Copies of $c_{0}(\Gamma)$ and $\ell_{\infty}(\Gamma) / c_{0}(\Gamma)$ in quotients of Banach spaces with applications to Orlicz and Marcinkiewicz spaces

by Anatolij Plichko ${ }^{\text {a }}$ and Marek Wójtowicz ${ }^{\text {b }}$
${ }^{\text {a }}$ Instytut Matematyki. Politechnika Krakowska, ul. Warszawska 24, 3/-155 Kraków, Poland
b Instytut Matematyki, Uniwersytet Kazimierza Wielkiego, Pl. Weyssenhoffa II, 85-072 Bydgoszcz, Poland

Communicated by Prof. J.J. Duistermaat at the meeting of September 25, 2006

Abstract

Let X be a Banach space, let Y be its subspace, and let Γ be an infinite set. We study the consequences of the assumption that an operator T embeds $\ell_{\infty}(\Gamma)$ into X isomorphically with $T\left(c_{0}(\Gamma)\right) \subset Y$. Under additional assumptions on T we prove the existence of isomorphic copies of $c_{0}\left(\Gamma^{\kappa_{0}}\right)$ in X / Y, and complemented copics $\ell_{\infty}(\Gamma) / c_{0}(\Gamma)$ in X / Y. In concrete cases we obtain a new information about the structure of X / Y. In particular, $L_{\infty}[0,1] / C[0,1]$ contains a complemented copy of ℓ_{∞} / c_{0}, and some natural (lattice) quotients of real Orlicz and Marcinkiewicz spaces contain lattice-isometric and positively 1 -complemented copies of (real) ℓ_{∞} / c_{0}.

1. INTRODUCTION

Let X be a Banach space, let Y be a closed subspace of X, and let Γ be an infinite set. The present paper deals with the structure of the space X / Y and is motivated by two recent results: by Rusu [23] and the second named author [29]. In [23, pp. 86-87] it is proved implicitly that if a subspace Y of ℓ_{∞} contains an isomorphic copy of c_{0} but not ℓ_{∞}, then $c_{0}(\mathbf{R})$ embeds isomorphically into ℓ_{∞} / Y. On the other hand, in [29] the existence of lattice copies of $\ell_{\infty}(\Gamma) / c_{0}(\Gamma)$ in some quotients of Banach lattices was examined. Regarding the structure of X / Y we refer the reader to the monograph [5] by Castillo and Gonzalez describing the state in this setting up till 1997; the survey paper [2I] by Plichko and Yost (of 2000) complements it partially.

In this paper we study the consequences of the assumption that an operator T embeds $\ell_{\chi}(\Gamma)$ into X isomorphically with

[^0]\[

$$
\begin{equation*}
T\left(c_{0}(\Gamma)\right) \subset Y \tag{1}
\end{equation*}
$$

\]

In Theorem 1 (extending the above-mentioned result by Rusu, and complementing the classical Drewnowski-Roberts theorem that the non-containment of ℓ_{∞} is a three-space property [5, Theorem 3.2.f]) we show, in particular, that X / Y contains a copy of $c_{0}\left(\Gamma^{\aleph_{0}}\right)$ provided that Y contains no copy of ℓ_{∞}. In Theorem 2 we strengthen relation (1) between Y and $c_{0}(\Gamma)$ obtaining the existence of a continuous injection R from $\ell_{\infty}(\Gamma) / c_{0}(\Gamma)$ into X / Y, and a projection from X / Y onto the range of R (under an additional assumption on T). The latter result is narrowed in Theorem 3 to the case studied in [29], giving that some quotients of Banach lattices contain (positively) complemented copies of ℓ_{∞} / c_{0}.

These general results well apply to concrete cases and yield new information about the structure of quotients of classical spaces. For example, the space $L_{\infty}[0,1] / C[0,1]$ contains a complemented copy of ℓ_{∞} / c_{0} (Corollary 5), and an application of Theorem 3 to an Orlicz space $X=L_{\phi}(\mu)$ and Y its order continuous part $E_{\phi}(\mu)$ gives that $L_{\phi}(\mu) / E_{\phi}(\mu)$ contains a lattice-isometric and positively 1-complemented copy of ℓ_{∞} / c_{0} whenever $L_{\phi}(\mu) \neq E_{\phi}(\mu)$ (Corollary 9).

The interested reader may apply further the result by Partington, which does not appear in our statements, that every isomorphic copy of ℓ_{∞} / c_{0} contains an isometric copy of ℓ_{∞} (see [18]; its lattice version is addressed in [29]); such an additional conclusion one obtains, e.g., in Corollary 5, Theorem 2(ii), and Corollary 8 . Moreover, if Γ is uncountable then $\ell_{\infty}(\Gamma) / c_{0}(\Gamma)$, endowed with the natural quotient norm, contains a lattice-isometric copy of $\ell_{\infty}(\Gamma)$, see [28]; this complements part (i) of Theorem 3.

The main results of this paper are given in Sections 2, 3 and 4, and their proofs are included in the last section.

The terminology we use is standard and is that of [16,17]. All spaces and subspaces are assumed to be linear and norm-closed, and all (linear) operators are continuous. A subspace U of X is said to be 1-complemented if there is a projection P from X onto U with $\|P\|=1$. The term "copy" means "isomorphic copy". The letters Q and q, respectively, will denote the familiar quotient mappings $X \rightarrow X / Y$ and $\ell_{\infty}(\Gamma) \rightarrow \ell_{\infty}(\Gamma) / c_{0}(\Gamma)$, respectively.

By $\mathcal{L}_{\infty}[0,1]$ we denote the linear space of all Lebesgue-measurable functions on the interval $[0,1]$ that are bounded almost everywhere. Then \mathcal{N} denotes the subspace of $\mathcal{L}_{\infty}[0,1]$ of the functions that vanish almost everywhere on $[0,1]$, and $\mathcal{L}_{\infty}^{b}[0,1]$ is the subspace of all bounded elements f of $\mathcal{L}_{\infty}[0,1]$ (i.e., $\left.\|f\|_{\infty}:=\sup _{t \in[0,1]}|f(t)|<\infty\right)$. By S we denote the natural quotient mapping $\mathcal{L}_{\infty}[0,1] \rightarrow \mathcal{L}_{\infty}[0,1] / \mathcal{N}$, and the latter space is denoted by $L_{\infty}[0,1]$. Obviously, $\left(\mathcal{L}_{\infty}[0,1],\| \|_{\infty}\right)$ is a closed subspace of $\ell_{\infty}[0,1]$ containing $C[0,1]$ as a closed subspace. Moreover, $L_{\infty}[0,1]$, endowed with the "ess sup"-norm, is a Banach space and S restricted to $C[0,1]$ is an isometry preserving disjointness. It is worth to notice that $S\left(\mathcal{L}_{\infty}^{b}[0,1]\right)=L_{\infty}[0,1]$ (see (9) in Section 5).

By \mathbf{N} and \mathbf{R} we denote the sets of positive integers and real numbers, respectively.

We start with a generalization of the above-mentioned result by Rusu. We recall that Y denotes a subspace of a Banach space X.

Theorem 1. Let $T: \ell_{\infty}(\Gamma) \rightarrow X$ be an isomorphic embedding that fulfills condition (1). Then $c_{0}\left(\Gamma^{\aleph_{0}}\right)$ embeds isomorphically into X / Y if one of the following conditions holds:
(a) Y does not contain a copy of ℓ_{∞},
(b) Y does not contain a copy of $\ell_{\infty}(\Gamma)$ and $\operatorname{card}(\Gamma)=\operatorname{card}(\Gamma)^{\kappa_{0}}$.
(Of course, if $\operatorname{card}(\Gamma)=\operatorname{card}(\Gamma)^{\aleph_{0}}$ then condition (b) is weaker than (a).) The theorem covers partially also the case when the cardinality $\alpha:=\operatorname{card}(\Gamma)$ fulfills inequality $\alpha^{\aleph_{0}}>\alpha$. Because $\alpha=2^{\aleph_{0}}$ implies that $\alpha^{\aleph_{0}}=\alpha$, we then have two cases:
(j) $\aleph_{0} \leqslant \alpha<2^{\kappa_{0}}$, and
(jj) $\alpha>2^{\kappa_{0}}$.
In case (j) we apply condition (a). In case (jj) the set of infinite cardinals $\{\beta<$ $\alpha: \beta^{\aleph_{0}}=\beta$) is not empty, and hence we can apply condition (b) for every subset Γ_{β} of Γ, with $\operatorname{card}\left(\Gamma_{\beta}\right)=\beta$, instead of Γ. That is, we consider the restriction of T to the set of elements of $\ell_{\infty}(\Gamma)$ with support contained in Γ_{β}, which form a subspace of $\ell_{\infty}(\Gamma)$ which is isometric to $\ell_{\infty}\left(\Gamma_{\beta}\right)$. This is so, for example, for $\alpha:=$ $\sum_{n=1}^{\infty} \alpha_{n}$, where $\alpha_{1}=\kappa_{0}$, and $\alpha_{n+1}=2^{\alpha_{n}}, n=1,2, \ldots$; here we have $\alpha^{\kappa_{0}}>\alpha$ (see [15, Corollary V.8.3]).

