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ABSTRACT

A Banach space X will be called extensible if every operator E → X

from a subspace E ⊂ X can be extended to an operator X → X. De-

note by dens X. The smallest cardinal of a subset of X whose linear

span is dense in X, the space X will be called automorphic when for

every subspace E ⊂ X every into isomorphism T : E → X for which

dens X/E = dens X/TE can be extended to an automorphism X → X.

Lindenstrauss and Rosenthal proved that c0 is automorphic and conjec-

tured that c0 and `2 are the only separable automorphic spaces. Moreover,

they ask about the extensible or automorphic character of c0(Γ), for Γ un-

countable. That c0(Γ) is extensible was proved by Johnson and Zippin, and

we prove here that it is automorphic and that, moreover, every automor-

phic space is extensible while the converse fails. We then study the local

structure of extensible spaces, showing in particular that an infinite dimen-

sional extensible space cannot contain uniformly complemented copies of

`n

p
, 1 ≤ p < ∞, p 6= 2. We derive that infinite dimensional spaces such as

Lp(µ), p 6= 2, C(K) spaces not isomorphic to c0 for K metric compact,

subspaces of c0 which are not isomorphic to c0, the Gurarij space, Tsirelson

spaces or the Argyros-Deliyanni HI space cannot be automorphic.
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1. Introduction

In [13] it was proved that:

Theorem 1.1 (Lindenstrauss-Rosenthal): Let E be a subspace of c0 and let

T : E → c0 be an into isomorphism such that dim c0/E = dim c0/TE = ∞.

There is an automorphism T̂ of c0 such that T̂ |E = T .

Let us call a Banach space automorphic if for every closed subspace E ⊂ X

and every into isomorphism T : E → X with dens(X/E) = dens(X/TE) there

is an automorphism T̂ of X such that T̂ |E = T .

Let us notice that the condition on the quotient spaces is necessary for the

existence of the automorphism T̂ of X since it naturally induces an isomorphism

between the quotient spaces X/E and X/TE. We remark that the definition

of the density character we handle is slightly unusual: for a Banach space

X , by dens X we mean the smallest cardinal of a subset of X whose linear

span is dense in X . This definition coincides with the standard one when X is

infinite dimensional and is more adequate to the problems considered here since

it coincides with the dimension when the space is finite dimensional.

In [13] the following still unsolved conjecture is formulated: The Banach

spaces c0 and `2 are the only separable infinite dimensional automorphic spaces.

This paper is mostly devoted to the study of aspects of the Lindenstrauss-

Rosenthal conjecture related to the local structure of automorphic spaces as

well as their properties regarding the extension of operators. In the literature

there are several examples of “partially automorphic” spaces: for instance, it is

known that for every subspace E ⊂ `1 and every into isomorphism T : E → `1

such that `1/E and `1/TE are infinite dimensional L1-spaces there is an au-

tomorphism T̂ of `1 extending T (see [9] or [5]); and the space C[0, 1] has the

analogous property for subspaces of c0 (see [12] or [5]). A homological approach

to the study of automorphic and partially automorphic spaces appears in [5],

including a unified method of proof for all the previous results.

Apart from c0 and the trivially automorphic spaces `2(Γ), no other automor-

phic space has been discovered so far. From [13] we know that `∞ is pretty close

to being automorphic although it is not: the automorphism could not exist when

the quotient spaces `∞/E and `∞/TE are both infinite dimensional separable

reflexive spaces. The space c0(Γ), with Γ a non-countable set, seems to be a

natural candidate to be automorphic. Lindenstrauss and Rosenthal ask in [13]
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whether that is true and Zippin suggests in [26, Remark 5.8] that c0(Γ) is likely

to be automorphic. The main theorem in Section 2 (Theorem 2.1) shows that

c0(Γ) is indeed an automorphic space. In Section 3 we carry out an approach

to the conjecture that c0 and `2 are the only separable infinite dimensional

automorphic spaces by studying extension of operator properties of automor-

phic spaces. As we will show, a necessary condition for a Banach space to be

automorphic is to be extensible in the following sense

Definition 1.1 (Extensible space): An infinite dimensional Banach space X is

said to be extensible if for every subspace E ⊂ X , every operator T : E → X

can be extended to an operator on X .

