincide. It would also be interesting to determine if compactly extensible and uniformly finitely extensible coincide at least in spaces with the approximation property.

Let us consider the connection between uniform finite extensibility and the local structure of a Banach space. By $\lambda(E, X)$ we denote the relative projection constant of a subspace E of X, which is defined as follows:

$$
\lambda(E, X)=\inf \{\|P\|: P \text { is a projection of } X \text { onto } E\}
$$

When E is not complemented we set $\lambda(E, X)=\infty$. Relative projection constants are connected with the extension of isomorphisms as follows.

Lemma 4.3: Let $E \subset X, F \subset Y$ be closed subspaces and let $T: E \rightarrow F$ be an isomorphism. Then for every extension $\hat{T}: X \rightarrow Y$ of T

$$
\begin{equation*}
\|\hat{T}\| \geq \frac{\lambda(E, X)}{\lambda(F, Y)} \frac{1}{\left\|T^{-1}\right\|} \tag{1}
\end{equation*}
$$

Proof. Let $\varepsilon>0$ and let P be a projection of Y onto F with $\|P\|<\lambda(F, Y)+\varepsilon$. Then the operator $Q=T^{-1} P \hat{T}$ is a projection of X onto E and

$$
\|Q\| \leq\left\|T^{-1}\right\|(\lambda(F, Y)+\varepsilon)\|\hat{T}\|
$$

Since ε is arbitrary, the inequality (1) is clear.
Let $\mathrm{d}(E, F)$ denote the Banach-Mazur distance between two (isomorphic) Banach spaces E and F. As an immediate consequence of Lemma 4.3 we obtain

Theorem 4.4: Assume that the spaces X and Y contain sequences of finite dimensional subspaces E_{n} and F_{n}, respectively, with $\operatorname{dim} E_{n}=\operatorname{dim} F_{n}$, and such that

$$
\begin{equation*}
\frac{\lambda\left(E_{n}, X\right)}{\lambda\left(F_{n}, Y\right) \mathrm{d}\left(E_{n}, F_{n}\right)} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty \tag{2}
\end{equation*}
$$

Then the couple (X, Y) is not uniformly finitely extensible. In particular, if $X=$ Y, then the space X is not extensible and therefore, it cannot be automorphic.

Proof. Let $\varepsilon>0$ and, for every n, let $T_{n}: E_{n} \rightarrow F_{n}$ be an isomorphism with $\left\|T_{n}\right\|=1$ and $\left\|T_{n}^{-1}\right\|<\mathrm{d}\left(E_{n}, F_{n}\right)+\varepsilon$. If \hat{T}_{n} denotes any extension of T_{n}, by (2) and Lemma 4.3 one necessarily has $\lim _{n \rightarrow \infty}\left\|\hat{T}_{n}\right\|=\infty$.

Maurey's extension theorem in [16] ensures that for every space X of type 2, every space Y of cotype 2 , the couple (X, Y) is uniformly extensible. On the other hand, under some additional assumptions (see [18], [6]) if X does not have type 2 , there is an operator from some subspace of X into ℓ_{2} which cannot be extended to X. The next corollary of Theorem 4.4 is close to this result.

Corollary 4.5: Let X contain a sequence of subspaces E_{n} uniformly isomorphic to ℓ_{2}^{n} such that $\lambda\left(E_{n}, X\right) \rightarrow \infty$. Let Y contain a sequence of subspaces which are uniformly complemented and uniformly isomorphic to ℓ_{2}^{n}. Then the couple (X, Y) is not uniformly finitely extensible.

Corollary 4.5 applies that when $p=\sup \left\{p^{\prime}: X\right.$ is a space of type $\left.p^{\prime}\right\}<2$ (by [17], such space contains uniformly $\ell_{p}^{n}, p<2$, and by [3], a space with this property contains a sequence of uniformly Euclidean subspaces E_{n} such that $\lambda\left(E_{n}, \ell_{p}^{n}\right) \rightarrow \infty$) and Y is B-convex (by [21], such space contains a sequence of subspaces which are uniformly complemented and uniformly isomorphic to ℓ_{2}^{n}). It is well-known that for every $1 \leq p<\infty, p \neq 2$, there is a sequence of subspaces $E_{n} \subset \ell_{p}^{n}$, uniformly isomorphic to $\ell_{p}^{k(n)}$ such that $\lambda\left(E_{n}, \ell_{p}^{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. This was proved: for $2<p<\infty$ and $1<p<4 / 3$ in [22]; for $1<p<2$ in [3] and for $p=1$ in [4]. Therefore we have

Corollary 4.6: Let $1 \leq p<\infty, p \neq 2$, and let X be a Banach space containing a sequence of subspaces uniformly complemented and uniformly isomorphic to ℓ_{p}^{n}. Then X is not uniformly finitely extensible; hence, it is not automorphic.