The first corollary of Theorem 1 is a consequence of the result of Bessaga and Pełczyński on copies of c_{0} and ℓ_{∞} in duals of Banach spaces.

Corollary 1. Let V be a subspace of X^{*} such that V contains a copy of c_{0}. If V does not contain a copy of ℓ_{∞}, then $c_{0}(\mathbf{R})$ embeds isomorphically into X^{*} / V.

The next result is due to Rusu [23, pp. 86-87]. It immediately follows from Corollary 1 applied to the space $X=\ell_{1}$. Another argument is given in Section 5 .

Corollary 2. Let Y be a subspace of ℓ_{∞} containing a copy of c_{0}. If Y does not contain a copy of ℓ_{∞}, then ℓ_{∞} / Y contains a copy of $c_{0}(\mathbf{R})$.

In particular, for every separable subspace Y of ℓ_{∞} containing a copy of c_{0}, the quotient space ℓ_{∞} / Y contains a copy of $c_{0}(\mathbf{R})$.

In the next theorem, which is a partial generalization of [29, Proposition 1], we strengthen condition (1), obtaining much stronger results than in Theorem 1.

Theorem 2. (i) Let $T: \ell_{\infty}(\Gamma) \rightarrow X$ be an isomorphic embedding such that

$$
\begin{equation*}
T\left(c_{0}(\Gamma)\right)=Y \cap \operatorname{Im} T \tag{2}
\end{equation*}
$$

Then the induced operator $R: \ell_{\infty}(\Gamma) / c_{0}(\Gamma) \rightarrow X / Y$ defined by $R \circ q=Q \circ T$ is injective and $\|R\| \leqslant\|T\|$.
(ii) If moreover there is a projection P from X onto $\operatorname{Im} T$ with

$$
\begin{equation*}
P(Y) \subset Y \tag{3}
\end{equation*}
$$

then the operator $\mathbf{P}: X / Y \rightarrow X / Y$ of the form $\mathbf{P}(Q(x))=Q(P(x))$ is a projection onto the range of R with $\|\mathbf{P}\| \leqslant\|P\|$, and we additionally have $\left\|R^{-1}\right\| \leqslant\left\|T^{-1}\right\| \cdot$ $\|P\|$.

Under these assumptions for T and P, the space X / Y contains a complemented copy of $\ell_{\infty}(\Gamma) / c_{0}(\Gamma)$.

Notice that, in contrast to Theorem 1, the subspace Y in Theorem 2 (and the corresponding with Y subspaces in the next two corollaries) may now contain a copy of ℓ_{∞} because condition (2) refers to a fixed operator T.

Remark 1. From the conditions (2) and (3) it follows that $P(Y)=T\left(c_{0}(\Gamma)\right)$, i.e., the restriction $P_{\mid Y}$ is a projection from Y onto $T\left(c_{0}(\Gamma)\right)$. On the other hand, it can be easily checked that if P a projection in X with $P(Y)=T\left(c_{0}(\Gamma)\right) \subset Y$ and $P(X)=$ $T\left(\ell_{\infty}(\Gamma)\right.$) then condition (2) is fulfilled, and this allows us to construct a continuous injection R as in part (i) of Theorem 2.

The corollary below follows from part (i) of Theorem 2.

Corollary 3. Let $T: \ell_{\infty}(\Gamma) \rightarrow X$ be an isomorphic embedding that fulfills condition (2). Then the space X / Y does not possess an equivalent strictly convex norm, and it contains a copy of $c_{0}\left(\Gamma^{\aleph_{0}}\right)$.

Moreover, if $\operatorname{card}(\Gamma) \geqslant 2^{\aleph_{0}}$ then X / Y contains a copy of $\ell_{\infty}\left(\Gamma^{\prime}\right)$ for some $\Gamma^{\prime} \subset \Gamma$ with $\operatorname{card}\left(\Gamma^{\prime}\right) \geqslant 2^{\aleph_{0}}$, and an isometric copy of ℓ_{∞}.

The next corollary is an immediate consequence of the preceding corollary and the following observation: if an operator S embeds isomorphically c_{0} into a Banach space X, then its second conjugate $S^{* *}$ embeds isomorphically ℓ_{∞} into $X^{* *}$ with $S^{* *}\left(\ell_{\infty}\right) \cap \iota(X)=\iota\left(S\left(c_{0}\right)\right)$, where ι denotes the canonical embedding of X into $X^{* *}$. The corollary is also a completion of [29, Corollary 5] dealing with the quotient $E^{* *} / \iota(E)$ for E a Banach lattice.

Corollary 4. If X contains an isomorphic copy of c_{0}, then the quotient space $X^{* *} / \iota(X)$ does not possess an equivalent strictly convex norm, and it contains a copy of $c_{0}(\mathbf{R})$ and an isometric copy of ℓ_{∞}.

It is obvious that the above corollary is essential when X does not contain a complemented copy of c_{0} (thus, X must be nonseparable). The examples of such spaces are furnished by $\ell_{\infty}(\Gamma), \ell_{\infty} / c_{0}$, and $C(K)$-spaces with few operators [13, 20], among others.

The last corollary of this section illustrates part (ii) of Theorem 2 for the spaces $X=L_{\infty}[0,1]$ and $X=\mathcal{L}_{\infty}^{b}[0,1]$, and $Y=C[0,1]$.

Corollary 5. Let X denote $\mathcal{L}_{\infty}^{b}[0,1]$ or $L_{\infty}[0,1]$, and let Y denote its closed subspace (isometric in the second case to) $C[0,1]$. Then X / Y contains a complemented copy of ℓ_{x} / c_{0}.

More exactly, there is an isomorphism $R: \ell_{\infty} / c_{0} \rightarrow X / Y$ with $\|R\| \cdot\left\|R^{-1}\right\| \leqslant 2$ and a projection P from X / Y onto the range of R with $\|P\|=2$.

3. THE CASE OF BANACH LATTICES

Let us examine now how Theorem 2 works within the class of real Banach lattices. For the basic notions and results regarding Banach lattices we refer the reader to the monographs [2] and [17]. For the convenience of the reader we recall some definitions.

In this section, the term "lattice copy" means "both lattice and topological copy", and "lattice-isometric copy" means "both lattice and isometric copy". A linear lattice E is called Dedekind [σ-]complete if every [countable, resp.] subset V of E bounded from above has a supremum $\sup V$ in E; and it is called super Dedekind complete if in addition the "sup" of V is attained on a countable subset V_{0} of V. If $E=(E,\| \|)$ is a Banach lattice, then its topological dual E^{*} is a Dedekind complete Banach lattice, and the real Banach function spaces (e.g., Orlicz and Marcinkiewicz spaces) are the examples of super Dedekind complete Banach lattices. We recall that for every $x \in E$ we have $\|x\|=\||x|\|$, where $|x|$ denotes the modulus of x, and hence some calculations in E may be done on the positive part E^{+}of E. By E_{a} we denote the order continuous part of E, i.e., the largest ideal in E such that the norm restricted to E_{a} is order continuous: $E_{a}=\left\{x \in E:|x| \geqslant x_{s} \downarrow 0\right.$ implies $\left.\left\|x_{s}\right\| \rightarrow 0\right\}$. The ideal E_{a} is both Dedekind complete and norm-closed in E, and it does not contain lattice copies of ℓ_{x} (see [17, Proposition 2.4.10, Corollary 2.4.3]). The Banach lattice E is said to have the Fatou property if for every increasing net $\left(x_{i}\right)_{i \in I}$ in E^{+}with $x=\sup _{i \in I} x_{i}$ it follows that $\|x\|=\sup _{i \in I}\left\|x_{i}\right\|$; the examples are furnished by dual Banach lattices [17, Proposition 2.4.19] and some function spaces [26, p. 144]. If E, F are two Banach lattices then an injective operator $T: E \rightarrow F$ is called a lattice isomorphism provided that $T x \geqslant 0$ iff $x \geqslant 0$ (equivalently, $|T(x)|=T(|x|)$ for all $x \in E)$, and T is called a lattice-topological isomorphism provided that it is, additionally, a homeomorphism. An ideal M of E is said to be order dense if for every $x \in E^{+}$there is $y \in M^{+} \backslash\{0\}$ with $y \leqslant x$. For some function spaces E the order continuous part E_{a} is always proper and order dense in E (see the next section), and hence E / E_{a} is of infinite dimension.