Although c0 and `2 are extensible, not every extensible space is automorphic,

as `∞ shows. On the other hand, we will show that any automorphic space

is extensible. Hence, c0(Γ) is also extensible; this was asked by Lindenstrauss

and Rosenthal in [13] and answered by Johnson and Zippin in [8]. In Section

4, we study the local structure of extensible spaces. For this purpose we intro-

duce and study the notion of uniformly finitely extensible pair of Banach

spaces. Denote λ(E, X) the relative projection constant of a subspace E of

X . We prove that an extensible space cannot contain sequences of uniformly

pairwise isomorphic finite dimensional subspaces En ⊂ X and Fn ⊂ X such

that supn λ(En, X) < ∞ and limn λ(Fn, X) = +∞. In particular, if X contains

uniformly complemented copies of `n
p , 1 ≤ p < ∞, p 6= 2; then X cannot be

extensible. We then present a list of Banach spaces which cannot be extensible

(hence they cannot be automorphic); among those, and contrary to Zippin’s

expectations (see [26, p. 1729]), hereditarily indecomposable spaces need not be

automorphic. The list of non-automorphic spaces includes Lp(µ) spaces, p 6= 2,

which answers a question of Lindenstrauss and Rosenthal in [13]; all subspaces of

c0 other than c0 itself; Tsirelson spaces and the Gurarij space, against Tokarev’s

expectations in [23]. The local approach to the Lindenstrauss-Rosenthal conjec-

ture in Section 4 suggests that automorphic spaces should be locally similar to

either `2, c0 or to spaces with “badly-normed” finite rank projections. According

to this remark, we formulate in Section 5 some open questions.

By operator we mean bounded linear operator, by space we mean Banach

space. An into isomorphism is an injective operator T : Y → X with closed

image. We shall use the notation X ∼ Y to mean that X and Y are isomorphic

spaces.
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2. c0(Γ) is automorphic

Let Γ be any set. We shall use for a subset X ⊂ c0(Γ) the notation

supp X = {γ ∈ Γ : x(γ) 6= 0 for some x ∈ X}.

For a subset ∆ ⊂ Γ, let ¬∆ = Γ\∆; the space c0(∆) denotes the set of elements

of c0(Γ) having support in ∆; by P∆ we denote the natural projection of c0(Γ)

onto c0(∆) and for a subspace X ⊂ c0(Γ), X∆ = X ∩ c0(∆). Let A be an

arbitrary set of indices. For a collection (Xα), α ∈ A, of (linearly independent)

closed subspaces of a closed subspace X ⊂ c0(Γ) one has X = c0(Xα, A) when

the closed linear span of
⋃

α Xα is equal to X and for any α 6= β

suppXα ∩ suppXβ = ∅.

Theorem 2.1: Let Γ be an uncountable set. The space c0(Γ) is automorphic.

Indeed, in [26, Remark 5.8] Zippin pointed to the following decomposition

lemma [8, Lemma 2] as an instrument for proving Theorem 2.1 (also, Castillo

and Johnson suggested that possibility in private communications).

Lemma 2.2 (Johnson-Zippin): Let Γ be an uncountable set and let X be a

closed subspace of c0(Γ). For every countable subset Γ′ ⊂ Γ there is a countable

subset Γ′ ⊂ ∆ ⊂ Γ such that P∆x ∈ X for every x ∈ X .

We shall use for the proof of Theorem 2.1 a refined versions of this lemma. For

the rest of this section, X and Y will be isomorphic infinite dimensional closed

subspaces of c0(Γ) such that c0(Γ)/X and c0(Γ)/Y are infinite dimensional

spaces and T : X → Y will be an isomorphism. Let us notice that if densX <

cardΓ then there is a subset ∆ ⊂ Γ such that X ∪ Y ⊂ c0(∆) and card∆ =

densX . Therefore, one can assume that densX = cardΓ and supp(X ∪ Y ) = Γ.

Lemma 2.3: For every countable subset Γ′ ⊂ Γ there is a countable subset

Γ′ ⊂ ∆ ⊂ Γ such that

(1) P∆X ⊂ X and P∆Y ⊂ Y ;

(2) P¬∆X ⊂ X and P¬∆Y ⊂ Y.

Proof. Let us construct a sequence (∆n) of countable sets as follows: Let ∆1 ⊃

Γ′ be a countable set for which P∆1
x ∈ X for every x ∈ X (Lemma 2.2).

Let ∆2 ⊃ ∆1 be a countable set such that P∆2
y ∈ Y for every y ∈ Y . Let

∆3 ⊃ ∆2 be such that P∆3
x ∈ X for every x ∈ X . We obtain in this way an
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increasing sequence (∆n) of countable sets such that for every n, P∆2n−1
X ⊂ X

and P∆2n
Y ⊂ Y . The set ∆ =

⋃∞

n=1 ∆n has the properties (1) and (2).