Corollary 4.7: Let X be a Banach space that contains ℓ_{∞}^{n} uniformly and also contains a sequence of finitely dimensional subspaces F_{n} with $\operatorname{dim} F_{n} \rightarrow \infty$ which are not uniformly isomorphic to the corresponding $\ell_{\infty}^{\operatorname{dim} F_{n}}$ but are uniformly complemented in X and have uniformly bounded unconditional basic constants. Then X cannot be uniformly finitely extensible; hence it cannot be automorphic.

Proof. Find a sequence E_{n} of almost isometric copies of F_{n} inside suitable $\ell_{\infty}^{m(n)}$ for large $m(n)$. The spaces E_{n} cannot be uniformly complemented in $\ell_{\infty}^{m(n)}$ by [11, p. 298]; and the same in X.

We can give a list of some proposed candidates to be automorphic which actually are not.

Proposition 4.8: The following spaces are not extensible and, therefore, not automorphic:
(1) The spaces L_{p} and $\ell_{p}, 1 \leq p<\infty, p \neq 2$.
(2) The Argyros-Deliyanni hereditarily indecomposable space.
(3) Tsirelson's space and its dual.
(4) The Gurarij space.

Part (1) was raised in [13] for ℓ_{p} with $2<p<\infty$. Zippin suggested in [26, p. 1729] that the space mentioned in (2) could be automorphic. The ArgyrosDeliyanni hereditarily indecomposable space constructed in [2] and the Tsirelson space T [19, Theorem 12] are not uniformly finitely extensible since they contain uniformly complemented ℓ_{1}^{n}. The dual T^{*} contains ℓ_{∞}^{n} uniformly and the canonical basis of T^{*} is unconditional. By Corollary 4.7, T^{*} is not uniformly finitely extensible.

The Gurarij space $G[15]$ could be expected to be automorphic by the extension property for finite rank operators which it possesses. Nevertheless, G is not even extensible. This follows from the simple observation that complemented subspaces of an extensible space are extensible and from the fact that every separable isometric predual of L_{1} is isomorphic to a complemented subspace of G [25]. In particular, $C[0,1]$ is complemented in G and, as we have already seen, it is not extensible. Thus, G is not extensible. Note that G is an \mathcal{L}_{∞}-space, so is uniformly compactly extensible.

5. Further remarks and open problems

About stability properties of automorphic spaces we can only assert that subspaces of an automorphic space do not need to be automorphic.

Proposition 5.1: A subspace X of c_{0} is extensible if and only if it is isomorphic to c_{0}. In particular, for any sequence of finite dimensional spaces E_{n}, the vector $\operatorname{sum}\left(\sum_{1}^{\infty} E_{n}\right)_{c_{0}}$ is extensible (automorphic) if and only if it is isomorphic to c_{0}.

Proof. It is well-known that a subspace X of c_{0} is isomorphic to c_{0} if and only if it is complemented in c_{0} (see [14, Theorem 2.a.3]). Also it is well-known ([14, Proposition 2.a.2]) that X contains a complemented subspace which is isomorphic to c_{0}. So, $X \sim Y \oplus c_{0} \sim Y \oplus c_{0} \oplus c_{0} \sim X \oplus c_{0}$, hence, X contains a
complemented copy of itself. If X was not complemented in c_{0}, then $X \sim Y \oplus c_{0}$ would also contain a uncomplemented copy of X. By Lemma 4.3, X cannot be extensible.

While complemented subspaces of extensible spaces are extensible, we do not know whether complemented subspaces of automorphic spaces are automorphic. The following proposition shows a simple necessary condition for being automorphic.

Proposition 5.2: Let X be a Banach space isomorphic to its square. If X admits a quotient without a complemented copy of X, then X cannot be automorphic.