If M is a norm-closed ideal of a Banach lattice E, then the quotient space E / M, endowed with the quotient norm, becomes a Banach lattice. If in the hypotheses of

Theorem 2 we put $X=E, Y=M$, and T a lattice-topological isomorphism then from [29, Proposition 1] we obtain a much stronger conclusion:
(*) condition (2) alone implies that the operator R in part (i) of Theorem 2 is a lattice isomorphism with $\operatorname{Im} R$ a norm-closed sublattice of E / M (hence, R is additionally a topological isomorphism) and $\left\|R^{-1}\right\| \leqslant\left\|T^{-1}\right\|$;
in particular,
$(* *)$ if T is a lattice isometry then R is a lattice isometry too.
Further, from the form of the projection \mathbf{P} in Theorem 2(ii) we obtain that
(***) if P is positive then \mathbf{P} is positive as well.

From the statements $(*),(* *),(* * *)$ and Remark 1 we immediately obtain a Banach-lattice version of Theorem 2.

Theorem 3. Let E be a Banach lattice, and let M be a norm-closed ideal of E.
If $T: \ell_{\infty}(\Gamma) \rightarrow E$ is a lattice-topological isomorphism, and P is a positive projection from E onto its norm-closed sublattice $\operatorname{Im} T$, with $P_{\mid M}$ a projection onto $T\left(c_{0}(\Gamma)\right) \subset M$, then
(i) the operator R, defined as in part (i) of Theorem 2 , maps $\ell_{\infty}(\Gamma) / c_{0}(\Gamma)$ onto a norm-closed sublattice V of E / M with $\|R\| \leqslant\|T\|$ and $\left\|R^{-1}\right\| \leqslant\left\|T^{-1}\right\|$; moreover, V is the range of a positive projection \mathbf{P} in E / M, defined as in part (ii) of Theorem 2 , with $\|\mathbf{P}\| \leqslant\|P\|$.
(ii) In particular, if $\operatorname{Im} T$ is positively 1 -complemented in E then V is positively 1-complemented in E / M, and if T is an isometry then V is a lattice-isometric copy of $\ell_{\infty}(\Gamma) / c_{0}(\Gamma)$.

This theorem will be applied to the case when M equals the order continuous part E_{a} of E. It was shown in [29, Theorems 1 and 2] that the quotient Banach lattice E / E_{a} contains lattice copies of ℓ_{∞} / c_{0} whenever E is Dedekind σ-complete with E_{a} order dense in E and $E \neq E_{a}$. We shall show below these copies are positively complemented in E / E_{a}.

Let us recall that the assumption $E \neq E_{a}$, appearing in a few next results, implies (for E Dedekind σ-complete) that E contains a lattice copy of ℓ_{∞} (see [2, Theorem 14.9]).

The first corollary of Theorem 3 says generally about the quality of lattice copies of ℓ_{∞} / c_{0} inside E / E_{a}, strengthening [29, Corollary 3]; its proof is immediate.

Corollary 6. Let E be a Dedekind σ-complete Banach lattice with $E \neq E_{a}$ and E_{a} order dense in E. Then E / E_{a} contains a positively complemented lattice copy of ℓ_{∞} / c_{0}.

The next theorem is a nontrivial consequence of Theorem 3 and deals with the existence and complementability of lattice-isometric and lattice-almost isometric copies of ℓ_{∞} / c_{0} in E / E_{a} whenever E possesses the Fatou property. It strengthens the results obtained in [29, Theorem 2]. For clarity and further applications of Theorem 4, we consider only the case $\Gamma=\mathbf{N}$ (similar conclusions, for Γ uncountable, can be obtained by combining the proofs of our Corollary 7 and Theorem 2 in [29]). To shorten the text, we say that a Banach lattice F contains lattice-almost isometric copies of another Banach lattice G (see [29, p. 151]) provided that, for every $\varepsilon>0$ there is a lattice-topological isomorphism T_{ε} from G onto a sublattice V_{ε} of F with $\left\|T_{\varepsilon}\right\| \cdot\left\|T_{\varepsilon}^{-1}\right\|<1+\varepsilon$; and if, additionally, there is a positive projection P_{ε} from F onto V_{ε} with $\left\|P_{\varepsilon}\right\|<1+\varepsilon$, then the copies are said to be positively-almost 1-complemented in F.

Theorem 4. Let E be a Dedekind σ-complete Banach lattice with $E \neq E_{a}$ and E_{a} order dense in E. Assume also that E has the Fatou property: Then
(i) E / E_{a} contains lattice-almost isometric copies of ℓ_{∞} / c_{0} that are positivelyalmost 1-complemented in E / E_{a};
(ii) if, additionally, E contains a lattice-isometric copy of ℓ_{∞} then E / E_{a} contains a lattice-isometric and positively 1 -complemented copy of ℓ_{∞} / c_{0}.

The last result of this section follows from part (ii) of Theorem 4. Since its proof depends on the existence of lattice-isometric copies of ℓ_{∞} in E whenever E_{a} is an M-ideal of $E[9$, Theorem 3], we refer the reader to Section 5 for a comment on that property.

We recall that a closed subspace Y of a Banach space X is an M-ideal if there is a projection $P: X^{*} \rightarrow X^{*}$ with range Y^{\perp} (the annihilator of Y in X^{*}) such that $\left\|x^{*}\right\|=\left\|P x^{*}\right\|+\left\|(I-P) x^{*}\right\|$ for all x^{*} in X^{*}.

Theorem 5. Let E be a super Dedekind complete Banach lattice with $E \neq E_{a}$ and E_{a} order dense in E. If E has the Fatou property and E_{a} is an M-ideal in E, then E / E_{a} contains a lattice-isometric and positively 1-complemented copy of ℓ_{∞} / c_{o}.
4. APPLICATIONS TO ORLI(\% ANI) MARCINKIEWICZ SPACES

In this section we shall apply the last theorem of the previous section to two concrete Banach function lattices with the Fatou property; similar results can be obtained for other function spaces (see [9, p. 526]).

The first application deals with Orlicz spaces.
Let (Ω, Σ, μ) be a σ-finite measure space, and let $L_{0}(\mu)$ denote the linear lattice of all (classes of real) μ-measurable functions on Ω. A function $\varphi:[0, \infty) \rightarrow[0, \infty)$ is called an Orlicz function if it is convex, continuous, with $\varphi(0)=0$ and $\varphi \not \equiv 0$. The function φ determines a functional $\varrho_{\varphi}: L_{0}(\mu) \rightarrow[0, \infty]$ defined by the rule $\varrho_{\varphi}(f)=\int_{\Omega} \varphi(|f(\omega)|) d \mu(\omega)$. The subspace

$$
L_{\varphi}(\mu)=\left\{f \in L_{0}(\mu): \varrho_{\varphi}(r f)<\infty \text { for some } r>0\right\}
$$

of $L_{0}(\mu)$ is called an Orlicz space. It is a super Dedekind complete Banach lattice with respect to the Luxemburg norm $\|f\|_{\varphi}:=\inf \left\{t>0: \varrho_{\varphi}(f / t) \leqslant 1\right\}$, and its order continuous part $\left(L_{\varphi}(\mu)\right)_{a}$ equals

$$
E_{\varphi}(\mu)=\left\{f \in L_{0}(\mu): \varrho_{\varphi}(r f)<\infty \text { for all } r>0\right\}
$$

(see [26, p. 145]). It is known that $L_{\varphi}(\mu)$ has the Fatou property, that if $L_{\varphi}(\mu) \neq$ $E_{\varphi}(\mu)$ (i.e., if φ does not fulfill the so called Δ_{2}-condition; see e.g. [7, p. 14]), then $E_{\varphi}(\mu)$ is order dense in $L_{\varphi}(\mu)$ (cf. [7, Theorem 1.25]), and $L_{\varphi}(\mu)$ contains a lattice-isometric copy of ℓ_{∞} (see the proof of Theorem 1.89 in [7]; cf. [9, p. 526]). It is also known that $E_{\varphi}(\mu)$ is an M-ideal in $L_{\varphi}(\mu)$ (see [7, Theorems 1.47 and 1.48]).