Lemma 2.4: For every countable set Γ′ ⊂ Γ there is a countable set Γ′ ⊂ ∆ ⊂ Γ

such that (1) and (2) hold and TX∆ = Y∆ and TX¬∆ = Y¬∆.

Proof. Let us construct an increasing sequence (∆n) of countable sets as follows:

Take a countable set ∆1 ⊃ Γ′ for which (1) and (2) hold and TXΓ′ ⊂ Y∆1
. Take

∆2 ⊃ ∆1 for which (1) and (2) hold and T−1Y∆1
⊂ X∆2

. Take ∆3 ⊃ ∆2 such

that (1) and (2) hold and TX∆2
⊂ Y∆3

. Take ∆4 ⊃ ∆3 for which (1) and (2)

hold and T−1Y∆3
⊂ X∆4

and so on. The set ∆ =
⋃∞

n=1 ∆n verifies conditions (1)

and (2). Obviously TX∆ ⊂ Y∆ and TX¬∆ ⊂ Y¬∆. Let us see that TX∆ = Y∆:

let y ∈ Y∆, then y = Tx for some x = x1 + x2 with x1 ∈ X∆ and x2 ∈ X¬∆.

So, y = Tx1 + Tx2 and Tx2 ∈ Y∆ ⊂ P∆(c0(Γ)). But Tx2 ∈ Y¬∆ ⊂ P¬∆(c0(Γ)),

therefore Tx2 = 0 and y = Tx1 ∈ TX∆. The equality TX¬∆ = Y¬∆ can be

checked in the same way.

Lemma 2.5: Let dens c0(Γ)/X = dens c0(Γ)/Y . There is a set A of cardinality

card Γ such that the set Γ admits a decomposition Γ =
⋃

α∈A ∆α in pairwise

disjoint countable sets such that for every α ∈ A:

a) TX∆α
= Y∆α

;

b) X = c0(X∆α
, A) and Y = c0(Y∆α

, A).

Proof. In the set of families FA = (∆α)α∈A of pairwise disjoint subsets of Γ

verifying the four conditions of Lemma 2.4, for which A is a set of cardinality

card Γ we introduce the natural order: (∆α)α∈A ≤ (∆′
α)α∈A′ if and only if

A ⊂ A′ and for all α ∈ A one has ∆α = ∆′
α. This is an inductive order,

since if (FAj
) is a chain, then one can set as its upper bound the family F⋃

Aj
:

whenever α ∈ Aj the set ∆α is uniquely defined. That card
⋃

j Aj = card Γ

is guaranteed by card
⋃

j Aj = card
⋃

j

⋃
α∈Aj

∆α ≤ card Γ. Therefore, there

must be a maximal family (∆m
α )α∈A. If Γ\

⋃
α∈A ∆m

α is empty, we are done; if it

is countable, Lemma 2.4 and the maximality of the family yield a contradiction.

If it is finite then add this finite set of points to some set ∆m
α .

Lemma 2.6: Let A be an infinite index set. Let {Bα}α∈A and {Cα}α∈A be

families of pairwise disjoint sets, each of them countable (finite or infinite)

or empty, in such a way that
⋃

α∈A Bα and
⋃

α∈A Cα have the same infinite

cardinal. Then A can be decomposed into a disjoint union of countable sets,
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A =
⋃

i∈I Ai, such that for any i either both
⋃

α∈Ai
Bα and

⋃
α∈Ai

Cα are

infinite or both are empty.

Proof. We set A0
0 = {α ∈ A : Bα = ∅ = Cα}; A0

1 = {α : Bα 6= ∅ = Cα};

A1
0 = {α : Bα∅ 6= Cα} and A1

1 = {α : Bα 6= ∅ 6= Cα}. Assume that A1
1 is

infinite and set a decomposition A1
1 =

⋃
i∈I Ai into infinite countable sets. If

cardA0
1 > cardA1

1 then the hypothesis forces cardA0
1 = cardA1

0 and let H be a

bijection between those sets. If A0
1 =

⋃
j∈J Aj and A0

0 =
⋃

k∈K Ak are decompo-

sition into infinite countable sets then A =
⋃

i Ai ∪
⋃

j(Aj ∪ H(Aj)) ∪
⋃

k Ak is

the desired decomposition. If, however, there exist injections F : A0
1 → A1

1 and

G : A1
0 → A1

1 then the decomposition is
⋃

i(Ai ∪ F−1(Ai) ∪ G−1(Ai)) ∪
⋃

k Ak.