Proof. Let E be a subspace of X such that X / E contains no complemented copy of X. Since $X \sim X \oplus X, X$ contains a subspace F isomorphic to E such that X / F contains a complemented copy of X. Of course, one cannot extend the isomorphism between E and F to an automorphism of X.

Let us notice that $C(K)$ and L_{p} are not extensible for different reasons: $C(K)$ is compactly extensible (see [26, Theorem 4.3]), while L_{p} is not. Since \mathcal{L}_{∞}-spaces are compactly extensible (see [10] or [26, Theorem 4.2]), Theorem 4.4 immediately yields that a \mathcal{L}_{∞}-space X cannot contain sequences of pairwise uniformly isomorphic subspaces $\left(E_{n}\right)$ and $\left(F_{n}\right)$ satisfying (2) in Theorem 4.4 with $X=Y$. We already know that infinite dimensional separable $C(K)$-spaces non-isomorphic to c_{0} cannot be automorphic. This suggests

Question 2: Does there exist a non-separable automorphic $C(K)$-space not isomorphic to $c_{0}(\Gamma)$? Does there exist an automorphic \mathcal{L}_{∞}-space non-isomorphic to $c_{0}(\Gamma)$?

Question 3: Let X be a Banach space of finite cotype which is not isomorphic to a Hilbert space. Does X contain sequences of subspaces $\left(E_{n}\right)$ and $\left(F_{n}\right)$, $\operatorname{dim} E_{n}=\operatorname{dim} F_{n}$, satisfying (2) in Theorem 4.4 with $X=Y$?

The local approach to automorphic spaces in Section 4 suggests it would be reasonable to study the extensible or automorphic character of spaces of finite dimension, something which only makes sense considering quantitative estimates.

Question 4: Let $1<p<\infty, p \neq 2$. For which λ is the space $\ell_{p}^{n} \lambda$-extensible?
It is clear that ℓ_{2}^{n} and ℓ_{∞}^{n} are 1-extensible.
Question 5: Let $\lambda \geq 1$ and, for every $n \in \mathbb{N}$, let X_{n} be an n-dimensional λ-extensible space. Is it true that

$$
\sup _{n} \min \left\{\mathrm{~d}\left(X_{n}, \ell_{2}^{n}\right), \mathrm{d}\left(X_{n}, \ell_{\infty}^{n}\right)\right\}<\infty ?
$$

We do not even know whether there is some $\lambda>1$ and a sequence of n dimensional \mathbf{P}_{λ}-spaces E_{n} such that $\mathrm{d}\left(E_{n}, \ell_{\infty}^{n}\right) \rightarrow \infty$ (see [26, p. 1716]).

Definition 5.1 (λ-automorphic space): Let $\lambda \geq 1$. We say that a finite dimensional normed space X is λ-automorphic if for every subspace $E \subset X$ and every into isomorphism $T: E \rightarrow X$ there is an automorphism $\widehat{T}: X \rightarrow X$ extending T such that $\|\widehat{T}\|\left\|\widehat{T}^{-1}\right\| \leq \lambda\|T\|\left\|T^{-1}\right\|$.

Obviously, ℓ_{2}^{n} is 1 -automorphic for every n. But, maybe surprisingly, we do not know the automorphic character of the spaces ℓ_{∞}^{n}. What we can say is that ℓ_{∞}^{n} cannot be λ-automorphic for λ close to 1 . To check this take the unit vector basis $\left(e_{i}\right)$ of $\ell_{\infty}^{n}, e=(1,1, \ldots, 1)$ and set $T e_{1}=e$. If $\left\|\widehat{T} e_{2}\right\|>1 / 2$ then $\left\|e_{1}+e_{2}\right\|=\left\|e_{1}-e_{2}\right\|=1$ and $\left\|\widehat{T}\left(e_{1}+e_{2}\right)\right\|>3 / 2$ or $\left\|\widehat{T}\left(e_{1}-e_{2}\right)\right\|>3 / 2$.

The following variation of Question 5 is related to the automorphic character of finite dimensional spaces and can be considered as a kind of rotation problem:

Question 6: For every n, let X_{n} be a λ-automorphic space with $\operatorname{dim} X_{n}=n$. Is it true that $\sup _{n} \mathrm{~d}\left(X, \ell_{2}^{n}\right)<\infty$?