Now from Theorem 4(ii) (or, from Theorem 5) we immediately obtain a strengthening of [29, Corollary 6].

Corollary 7. Let φ be a finite Orlicz function. If $L_{\varphi}(\mu) \neq E_{\varphi}(\mu)$, then the quotient Banach lattice $L_{\varphi}(\mu) / E_{\varphi}(\mu)$ contains a lattice-isometric and positively 1 -complemented copy of ℓ_{∞} / c_{0}.

This result is, in a sense, not surprising because $L_{\varphi}(\mu) / E_{\varphi}(\mu)$ is lattice-isometric to a sublattice of a $C(K)$-space for some K compact Hausdorff [26, Theorems 10 and 11].

Let us now consider $L_{\varphi}(\mu)$ endowed with another (equivalent) norm $\left\|\|^{0}\right.$, called the Orlicz norm: $\|f\|^{o}:=\sup \left\{\int_{\Omega} f \cdot g d \mu: \varrho_{\varphi^{*}}(g) \geqslant 1\right\}$, where φ^{*} is the complementary function of φ (see [7, Theorem 1.38(4)]). The symbol $L_{\varphi}^{O}(\mu)$ will denote the Banach space ($L_{\varphi}(\mu),\| \|^{o}$); the previous symbol $L_{\varphi}(\mu)$ will still denote the Orlicz space endowed with the Luxemburg norm. Then we have (see [7, Theorem 1.45], with the same proof for the general case): $\left(E_{\varphi^{*}}(\mu)\right)^{*}=L_{\varphi}^{O}(\mu)$. It follows that $L_{\varphi}^{O}(\mu)$, as a dual Banach lattice, is a (super Dedekind complete) Banach lattice with the Fatou property. However, if φ is strictly monotone then the Orlicz norm $\left\|\|^{o}\right.$ is strictly monotone (see [10], i.e., $\| f_{1}\left\|^{o}<\right\| f_{2} \|^{o}$ whenever $0 \leqslant f_{1} \leqslant f_{2}$ and $\left.f_{1} \neq f_{2}\right)$; therefore $L_{\varphi}^{O}(\mu)$ cannot contain lattice-isometric copies of ℓ_{∞}. In this case, from part (i) of Theorem 4 we immediately obtain

Corollary 8. Let φ be a finite and strictly monotone Orlicz function. If $L_{\varphi}(\mu) \neq$ $E_{\varphi}(\mu)$, then the quotient Banach lattice $L_{\varphi}^{O}(\mu) / E_{\varphi}(\mu)$ contains lattice-almost isometric and positively-almost 1 -complemented copies of ℓ_{∞} / c_{0}.

The second application of Theorem 5 deals with Marcinkiewicz spaces. Now we restrict our considerations to the function space $L_{0}:=L_{0}(I, \mathcal{B}, \lambda)$, where $I=(0,1)$, λ is the Lebesgue measure on the σ-algebra \mathcal{B} of the Lebesgue measurable subsets of I. If $f \in L_{0}$ then f^{*} denotes the decreasing rearrangement of f defined by the formula $f^{*}(t):=\inf \left\{s>0: m_{f}(s) \leqslant t\right\}, t>0$, where m_{f} is the distribution function of $f: m_{f}(s)=\lambda\{r \in I:|f(r)|>s\}$. Further, let Ψ be a strictly increasing concave function $\Psi:[0,1] \rightarrow[0, \infty)$, with Ψ continuous at $0=\Psi(0)$ (a more general case
is considered in [12]). Then the Marcinkiewicz space $M(\Psi)$ is the set of all $f \in L_{0}$ such that the number

$$
\|f\|_{\Psi}=\sup _{t>0} \frac{1}{\Psi(t)} \int_{0}^{t} f^{*} d \lambda
$$

is finite, and $\left\|\|_{\Psi}\right.$ is a norm on $M(\Psi)$. It is well known that $\left(M(\Psi),\| \|_{\Psi}\right)$ is a (super Dedekind complete) Banach lattice with the Fatou property [3,14]. By $M_{0}(\Psi)$ we denote a subspace of $M(\Psi)$ consisting of all f satisfying

$$
\lim _{t \rightarrow 0^{+}} \frac{1}{\Psi(t)} \int_{0}^{1} f^{*} d \lambda=0 .
$$

The properties of $M_{0}(\Psi)$ which are useful for our purposes are collected in the lemma below (proper references are given in Section 5).

Lemma 1. (a) We have $M_{0}(\Psi) \neq\{0\}$ if and only if $\inf _{r_{>0}} \frac{1}{\Psi(t)}=0$.
(b) Let $M_{0}(\Psi) \neq\{0\}$. Then
(i) $M_{0}(\Psi)$ is an order continuous part of $M(\Psi)$,
(ii) $M_{0}(\Psi)$ is order dense in $M(\Psi)$ with $M_{0}(\Psi) \neq M(\Psi)$, and
(iii) $M_{0}(\Psi)$ is an M-ideal in $M(\Psi)$.

By way of example, every function $\Psi_{p}(t):=t^{p}$, with $0<p<1$, fulfills the equivalent condition in part (a) of the lemma, while $\bar{\Psi}(t)=\min \{1 / 2, t\}$ does not; hence the quotient Banach lattices $M\left(\Psi_{p}\right) / M_{0}\left(\Psi_{p}\right)$ are nontrivial and of infinite dimension, and $M(\bar{\Psi}) / M_{0}(\bar{\Psi})$ is isometric to $M(\bar{\Psi})$.

From Lemma 1 and Theorem 5 we immediately obtain a somewhat unexpected (in the context of the remark following Corollary 7) information about the structure of $M(\Psi) / M_{0}(\Psi)$.

Corollary 9. Let $M_{0}(\Psi) \neq\{0\}$. Then the quotient Banach lattice $M(\Psi) / M_{0}(\Psi)$ contains a lattice-isometric and positively 1-complemented copy of ℓ_{∞} / c_{0}.
5. THF PROOFS

We recall that the letters Q and q, respectively, denote the natural quotient mappings $X \rightarrow X / Y$ and $\ell_{\infty}(\Gamma) \rightarrow \ell_{\infty}(\Gamma) / c_{0}(\Gamma)$, respectively.

By e_{γ}, e_{n}, and e_{f}, respectively, we denote the familiar γ th, n th, and f th unit vectors of the spaces $\ell_{\infty}(\Gamma), \ell_{\infty}$, and $\ell_{\infty}(F)$, respectively, where F is an infinite set (another, in general, than \mathbf{N} or Γ).

For A an infinite subset of Γ the symbol $\ell_{\infty}^{A}(\Gamma)$ will denote the isometric copy of $\ell_{\infty}(A)$ of the elements of $\ell_{\infty}(\Gamma)$ with support included in A; the symbol $c_{0}^{A}(\Gamma)$ has a similar meaning.

Proof of Theorem 1. We follow partially an idea of the proof of Theorem 1 in [23] (given only for Γ countable; an application in our proof of a Rosenthal theorem makes it more general and simple).

Put $\alpha=\operatorname{card}(\Gamma)$, and let F be a set of the cardinality $\alpha^{\aleph_{0}}$. By Tarski's theorem (see its proof in [25, p. 121]), there is a class $\left\{\mathcal{G}_{f}: f \in F\right\}$ of infinite countable subsets of Γ with $\mathcal{G}_{f_{1}} \cap \mathcal{G}_{f_{2}}$ finite for $f_{1} \neq f_{2}$.