If A1
1 is finite and both A0

1 and A1
0 are finite, then the decomposition is

A =
⋃

k∈K Ak ∪ (A1
1 ∪ A1

0 ∪ A0
1). If, say, A1

0 is finite and A0
1 is infinite, then

the same decomposition of A works since now A0
1 must be countable. Fi-

nally, if A0
1 and A1

0 are both infinite, then cardA0
1 = cardA1

0; fix a bijection

H : A0
1 → A1

0 and an injection F : A1
1 → A0

1 and the decomposition is

A =
⋃

j(Aj ∪ H(Aj) ∪ F−1(Aj)) ∪
⋃

k Ak.

Lemma 2.7: Let dens c0(Γ)/X = dens c0(Γ)/Y be infinite. The set Γ admits

a decomposition Γ =
⋃

i∈I Γi into pairwise disjoint countable sets such that for

every i:

a) TXi = Yi where Xi := XΓi
, Yi := YΓi

;

b) either both c0(Γi)/Xi and c0(Γi)/Yi are infinite dimensional or both

are equal to 0;

c) X = c0(Xi, I) and Y = c0(Yi, I).

Proof. Let us take a set A of cardinality equal to Γ and take a decomposition

Γ =
⋃

α∈A ∆α like in Lemma 2.5. For every α ∈ A, the embedding X∆α
↪→

c0(∆α) induces a separable quotient c0(∆α)/X∆α
(it could be zero). Consider

for every α ∈ A sets Bα and Cα of cardinality equal to dens c0(∆α)/X∆α
and

dens c0(∆α)/Y∆α
, respectively, in such a way that the families (Bα)α∈A and

(Cα)α∈A are formed by pairwise disjoint elements. By the hypothesis,

card
⋃

α∈A

Bα = dens (c0(Γ)/X) = dens (c0(Γ)/Y ) = card
⋃

α∈A

Cα

and it is infinite. We can apply Lemma 2.6 to obtain a decomposition A =⋃
i∈I Ai such that for each i ∈ I if we set Γi =

⋃
α∈Ai

∆α ⊂ Γ, then the
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decomposition Γ =
⋃

i∈I Γi verifies b):

dens c0(Γi)/Xi = card
⋃

α∈Ai

Bα = card
⋃

α∈Ai

Cα = dens c0(Γi)/Yi.

That a) and c) also hold follows directly from Lemma 2.5 and from the obser-

vations Xi = c0(X∆α
, Ai) and Yi = c0(Y∆α

, Ai).

Proof of Theorem 2.1. If both quotients are finite dimensional, our definition

of the density character implies their dimensions coincide and therefore the

existence of the automorphism is clear. Otherwise, consider a partition (Γi)

of Γ as in Lemma 2.7. Let us extend every T |Xi
to an automorphism T̂i of

c0(Γi) using the Lindenstrauss-Rosenthal theorem. Moreover, from the proof of

Theorem 1 in [13] one can check that there is a function g : [1,∞) → [1,∞) such

that for some constant C and for every i, ‖T̂i‖‖T̂
−1
i ‖ ≤ g(‖T |Xi

‖‖(T |Xi
)−1‖) ≤

Cg(‖T ‖‖T−1‖). The final extension is obvious: for every x =
∑

i xi , xi ∈ Xi,

put T̂ x =
∑

i T̂ixi.

3. Extensible spaces

As we mentioned in the introduction, the spaces `1, C[0, 1] and `∞ have a

partially automorphic character. If X is one of those spaces, or c0 or `2, there

is a class TX of injective isomorphisms into X such that for every T ∈ TX there

exists an automorphism T̂ of X extending T . Let us observe that in all the

previous cases not only the into isomorphisms of the class TX can be extended

to X , but even every operator S : E → X defined on a subspace E of X

for which the embedding E → X is in TX can also be extended to X : by

Lindenstrauss’ theorem in [9], given a subspace E ⊂ `1, every operator E → `1

extends to `1 when `1/E is a L1-space; by a combination of Lindenstrauss-

Pe lczyński theorem [12] and Sobczyk’s theorem [24] if E is a subspace of C[0, 1]

which embeds into c0, the operators E → C[0, 1] extend to C[0, 1]; and, as is

well-known, all operators into `∞ extend to any superspace. The two already

known automorphic spaces also enjoy the corresponding extension of operators

property: every operator on a subspace of `2(I) extends to `2(I) and, finally,

operators E → c0 extend to c0. After these remarks the introduction of the

notion of extensible space (Definition 1.1) is meaningful.
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Let us prove that every automorphic space is extensible. For ε > 0, we call

an operator T : X → Y an ε-isometry provided for every x ∈ X , (1− ε)‖x‖ ≤

‖Tx‖ ≤ (1 + ε)‖x‖.