Acknowledgment. Thanks must necessarily go to the referee whose criticism improved the paper. He moreover pointed out the idea for Proposition 4.2 and Corollary 4.7.

References

[1] D. Amir, Projections onto continuous function spaces, Proceedings of the American Mathematical Society 15 (1964), 396-402.
[2] S. Argyros and I. Deliyanni, Examples of asymptotically ℓ_{1} Banach spaces, Transaction of the American Mathematical Society 349 (1997), 973-995.
[3] G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson and C. M. Newman, On uncomplemented subspaces of $L_{p}, 1<p<2$, Israel Journal of Mathematics 26 (1977), 178-187.
[4] J. Bourgain, A counterexample to a complementation problem, Compositio Mathematica 43 (1981), 133-144.
[5] J. M. F. Castillo and Y. Moreno, On the Lindenstrauss-Rosenthal theorem, Israel Journal of Mathematics 140 (2004), 253-270.
[6] P. G. Cazazza and N. J. Nielsen, The Maurey extension property for Banach spaces with the Gordon-Lewis property and related structures, Studia Mathematica 155 (2003), 1-21.
[7] W. B. Johnson and M. Zippin, Extension of operators from weak*-closed subspaces of l_{1} into $C(K)$ spaces, Studia Mathematica 117 (1995), 43-55.
[8] W. B. Johnson and M. Zippin, Extension of operators from subspaces of $c_{0}(\Gamma)$ into $C(K)$ space, Proceedings of the American Mathematical Society 107 (1989), 751-754.
[9] J. Lindenstrauss, On a certain subspace of l_{1}, Bulletin of the Polish Academy of Sciences 12 (1964), 539-542.
[10] J. Lindenstrauss, Extension of Compact Operators, Memoirs of the American Mathematical Society, vol. 48, 1964.
[11] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_{p}-spaces and their alications, Studia Mathematica 29 (1968), 275-326.
[12] J. Lindenstrauss and A. Pełczyński, Contributions to the theory of the classical Banach spaces, Journal of Functional Analysis 8 (1971), 225-249.
[13] J. Lindenstrauss and H. P. Rosenthal, Automorphisms in c_{0}, l_{1} and m, Israel Journal of Mathematics 7 (1969), 227-239.
[14] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.
[15] W. Lusky, The Gurarij spaces are unique, Archiv der Mathematik 27 (1976), 627-635.
[16] B. Maurey, Un théoreme de prolongement, Comptes Rendus Mathématique, Académie des Sciences, Paris, A, 279 (1974), 329-332.
[17] B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Mathematica 58 (1976), 45-90.
[18] V. D. Milman and G. Pisier, Banach spaces with a weak cotype 2 property, Israel Journal of Mathematics 54 (1986), 139-158.
[19] E. Odell and Th. Schlumprecht, Distortion and asymptotic structure, in Handbook of the geometry of Banach Spaces, vol. 2, W. B. Johnson and J. Lindenstrauss, eds., Elsevier, Amsterdam, 2003, pp. 1333-1360.
[20] A. Pełczyński, Linear Extensions, Linear Averagings, and their Applications to Linear Topological Classification of Spaces of Continuous Functions, Dissertationes Math., vol. 58, 1968.
[21] G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces, Annals of Mathematics 115 (1982), 375-392.
[22] H. P. Rosenthal, On the subspaces of $L^{p}(p>2)$ spanned by sequence of independent random variables, Israel Journal of Mathematics 8 (1970), 273-303.
[23] E. Tokarev, A solution of one problem of Lindenstrauss and Rosenthal on Subspace Homogeneous and Quotient Homogeneous Banach Spaces with application to the Approximation Problem and to the Schroeder - Bernstein Problem, Posted at the Banach Space Bulletin Board, Article math.FA/0206013, 2002.
[24] W. A. Veech, Short proof of Sobczyk's theorem, Proceedings of the American Mathematical Society 28 (1971), 627-628.
[25] P. Wojtaszczyk, Some remarks on the Gurarij space, Studia Mathematica 41 (1972), 207-210.
[26] M. Zippin, Extension of bounded linear operators, in Handbook of the Geometry of Banach spaces, vol. 2, W. B. Johnson and J. Lindenstrauss, eds., Elsevier, Amsterdam, 2003, pp. 1703-1741.

[^0]: * The work of the first author has been supported in part by project MTM200402635