If $\alpha^{N_{0}}=\alpha$ (when we consider condition (b)), then there exists a class $\left\{H_{f}: f \in\right.$ $F\}$ of pairwise disjoint subsets of Γ with $\operatorname{card}\left(H_{f}\right)=\alpha$ for all $f \in F$, and then we define $\Gamma_{f}:=\mathcal{G}_{f} \cup H_{f}$. Note that this implies that $\operatorname{card}\left(\Gamma_{f}\right)=\alpha$. We can arrange that

$$
\begin{equation*}
\Gamma_{f_{1}} \cap \Gamma_{f_{2}} \quad \text { is finite when } f_{1} \neq f_{2} \tag{4}
\end{equation*}
$$

Indeed, fixing $f_{0} \in F$, we can choose $H_{f_{0}}$ and apply Tarski's theorem to $H_{f_{0}}$ obtaining $H_{f_{0}}=\bigcup_{f \in F} \mathcal{G}_{f}$. Then the elements of the class $\left\{\Gamma_{f}: f \in F \backslash\left\{f_{0}\right\}\right\}$ fulfill condition (4). In the other case that $\alpha^{\aleph_{0}}>\alpha$ (which can be assumed in condition (a)), when such a class $\left\{H_{f}: f \in F\right\}$ does not exist, we define $\Gamma_{f}:=\mathcal{G}_{f}$, $f \in F$. In this case we also have (4), but now $\operatorname{card}\left(\Gamma_{f}\right)=\aleph_{0}$.

Now assume that Y contains no copy of $\ell_{\infty}(\Gamma)$ if $\alpha^{\aleph_{0}}=\alpha$, and that Y contains no copy of ℓ_{∞} otherwise. Using the class $\left\{\Gamma_{f}: f \in F\right\}$ introduced above we will show the existence of an isomorphism R from $c_{0}(F)$ into X / Y. Because $\operatorname{card}(F)=$ $\operatorname{card}\left(\Gamma^{\aleph_{0}}\right)$, this would prove our theorem.

Because $\ell_{\infty}^{\Gamma_{f}}(\Gamma)$ is isometric to $\ell_{\infty}(\Gamma)$ if $\alpha^{\aleph_{0}}=\alpha$, and isometric to ℓ_{∞} otherwise, the assumption implies that $T\left(\ell_{\infty}^{\Gamma_{f}}(\Gamma)\right)$ is not contained in Y. Therefore we can find, for every $f \in F$, an element x_{f} in the unit ball of $\ell_{\infty}(\Gamma)$ such that $x_{f} \in \ell_{\infty}^{\Gamma_{f}}(\Gamma)$ and $Q\left(T x_{f}\right) \neq 0$. For the sets $F_{n}:=\left\{f \in F:\left\|Q\left(T x_{f}\right)\right\| \geqslant 1 / n\right\}$ we have $F_{n} \subset F_{n+1}$, $n=1,2, \ldots$, and since $\alpha^{\aleph_{0}}$ cannot be represented as the sum of an infinite strictly increasing sequence of cardinal numbers [15, Corollary V.8.3], we have card $\left(F_{n_{0}}\right)=$ $\alpha^{\aleph_{0}}$ for some n_{0}. Since the spaces $c_{0}(F)$ and $c_{0}\left(F_{n_{0}}\right)$ are isometric, without loss of generality we may assume that

$$
\begin{equation*}
\text { the number } a:=\inf \left\{\left\|Q\left(T x_{f}\right)\right\|: f \in F\right\} \text { is positive. } \tag{5}
\end{equation*}
$$

Let e_{f} be the f th unit vector of $c_{0}(F)$. Now we consider the operator R from $c_{0}(F)$ into X / Y of the form

$$
R\left(\sum_{f \in F} t_{f} e_{f}\right)=\sum_{f \in F} t_{f} Q\left(T x_{f}\right)
$$

We shall prove first it is well defined and continuous. To this end, for B a finite subset of F, we define an auxiliary finite (by (4)) set Δ_{B} by the formula

$$
\Delta_{B}:=\bigcup_{f_{1} \neq f_{2}, f_{1}, f_{2} \in B} \Gamma_{f_{1}} \cap \Gamma_{f_{2}}
$$

and for x_{f} fixed, $f \in B$, we put $x_{f}\left(\Delta_{B}\right):=\sum_{\gamma \in \Delta_{B}} x_{f}(\gamma) e_{\gamma}$ (where $x_{f}(f)=0$), and $v_{f}(B):=x_{f}-x_{f}\left(\Delta_{B}\right)$. Then $v_{f}(B) \in \ell_{\infty}^{\Gamma_{f}}(\Gamma) \backslash c_{0}^{\Gamma /}(\Gamma)$, and since $x_{f}\left(\Delta_{B}\right) \in$ $c_{0}^{\Gamma_{j}}(\Gamma) \subset c_{0}(\Gamma)$, we obtain $T\left(x_{f}\left(\Delta_{B}\right)\right) \in Y($ by $(1))$, whence

$$
\begin{equation*}
Q\left(T v_{f}(B)\right)=Q\left(T x_{f}\right), \quad f \in B . \tag{6}
\end{equation*}
$$

From the construction of Δ_{B} it follows that the elements $v_{f}(B)$ have pairwise disjoint supports (because $\operatorname{supp}\left(v_{f}(B)\right) \subset \Gamma_{f} \backslash \Delta_{B}$, for all $f \in B$; see (4)) with $\left\|v_{f}(B)\right\| \leqslant\left\|x_{f}\right\| \leqslant 1$. It implies that

$$
\begin{equation*}
\left\|\sum_{f \in B} t_{f} v_{f}(B)\right\| \leqslant \max _{f \in B}\left|t_{f}\right|, \tag{7}
\end{equation*}
$$

for all scalars $t_{f}, f \in B$. From (6) and (7) we obtain

$$
\left\|\sum_{f \in B} t_{f} Q\left(T x_{f}\right)\right\|=\left\|\sum_{f \in B} t_{f} Q\left(T v_{f}(B)\right)\right\| \leqslant\|T\| \max _{f \in B}\left|t_{f}\right|,
$$

which proves that, for every element $\left(t_{f}\right)_{f \in F}$ of $c_{0}(F)$, the series $\sum_{f \in F} t_{f} Q\left(T x_{f}\right)$ converges in X / Y, and hence the operator R is well defined. It is continuous because $\|R\| \leqslant\|T\|$.

We thus have shown that R maps $c_{0}(F)$, where $\operatorname{card}(F)=\operatorname{card}(\Gamma)^{\aleph_{0}}$, into the Banach space X / Y with $\left\|R\left(e_{f}\right)\right\|=\left\|Q\left(T x_{f}\right)\right\| \geqslant a>0$ for all $f \in F$ (by (5)). The result of Rosenthal [22, Theorem 3.4] asserts that in this case there is a subset G of F with $\operatorname{card}(G)=\operatorname{card}(F)$ such that R restricted to $c_{0}^{G}(F)$ is an isomorphism. Since $c_{0}^{G}(F)$ and $c_{0}(F)$ are isometric, the latter conclusion on R shows finally that the space X / Y contains a copy of $c_{0}(F)$. The proof is complete.

Proof of Corollary 1. It is enough to apply the following variant of the well-known theorem of Bessaga and Pełczyński [16, Proposition 2.e.8]: if T maps isomorphically c_{0} into X^{*} then there is an isomorphism S from ℓ_{∞} into X^{*} such that $S\left(c_{0}\right) \subset \operatorname{Im} T($ see $[30$, Theorem] $)$.

Proof of Corollary 2. Let Y be a subspace of ℓ_{∞} which contains a subspace V isomorphic to c_{0}. By the theorem of Lindenstrauss and Rosenthal ([16, Theorem 2.f.12(i)]), there is an automorphism S of ℓ_{∞} such that $S V=c_{0}$. If Y (hence $S Y$) does not contain subspaces isomorphic to ℓ_{∞} then, by Theorem $1, \ell_{\infty} / S Y=$ $S\left(\ell_{\infty}\right) / S Y$ contains a subspace isomorphic to $c_{0}(\mathbf{R})$. Finally, ℓ_{∞} / Y contains a copy of $c_{0}(\mathbf{R})$.

Proof of Theorem 2. The letters ξ and η will denote arbitrary (fixed) elements of $\ell_{\infty}(\Gamma)$ and $c_{0}(\Gamma)$, respectively.

Part (i). Condition (2) implies that the formula on R well defines a mapping from $\ell_{\infty}(\Gamma)$ into X / Y with the required properties (cf. [29, p. 153]).