Proposition 3.1: Let E be a closed subspace of a Banach space X and let

ε > 0. If every ε-isometry E → X can be extended to an operator X → X ,

then every operator E → X can be extended to an operator X → X .

Proof. Assume there is an operator T : E → X , ‖T ‖ = 1, which cannot be

extended to an operator X → X . For every operator S : X → X and for every

ε > 0 the operator S|E +εT cannot be extended either. In particular, if we take

S to be the identity, there is an ε-isometry E → X which does not extend to

X .

Theorem 3.2: Every automorphic space X is extensible.

Proof. Assume there is a subspace E ⊂ X and an operator T : E → X , ‖T ‖ = 1,

which cannot be extended to X , then X/E is infinite dimensional. Then, by

Proposition 3.1, for some ε > 0 the operator R = id|E + εT is an ε-isometry

which cannot be extended to X . Let us show that densX/E = densX/RE.

Let δ > 0 and let {xi : i ∈ I} be a set in the unit sphere of X such that

cardI = densX/E and for every i, j ∈ I,

inf{‖xi − xj + y‖ : y ∈ E} > 1 − δ.

Then, because the subspaces E and RE are very close if ε is sufficiently small,

inf{‖xi − xj + y‖ : y ∈ RE} > 1 − ϕ(ε, δ),

where ϕ(ε, δ) is very small if ε and δ are sufficiently small. Hence, X/RE is

also infinite dimensional and densX/RE ≥ densX/E. Taking R−1 instead of

R, we obtain densX/RE ≤ densX/E. So, densX/RE = densX/E and X is not

automorphic.

As a corollary of Theorems 2.1 and 3.2 one obtains the result of [8]:

Corollary 3.3: Let Γ be an uncountable set. The space c0(Γ) is extensible.

Question 1: Is every separable extensible space automorphic?
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Simple examples of non-extensible spaces are given by spaces containing pairs

of isomorphic subspaces one of them complemented and the other uncomple-

mented. The space `1, which admits an uncomplemented copy of itself according

to Bourgain’s construction in [4], is a natural example. Also, separable C(K)

spaces non-isomorphic to c0 cannot be extensible; indeed, it follows from a result

of Amir [1] and Pe lczyński [20, Section 9], that those spaces contain subspaces

E and F with E complemented, F uncomplemented and E ∼ F ∼ C(ωω).

4. A local approach to extensible spaces

Let us begin this section with more general and more detailed definitions which

are in the spirit of [26, Definition 1.9] or those in [7].

Definition 4.1 (Extensible couple): Given a couple (X, Y ) of Banach spaces and

λ ≥ 1 we will say that it is extensible (resp. compactly extensible) if every

operator (resp., compact operator) T : E → Y from a subspace E ⊂ X can be

extended to an operator T̂ : X → Y . If the extension of the operator T̂ verifies

‖T̂‖ ≤ λ‖T ‖, we say that the couple (X, Y ) is λ-extensible (resp., compactly

λ-extensible). The couple (X, Y ) is said to be finitely λ-extensible if every op-

erator T : E → Y from a finite dimensional subspace E ⊂ X can be extended

to an operator T̂ : X → Y with ‖T̂‖ ≤ λ‖T ‖. The couple (X, Y ) will be

called uniformly extensible (resp., uniformly compactly extensible, uniformly

finitely extensible) if it is λ-extensible (resp., compactly λ-extensible, finitely

λ-extensible) for some λ.

We give two examples: the Lindenstrauss-Pe lczyński theorem [12] asserts that

for every C(K)-space the couple (c0, C(K)) is (1+ε)-extensible for every ε > 0;

while Lindenstrauss’ results in [10] mean that for every separable Banach space

X and every L∞,λ-space Y the couple (X, Y ) is compactly (λ+ε)-extensible for

every ε > 0. It is clear that X is extensible if and only if the couple (X, X) is

extensible. The meaning of λ-extensible or compactly λ-extensible space should

also be clear. Let us establish some connections between these notions. Note

that if F is a finite codimensional closed subspace of a Banach space X , then

the couple (X, Y ) is uniformly finitely extensible if and only if the couple (F, Y )

is uniformly finitely extensible. The proof of the following lemma is rather stan-

dard.
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Lemma 4.1: Assume that (X, Y ) is not a uniformly finitely extensible couple.

Then there are subspaces En ⊂ X which form a finite dimensional Schauder

decomposition of its closed linear hull E and operators Tn : En → Y , ‖Tn‖ = 1,

such that the norm of every extension of Tn onto X is not smaller than 22n.

Proof. Let ε > 0. By hypothesis, there is a finite dimensional subspace E1 ⊂ X

and a norm one operator T1 : E1 → Y such that the norm of every extension

of T1 to X is greater than or equal to 22. Let Φ1 be a finite subset of the

unit sphere S(X∗) which (1 − ε)-norms E1, and let Φ>
1 ⊂ X be its (finite

codimensional) annihilator. Then the couple (Φ>
1 , Y ) is not uniformly finitely

extensible. So, there is a finite dimensional subspace E2 ⊂ Φ>
1 and a norm one

operator T2 : E2 → Y such that the norm of every extension of T2 onto Φ>
1

is greater than or equal to 24. Let Φ2 be a finite subset of the sphere S(X∗)

which (1 − ε)-norms E1 + E2, and let Φ>
2 ⊂ X be its (finite codimensional)

annihilator. The way of continuing the construction is clear. The conditions

that Φn (1 − ε)-norms
∑n

1 Ei and Ei ⊂ Φ>
n for i > n, guarantee that (En)

forms a finite dimensional Schauder decomposition of E.

Proposition 4.2: If the couple (X, Y ) is compactly extensible, then it is uni-

formly finitely extensible. If the couple (X, Y ) is finitely λ-extensible and Y is

β-complemented in its bidual, then (X, Y ) is λβ-extensible.

Proof. To prove the first assertion, assume that (X, Y ) is not uniformly finitely

extensible. Let (En) be a finite dimensional decomposition for its closed linear

hull E and let (Tn) be operators as in Lemma 4.1. We define the operator

T : E → Y by

T
(∑∞

1
xn

)
=

∑∞

1
2−nTnxn ,

where xn ∈ En and the series converges. The operator T is compact, and no

extension T̂ : X → Y is possible.

To prove the second assertion, let E ⊂ X be a subspace and let T : E → Y be

an operator. Consider for each finite dimensional subspace jα : Eα → E of E an

extension Tα : X → Y of T jα having norm ‖Tα‖ ≤ λ‖T jα‖. If U denotes a free

ultrafilter on the set of finite dimensional subspaces of E that refines the Fréchet

filter corresponding to the natural order, define the operator TU : X → Y ∗∗

by TUx = w∗ − limU Tαx (by the Banach-Alaoglu theorem, this limit exists). If

P : Y ∗∗ → Y is a projection with norm at most β, then PTU extends T and

verifies ‖PTU‖ ≤ βλ.
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It would be interesting to know if extensible implies uniformly extensible. The

second part of Proposition 4.2 says that for reflexive Y extensibility, compact

extensibility and uniform finite extensibility coincide. It would also be inter-

esting to determine if compactly extensible and uniformly finitely extensible

coincide at least in spaces with the approximation property.

Let us consider the connection between uniform finite extensibility and the lo-

cal structure of a Banach space. By λ(E, X) we denote the relative projection

constant of a subspace E of X , which is defined as follows:

λ(E, X) = inf{‖P‖ : P is a projection of X onto E}.

When E is not complemented we set λ(E, X) = ∞. Relative projection con-

stants are connected with the extension of isomorphisms as follows.

Lemma 4.3: Let E ⊂ X , F ⊂ Y be closed subspaces and let T : E → F be an

isomorphism. Then for every extension T̂ : X → Y of T

(1) ‖T̂‖ ≥
λ(E, X)

λ(F, Y )

1

‖T−1‖
.

Proof. Let ε > 0 and let P be a projection of Y onto F with ‖P‖ < λ(F, Y )+ε.

Then the operator Q = T−1P T̂ is a projection of X onto E and

‖Q‖ ≤ ‖T−1‖(λ(F, Y ) + ε)‖T̂‖ .

Since ε is arbitrary, the inequality (1) is clear.

Let d(E, F ) denote the Banach-Mazur distance between two (isomorphic)

Banach spaces E and F . As an immediate consequence of Lemma 4.3 we obtain

Theorem 4.4: Assume that the spaces X and Y contain sequences of finite

dimensional subspaces En and Fn, respectively, with dim En = dim Fn, and

such that

(2)
λ(En, X)

λ(Fn, Y )d(En, Fn)
→ ∞ as n → ∞.

Then the couple (X, Y ) is not uniformly finitely extensible. In particular, if X =

Y , then the space X is not extensible and therefore, it cannot be automorphic.