Part (ii). It is easy to check that the formula on \mathbf{P} defines a projection in X / Y. Moreover, $\xi+\eta=T^{-1}(T \xi+T \eta)=T^{-1}(P(T \xi+T \eta))=T^{-1}(P T \xi+y)=$
$T^{-1}(P T \xi+P y)$ for some $y \in P(Y)$ (by (3) and Remark 1). Hence $\|q(\xi)\| \leqslant$ $\left\|T^{-1}\right\| \cdot\|P\| \cdot\|T \xi+y\|$. On the other hand, since $T\left(c_{0}(\Gamma)\right)=P(Y)$, the latter inequality holds for all $y \in Y$, whence $\|q(\xi)\| \leqslant\left\|T^{-1}\right\| \cdot\|P\| \cdot\|Q(T \xi)\|=\left\|T^{-1}\right\|$. $\|P\| \cdot\|R(q(\xi))\|$. It immediately implies that $\left\|R^{-1}\right\| \leqslant\left\|T^{-1}\right\| \cdot\|P\|$, as claimed.

Proof of Corollary 3. Let R be the operator defined in Theorem 2. If X / Y had an equivalent strictly convex norm $\left\|\|_{0}\right.$, say, then the space $W:=\ell_{\infty}(\Gamma) / c_{0}(\Gamma)$ would possess an equivalent strictly convex norm $\left\|\left|\left|\mid \|\right.\right.\right.$ of the form $\||q(\xi)|\|=\|q(\xi)\|_{W}+$ $\|R(q(\xi))\|_{0}$, where $\left\|\|_{W}\right.$ is the natural quotient norm on W, but this is impossible (see [4,18]).

Moreover, since W contains a copy V of $\ell_{\infty}(\Gamma)$ (see [28, Corollary 1.3]), let us assume for simplicity that $V=\ell_{\infty}(\Gamma)$. Then for the sets $\Gamma_{n}:=\left\{\gamma \in \Gamma:\left\|R\left(e_{\gamma}\right)\right\| \geqslant\right.$ $1 / n\}$ we have $\bigcup_{n=1}^{\infty} \Gamma_{n}=\Gamma$, and hence, by our assumption (that card $(\Gamma) \geqslant 2^{\aleph_{0}}$), there is n_{0} such that $\operatorname{card}\left(\Gamma_{n_{0}}\right) \geqslant 2^{\aleph_{0}}$. By Rosenthal's result [22, Proposition 1.2 and Remark 1 on p. 17], the latter condition implies there is $\Gamma^{\prime} \subset \Gamma_{n_{0}}$ with $\operatorname{card}\left(\Gamma^{\prime}\right)=$ $\operatorname{card}\left(\Gamma_{n_{0}}\right)$ such that the operator R restricted to an isometric copy of $\ell_{\infty}\left(\Gamma^{\prime}\right)$ in V is an isomorphism. Thus, X / Y contains a copy of $\ell_{\infty}\left(\Gamma^{\prime}\right)$ with $\operatorname{card}\left(\Gamma^{\prime}\right) \geqslant 2^{\kappa_{0}}$ indeed. The last assertion of Corollary 3 follows from the fact that every isomorphic copy of $\ell_{\infty}(\mathbf{R})$ contains an isometric copy of ℓ_{∞} (see [19, Corollary on p. 207]).

Proof of Corollary 5. Let $\theta_{n}=n /(n+1), n=1,2, \ldots$, and let $\left(x_{n}\right)$ be a sequence of positive and pairwise disjoint elements of $C[0,1]$ with $1=x_{n}\left(\theta_{n}\right)=\left\|x_{n}\right\|$ for all n 's.

We first consider the case $X=\mathcal{L}_{\infty}^{b}[0,1]$ and $Y=C[0,1]$. The operator $T: \ell_{\infty} \rightarrow$ $\mathcal{L}_{\infty}^{b}[0,1]$ of the form

$$
\begin{equation*}
T\left(t_{n}\right)=(p) \sum_{n=1}^{\infty} t_{n} x_{n} \tag{8}
\end{equation*}
$$

where (p) denotes the pointwise sum, is well defined and T is an isometry. Moreover, we have $T\left(c_{0}\right) \subset C[0,1]=Y$, because the series in (8) converges uniformly for $\left(t_{n}\right) \in c_{0}$, and $T\left(c_{0}\right)=\left[x_{n}\right]$ (the norm-closure of $\operatorname{lin}\left\{x_{n}: n \in \mathbf{N}\right\}$). Let us now consider the operator P from $\mathcal{L}_{\infty}^{b}[0,1]$ onto $\operatorname{Im} T$ defined by the formula

$$
P x=(p) \sum_{n=1}^{\infty}\left(x\left(\theta_{n}\right)-x(1)\right) x_{n}
$$

It is easy to check that P is a projection with $\|P\|=2$. Moreover, if $u \in C[0,1]$ then the series $\sum_{n=1}^{\infty}\left(u\left(\theta_{n}\right)-u(1)\right) x_{n}$ is norm-convergent in $Y=C[0,1]$; hence $P(Y)=T\left(c_{0}\right) \subset Y$. By Remark 1, the operators T and P fulfill the assumptions (i) and (ii) of Theorem 2, and hence the required result follows.

For $X=L_{\infty}[0,1]$, we shall apply both the previous constructions of T and P and a function lifting $\phi: L_{\infty}[0,1] \rightarrow \mathcal{L}_{\infty}^{b}[0,1]$. We recall that ϕ is a linear mapping preserving multiplication (hence disjointness) with

$$
\begin{equation*}
\|\phi\|=1 \quad \text { and } \quad \phi S f=f \quad \text { for all } f \in \mathcal{L}_{\infty}^{b}[0,1] \tag{9}
\end{equation*}
$$

where $S: \mathcal{L}_{\infty}[0,1] \rightarrow L_{\infty}|0,1|$ is the natural quotient map (see Section 1), and that such ϕ does exist (see [11, pp. 34-35, 46]; cf. [24, pp. 1140-1141]). Let us put $Y=$ $S(C[0,1])$. Since S restricted to $C[0,1]$ is an isometry preserving disjointness, the operator $\widetilde{T}:=S T$ is an isometry from ℓ_{∞} into $L_{\infty}[0,1]$, with $\widetilde{T}\left(c_{0}\right) \subset S(C[0,1])=$ Y. Moreover, by (9), the operator $\widetilde{P}:=S P \phi$ is a projection from $X=L_{\infty}[0,1]$ onto $\operatorname{Im} \widetilde{T}$ (an isometric copy of ℓ_{∞}) with $\|\widetilde{P}\|=2$, and $\widetilde{P}(Y)=\widetilde{T}\left(c_{0}\right) \subset Y$. By Remark 1 and Theorem 2, the result holds true also for the case $X=L_{\infty}[0,1]$ and $Y=S(C \mid 0,1])$.

The remaining proofs deal with positive operators on a Banach lattice E. We recall that in this case it is enough to define an additive and positively homogeneous operator T_{0}, say, on the cone E^{+}; then T_{0} extends to E to a linear operator T by the formula $T(x)=T_{0}\left(x^{+}\right)-T_{0}\left(x^{-}\right), x \in E$ (see [2, Theorem 1.7]).

Proof of Theorem 4. Part (i) depends on the following property which can be derived from the proof of Partington's result [18, Theorem 3]: If a Banach lattice E contains a lattice copy of ℓ_{∞} then E contains lattice-almost isometric copies of ℓ_{∞} (cf. [6, Theorem 3]; we recall that here we only consider real Banach lattices). Thus, fixing $\varepsilon>0$, there is a lattice isomorphism $S_{\varepsilon}: \ell_{\infty} \rightarrow E$ with

$$
\begin{equation*}
1 /(1+\varepsilon) \sup _{n \geqslant 1}\left|t_{n}\right| \leqslant\left\|S_{\varepsilon}\left(\left(t_{n}\right)\right)\right\| \leqslant \sup _{n \geqslant 1}\left|t_{n}\right|=\left\|\left(t_{n}\right)\right\|_{\ell \propto}, \tag{10}
\end{equation*}
$$

for all $\left(t_{n}\right) \in \ell_{\infty}$. Let us put $x_{n}=S_{\varepsilon}\left(e_{n}\right)$, and $\mathbf{1}=\sup _{n \geqslant 1} e_{n}$. Since E has the Fatou property, for every $n \in \mathbf{N}$ we can find $u_{n} \in E_{a}$ with

$$
\begin{equation*}
0 \leqslant u_{n} \leqslant x_{n} \quad \text { and } \quad\left\|u_{n}\right\| \geqslant 1 /(1+\varepsilon)^{2} . \tag{11}
\end{equation*}
$$