Proof. Let ε > 0 and, for every n, let Tn : En → Fn be an isomorphism with

‖Tn‖ = 1 and ‖T−1
n ‖ < d(En, Fn) + ε. If T̂n denotes any extension of Tn, by (2)

and Lemma 4.3 one necessarily has limn→∞ ‖T̂n‖ = ∞.
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Maurey’s extension theorem in [16] ensures that for every space X of type 2,

every space Y of cotype 2, the couple (X, Y ) is uniformly extensible. On the

other hand, under some additional assumptions (see [18], [6]) if X does not have

type 2, there is an operator from some subspace of X into `2 which cannot be

extended to X . The next corollary of Theorem 4.4 is close to this result.

Corollary 4.5: Let X contain a sequence of subspaces En uniformly isomor-

phic to `n
2 such that λ(En, X) → ∞. Let Y contain a sequence of subspaces

which are uniformly complemented and uniformly isomorphic to `n
2 . Then the

couple (X, Y ) is not uniformly finitely extensible.

Corollary 4.5 applies that when p = sup{p′ : X is a space of type p′} < 2

(by [17], such space contains uniformly `n
p , p < 2, and by [3], a space with this

property contains a sequence of uniformly Euclidean subspaces En such that

λ(En, `n
p ) → ∞) and Y is B-convex (by [21], such space contains a sequence

of subspaces which are uniformly complemented and uniformly isomorphic to

`n
2 ). It is well-known that for every 1 ≤ p < ∞, p 6= 2, there is a sequence of

subspaces En ⊂ `n
p , uniformly isomorphic to `

k(n)
p such that λ(En, `n

p ) → ∞ as

n → ∞. This was proved: for 2 < p < ∞ and 1 < p < 4/3 in [22]; for 1 < p < 2

in [3] and for p = 1 in [4]. Therefore we have

Corollary 4.6: Let 1 ≤ p < ∞, p 6= 2, and let X be a Banach space contain-

ing a sequence of subspaces uniformly complemented and uniformly isomorphic

to `n
p . Then X is not uniformly finitely extensible; hence, it is not automorphic.

Corollary 4.7: Let X be a Banach space that contains `n
∞ uniformly and

also contains a sequence of finitely dimensional subspaces Fn with dim Fn → ∞

which are not uniformly isomorphic to the corresponding `dimFn
∞ but are uni-

formly complemented in X and have uniformly bounded unconditional basic

constants. Then X cannot be uniformly finitely extensible; hence it cannot be

automorphic.

Proof. Find a sequence En of almost isometric copies of Fn inside suitable `
m(n)
∞

for large m(n). The spaces En cannot be uniformly complemented in `
m(n)
∞ by

[11, p. 298]; and the same in X .

We can give a list of some proposed candidates to be automorphic which

actually are not.
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Proposition 4.8: The following spaces are not extensible and, therefore, not

automorphic:

(1) The spaces Lp and `p, 1 ≤ p < ∞, p 6= 2.

(2) The Argyros-Deliyanni hereditarily indecomposable space.

(3) Tsirelson’s space and its dual.

(4) The Gurarij space.

Part (1) was raised in [13] for `p with 2 < p < ∞. Zippin suggested in [26,

p. 1729] that the space mentioned in (2) could be automorphic. The Argyros-

Deliyanni hereditarily indecomposable space constructed in [2] and the Tsirelson

space T [19, Theorem 12] are not uniformly finitely extensible since they con-

tain uniformly complemented `n
1 . The dual T ∗ contains `n

∞ uniformly and the

canonical basis of T ∗ is unconditional. By Corollary 4.7, T ∗ is not uniformly

finitely extensible.

The Gurarij space G [15] could be expected to be automorphic by the exten-

sion property for finite rank operators which it possesses. Nevertheless, G is not

even extensible. This follows from the simple observation that complemented

subspaces of an extensible space are extensible and from the fact that every

separable isometric predual of L1 is isomorphic to a complemented subspace of

G [25]. In particular, C[0, 1] is complemented in G and, as we have already seen,

it is not extensible. Thus, G is not extensible. Note that G is an L∞-space, so

is uniformly compactly extensible.

5. Further remarks and open problems

About stability properties of automorphic spaces we can only assert that sub-

spaces of an automorphic space do not need to be automorphic.

Proposition 5.1: A subspace X of c0 is extensible if and only if it is isomorphic

to c0. In particular, for any sequence of finite dimensional spaces En, the vector

sum (
∑∞

1 En)c0
is extensible (automorphic) if and only if it is isomorphic to

c0.