By (11), for every $\left(t_{n}\right) \in \ell_{\infty}^{+}$we obtain

$$
\begin{equation*}
\sup _{m \geqslant 1} \sum_{n=1}^{m} t_{n} u_{n} \leqslant \sup _{m \geqslant 1} S_{\varepsilon}\left(\sum_{n=1}^{m} t_{n} e_{n}\right) \leqslant S_{\xi}\left(\left(t_{n}\right)\right) \leqslant\left\|\left(t_{n}\right)\right\|_{\ell_{x}} S_{\varepsilon}(\mathbf{1}) \tag{12}
\end{equation*}
$$

(the suprema exist because E is Dedekind σ-complete). From (10), (11) and (12) we get

$$
\begin{equation*}
\mathrm{I} /(1+\varepsilon)^{2}\left\|\left(t_{n}\right)\right\|_{\ell_{\infty}} \leqslant\left\|\sup _{m \geqslant 1} \sum_{n=1}^{m} t_{n} u_{n}\right\| \leqslant\left\|\left(t_{n}\right)\right\|_{\ell_{x}}, \tag{13}
\end{equation*}
$$

for all $\left(t_{n}\right) \in \ell_{\infty}$ (because $x_{n} \wedge x_{m}=0$, for all $n \neq m$, and hence, by (11), the elements of the sequence $\left(u_{n}\right)$ are pairwise disjoint; it follows that $\left|\sum_{n=1}^{m} t_{n} u_{n}\right|=$ $\sum_{n=1}^{m}\left|t_{n}\right| u_{n}$ for all real numbers $t_{n}, n=1,2, \ldots$). From the latter remark, and from (12) and (13) it follows that the formula

$$
\begin{equation*}
T_{\varepsilon}\left(\left(t_{n}\right)\right):=\sup _{m \geqslant 1} \sum_{n=1}^{m} t_{n}^{+} u_{n}-\sup _{m \geqslant 1} \sum_{n=1}^{m} t_{n}^{-} u_{n}, \tag{14}
\end{equation*}
$$

defines a lattice-topological isomorphism T_{ε} from ℓ_{∞} to E with

$$
\begin{equation*}
\left\|T_{\varepsilon}\right\| \cdot\left\|T_{\varepsilon}^{-1}\right\| \leqslant(1+\varepsilon)^{2} \tag{15}
\end{equation*}
$$

From (13) we also obtain that for every $\left(t_{n}\right) \in c_{0}$ the series $\sum_{n=1}^{\infty} t_{n} u_{n}$ is normconvergent in E, and hence in the (norm-closed) ideal E_{a}. Thus,

$$
\begin{equation*}
T_{\varepsilon}\left(c_{0}\right) \subset E_{a} \tag{16}
\end{equation*}
$$

Let $\left(Q_{n}\right)$ be the sequence of positive projections in E of the form $Q_{n}(x)=\sup \{x \wedge$ $\left.k u_{n}: k \in \mathbf{N}\right\}, x \geqslant 0$ (since E is Dedekind σ-complete, Q_{n} exists for every n; see [2, Theorem 3.13]), and let (f_{n}) be a sequence of positive elements of E^{*} with $f_{n}\left(u_{m}\right)=\delta_{n m}$ and $\left\|f_{n}\right\| \leqslant(1+\varepsilon)^{2}$ (the existence of such f_{n} 's follows from (11)). By (12), the operator P_{ε} defined by the formula

$$
\begin{equation*}
P_{\varepsilon}(x):=\sup _{m \geqslant 1} \sum_{n=1}^{m} f_{n}\left(Q_{n} x\right) u_{n}, \quad x \geqslant 0, \tag{17}
\end{equation*}
$$

is a positive projection in E with

$$
\begin{equation*}
P_{\varepsilon}(E)=T_{\varepsilon}\left(\ell_{\infty}\right) \quad \text { and } \quad\left\|P_{\varepsilon}\right\| \leqslant(1+\varepsilon)^{2} \tag{18}
\end{equation*}
$$

(cf. [27, p. 37]). Moreover, if $0 \leqslant x \in E_{a}$, then for all n we have $Q_{n}(x) \leqslant x$ which follows that $Q_{n}(x) \in E_{a}$ (because E_{a} is an ideal of E) and hence, by [2, Theorem 12.13], $\lim _{n \rightarrow \infty}\left\|Q_{n} x\right\|=0$. We thus obtain $P_{\varepsilon}\left(E_{a}\right) \subset T\left(c_{0}\right)$, but obviously $P_{\varepsilon}(x)=$ x for all $x \in T_{\varepsilon}\left(c_{0}\right)$, whence

$$
\begin{equation*}
P_{\varepsilon}\left(E_{a}\right)=T_{\varepsilon}\left(c_{0}\right) \tag{19}
\end{equation*}
$$

(cf. [2, Theorem 1.8]). From (16), (18), (19) and part (i) of Theorem 3 we obtain the required result for part (i) of Theorem 4.

Part (ii). Let $S: \ell_{\infty} \rightarrow E$ be a lattice isometry, and let $\varepsilon \in(0,1)$ be fixed. We put $x_{n}=S\left(e_{n}\right), n=1,2, \ldots$, and choose positive $u_{n} \leqslant x_{n}$ with $1-\varepsilon / n \leqslant\left\|u_{n}\right\|$. As in the proof of item (i), we find a sequence $\left(f_{n}\right) \subset\left(E^{*}\right)^{+}$with $f_{n}\left(u_{m}\right)=\delta_{n m}$ and $\left\|f_{n}\right\| \leqslant 1 /(1-\varepsilon / n)$ for all n 's. Let T_{ε} be the operator defined, for our sequence $\left(u_{n}\right)$, by the above formula (14). Let R be the operator mapping ℓ_{∞} into E / E_{a} defined in item (ii) of Theorem 3, i.e., $R(q(\xi))=Q\left(T_{\varepsilon}(\xi)\right), \xi \in \ell_{\infty}$. In the proof of Theorem 2 in [29] it has been shown that R is a lattice isometry. It proves the first part of our item (ii).

Further, let us consider the projection P_{ε} defined for our sequences $\left(u_{n}\right)$ and $\left(f_{n}\right)$ by the formula (17), and let \mathbf{P}_{ε} be the positive projection from E / E_{a} onto the range of R of the form $\mathbf{P}_{\varepsilon}(Q x)=Q\left(P_{\varepsilon}(x)\right)$ (see item (ii) of Theorem 3). We claim that \mathbf{P}_{ε} fulfills the second part of item (ii), i.e., $\left\|\mathbf{P}_{\varepsilon}\right\|=1$; equivalently, for all $x \in E^{+}$, $w \in E_{a}$ and $k \in \mathbf{N}$ the following inequality holds

$$
\begin{equation*}
\left\|\mathbf{P}_{\varepsilon}(Q x)\right\| \leqslant\|x+w\| /(1-\varepsilon / k) . \tag{20}
\end{equation*}
$$

The proof of (20) will be based on the following property
(\#) Let E be a Dedekind σ-complete Banach lattice, let $\left(u_{n}\right)$ be a sequence of positive and pairwise disjoint elements of E, and let $\left(t_{n}\right),\left(s_{n}\right)$ be two sequences of real numbers with $t_{n} \geqslant 0$ for all n's such that $\sup _{m \geqslant 1} \sum_{n=1}^{m} t_{n} u_{n}$ exists in E and the series $\sum_{n=1}^{\infty} s_{n} u_{n}$ is norm-convergent in E. Then

$$
\begin{equation*}
\left|\sup _{m \geqslant 1} \sum_{n=1}^{m} t_{n} u_{n}+\sum_{n=1}^{\infty} s_{n} u_{n}\right|=\sup _{m \geqslant 1} \sum_{n=1}^{m}\left|t_{n}+s_{n}\right| u_{n} . \tag{21}
\end{equation*}
$$

To prove (21), we shall use the notion of order convergence in E. We recall (see [2, p. 30]) that a sequence $\left(a_{n}\right)$ in E is order convergent to an element $a \in E$ (in symbols, $\left.a_{n} \xrightarrow{(0)} a\right)$ whenever there exists a sequence $\left(v_{n}\right) \subset E^{+}$with $v_{n} \downarrow 0$ and $\left|a_{n}-a\right| \leqslant v_{n}$ for all n 's. It is obvious that if $a_{n} \xrightarrow{(0)} a$ and $b_{n} \xrightarrow{(o)} b$ then $a_{n}+b_{n} \xrightarrow{(o)} a+b$, and hence (by inequality $\|x|-|y \| \leqslant|x-y|$ for all $x, y \in E$)

$$
\begin{equation*}
\left|a_{n}+b_{n}\right| \xrightarrow{(a)}|a+b| . \tag{22}
\end{equation*}
$$