Proof. It is well-known that a subspace X of c0 is isomorphic to c0 if and only

if it is complemented in c0 (see [14, Theorem 2.a.3]). Also it is well-known

([14, Proposition 2.a.2]) that X contains a complemented subspace which is

isomorphic to c0. So, X ∼ Y ⊕ c0 ∼ Y ⊕ c0 ⊕ c0 ∼ X ⊕ c0, hence, X contains a
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complemented copy of itself. If X was not complemented in c0, then X ∼ Y ⊕c0

would also contain a uncomplemented copy of X . By Lemma 4.3, X cannot be

extensible.

While complemented subspaces of extensible spaces are extensible, we do not

know whether complemented subspaces of automorphic spaces are automor-

phic. The following proposition shows a simple necessary condition for being

automorphic.

Proposition 5.2: Let X be a Banach space isomorphic to its square. If X

admits a quotient without a complemented copy of X , then X cannot be auto-

morphic.

Proof. Let E be a subspace of X such that X/E contains no complemented

copy of X . Since X ∼ X ⊕ X , X contains a subspace F isomorphic to E such

that X/F contains a complemented copy of X . Of course, one cannot extend

the isomorphism between E and F to an automorphism of X .

Let us notice that C(K) and Lp are not extensible for different reasons:

C(K) is compactly extensible (see [26, Theorem 4.3]), while Lp is not. Since

L∞-spaces are compactly extensible (see [10] or [26, Theorem 4.2]), Theorem

4.4 immediately yields that a L∞-space X cannot contain sequences of pairwise

uniformly isomorphic subspaces (En) and (Fn) satisfying (2) in Theorem 4.4

with X = Y . We already know that infinite dimensional separable C(K)-spaces

non-isomorphic to c0 cannot be automorphic. This suggests

Question 2: Does there exist a non-separable automorphic C(K)-space not

isomorphic to c0(Γ)? Does there exist an automorphic L∞-space non-isomorphic

to c0(Γ)?

Question 3: Let X be a Banach space of finite cotype which is not isomorphic

to a Hilbert space. Does X contain sequences of subspaces (En) and (Fn),

dim En = dim Fn, satisfying (2) in Theorem 4.4 with X = Y ?

The local approach to automorphic spaces in Section 4 suggests it would

be reasonable to study the extensible or automorphic character of spaces of

finite dimension, something which only makes sense considering quantitative

estimates.
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Question 4: Let 1 < p < ∞, p 6= 2. For which λ is the space `n
p λ-extensible?

It is clear that `n
2 and `n

∞ are 1-extensible.

Question 5: Let λ ≥ 1 and, for every n ∈ N, let Xn be an n-dimensional

λ-extensible space. Is it true that

sup
n

min {d(Xn, `n
2 ), d(Xn, `n

∞)} < ∞ ?

We do not even know whether there is some λ > 1 and a sequence of n-

dimensional Pλ-spaces En such that d(En, `n
∞) → ∞ (see [26, p. 1716]).

Definition 5.1 (λ-automorphic space): Let λ ≥ 1. We say that a finite dimen-

sional normed space X is λ-automorphic if for every subspace E ⊂ X and every

into isomorphism T : E → X there is an automorphism T̂ : X → X extending

T such that ‖T̂‖‖T̂−1‖ ≤ λ‖T ‖‖T−1‖.

Obviously, `n
2 is 1-automorphic for every n. But, maybe surprisingly, we do

not know the automorphic character of the spaces `n
∞. What we can say is that

`n
∞ cannot be λ-automorphic for λ close to 1. To check this take the unit vec-

tor basis (ei) of `n
∞, e = (1, 1, . . . , 1) and set Te1 = e. If ‖T̂ e2‖ > 1/2 then

‖e1 + e2‖ = ‖e1 − e2‖ = 1 and ‖T̂ (e1 + e2)‖ > 3/2 or ‖T̂ (e1 − e2)‖ > 3/2.

The following variation of Question 5 is related to the automorphic character

of finite dimensional spaces and can be considered as a kind of rotation problem:

Question 6: For every n, let Xn be a λ-automorphic space with dim Xn = n.

Is it true that supn d(X, `n
2 ) < ∞?
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[12] J. Lindenstrauss and A. Pe lczyński, Contributions to the theory of the classical Banach

spaces, Journal of Functional Analysis 8 (1971), 225–249.

[13] J. Lindenstrauss and H. P. Rosenthal, Automorphisms in c0, l1 and m, Israel Journal of

Mathematics 7 (1969), 227–239.

[14] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.

[15] W. Lusky, The Gurarij spaces are unique, Archiv der Mathematik 27 (1976), 627–635.
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