We put $A_{m}=\sum_{n=1}^{m} t_{n} u_{n}, A=\sup _{m \geqslant 1} A_{m}, B_{m}=\sum_{n=1}^{m} s_{n} u_{n}$, and $B=\sum_{n=1}^{\infty} s_{n} u_{n}$. Then we have $A_{m} \uparrow A$, whence $A_{m} \xrightarrow{(0)} A$, and $B_{m} \xrightarrow{(0)} B$ because

$$
\left|B_{m}-B\right|=\sum_{n=m+1}^{\infty}\left|s_{n}\right| u_{n} \downarrow 0 .
$$

By (22) and the remark following (13), we thus obtain

$$
\sum_{n=1}^{m}\left|t_{n}+s_{n}\right| u_{n}=\left|A_{m}+B_{m}\right| \xrightarrow{(0)}|A+B|
$$

On the other hand, the sequence $\left(\left|A_{m}+B_{m}\right|\right)$ is increasing, and hence $|A+B|=$ $\sup _{m \geqslant 1}\left|A_{m}+B_{m}\right|=\sup _{m \geqslant 1} \sum_{n=1}^{m}\left|t_{n}+s_{n}\right| u_{n}$. The proof of (\#) is complete.

Now we shall prove inequality (20). We fix $x \in E^{+}$and $w \in E_{a}$, and we consider the elements $A=P_{\varepsilon}(x)$ and $B=P_{\varepsilon}(w)$. We notice first that, by (17), we have here $A=\sup _{m \geqslant 1} \sum_{n=1}^{m} t_{n} u_{n}$, where $t_{n}=f_{n}\left(Q_{n} x\right) \geqslant 0$ for all n 's, and $B=\sum_{n=1}^{\infty} s_{n} u_{n}$, where $s_{n}=f_{n}\left(Q_{n} w\right)$ for all n 's, and that the series defining B is norm-convergent in E_{a} because $\lim _{n \rightarrow \infty} t_{n}=0$ (see (16) and (19), and the remark preceding (19)). We define next, for $k=1,2, \ldots$, the four elements: $A^{(k)}:=\sup _{m \geqslant k} \sum_{n=k}^{m} t_{n} u_{n}, A_{n}^{(k)}:=$ $\sum_{n=k}^{m} t_{n} u_{n}, B^{(k)}=\sum_{n=k}^{\infty} s_{n} u_{n}$, and $B_{m}^{(k)}=\sum_{n=k}^{m} s_{n} u_{n}$. Since $u_{n} \in E_{l l}$ for all n 's, we have

$$
\begin{equation*}
A_{m}^{(k-1)} \in E_{a} \quad \text { and } \quad B, B_{m}^{(k-1)}, B^{(k)} \in E_{a} \quad \text { for all } m \geqslant k \geqslant 1 . \tag{23}
\end{equation*}
$$

Then, by (23), for every k fixed we have:

$$
\begin{aligned}
\left\|\mathbf{P}_{\varepsilon}(Q x)\right\| & =\inf _{y \in E_{a}}\left\|y+P_{\varepsilon}(x)\right\|=\inf _{y \in E_{a}}\|y+A+B\| \\
& =\inf _{y \in E_{a}}\left\|y+A^{(k)}+A_{1}^{(k-1)}+B^{(k)}+B_{1}^{(k-1)}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& =\inf _{y \in E_{a}}\left\|y+A^{(k)}+B^{(k)}\right\| \leqslant\left\|A^{(k)}+B^{(k)}\right\| \\
& =\left\|\left|A^{(k)}+B^{(k)}\right|\right\| .
\end{aligned}
$$

The forms of the elements $A^{(k)}$ and $B^{(k)}$ fulfill the assumptions in (\#), whence

$$
\begin{equation*}
\left|A^{(k)}+B^{(k)}\right|=\sup _{m \geqslant k} \sum_{n=k}^{m}\left|f_{n}\left(Q_{n}(x+w)\right)\right| u_{n} . \tag{24}
\end{equation*}
$$

Since E has the Fatou property and the sums $\sum_{n=k}^{m}\left|f_{n}\left(Q_{n}(x+w)\right)\right| u_{n}$ increase with m (for k fixed), we get the equality

$$
\begin{equation*}
\left\|\sup _{m \geqslant k} \sum_{n=k}^{m}\left|f_{n}\left(Q_{n}(x+w)\right)\right| u_{n}\right\|=\sup _{m \geqslant k}\left\|\sum_{n=k}^{m}\left|f_{n}\left(Q_{n}(x+w)\right)\right| u_{n}\right\| . \tag{25}
\end{equation*}
$$

Moreover, for all n 's we have $\left\|Q_{n}\right\|=1$ (as $0 \leqslant Q_{n} x \leqslant x$ for all $x \geqslant 0$), and $\left\|\sum_{n=k}^{m} u_{n}\right\| \leqslant\|S(\mathbf{1})\|=1$ (as u_{n} 's have been chosen with $0 \leqslant u_{n} \leqslant x_{n}$). Hence, from (24) and (25) we obtain further estimations on $\left\|\mathbf{P}_{\varepsilon}(Q x)\right\|$:

$$
\begin{equation*}
\left\|\mathbf{P}_{\varepsilon}(Q x)\right\| \leqslant \sup _{m \geqslant k}\left(\max _{k \leqslant n \leqslant m}\left|f_{n}\left(Q_{n}(x+w)\right)\right|\right) \leqslant\left(\sup _{m \geqslant k}\left\|f_{m}\right\|\right)\|x+w\| . \tag{26}
\end{equation*}
$$

Since the functionals f_{n} 's have been chosen with $\left\|f_{n}\right\| \leqslant 1 /(1-\varepsilon / n)$, from (26) we finally obtain (20). The proof of part (ii) of Theorem 4 is complete.

Proof of Theorem 5. Here we apply the result below, due to Hudzik [9, Theorem 3], from which Theorem 5 follows immediately. However, the reader should note that in Hudzik's paper the term "monotone completeness" corresponds to what we call the "Fatou property" (as defined in the Meyer-Nieberg monograph [17]); see also [1, p. 282] for a comment on the name "monotone completeness" which is often called "the Levi property".

Lemma 2. Let E be a super Dedekind complete Banach lattice with $E \neq E_{a}$ and E_{a} order dense in E. If E_{a} is an M-ideal in E then E contains a lattice-isometric copy of ℓ_{∞}.

We shall present a shorter (than in [9]) proof of the lemma. Since E_{a} is an M-ideal, it is proximal, i.e., for every $x \in E$ there is $y \in E_{a}$ with $\|Q(x)\|=\|x-y\|$ (see [8, Proposition II.1.1]). In particular, there exists $x \in E$ with $\|x\|=1$ and $\|Q(x)\|=1$. By [9, Theorem 2], the latter property immediately implies that E contains a lattice-isometric copy of ℓ_{∞}.

Proof of Lemma 1. Part (a) is included in [12, Theorem 2.3(i)].
Part (b). Item (i) and the first part of item (ii) are included in [12, Theorem 2.3(ii)]. For a proof of the second part of our item (ii) observe that the function $f=\Psi^{\prime}$ is laying in $M(\Psi) \backslash M_{0}(\Psi)$. Item (iii) is included in [12, Theorem 2.4].

ACKNOWLIDGEMENT

The authors thank the referee for remarks and comments which improved the quality of this paper.

REFEREN(ISS

[1] Abramovich Y.A., Wickstead A.W. - When each continuous operator is regular II, Indag. Math. N.S. 8 (1997) 281-294.
[2] Aliprantis C.D., Burkinshaw O. - Positive Operators, Academic Press, New York, 1985.
[3] Bennett C., Sharpley R. -- Interpolation of Operators, Academic Press, Boston, 1988.
[4] Bourgain J. - $\ell_{\chi} / \mathrm{c}_{0}$ has no equivalent strictly convex norm, Proc. Amer. Math. Soc. 78 (1980) 225-226.
[5] Castillo J.M.F., González M. - Three-space Problems in Banach Space Theory, Springer-Verlag, Berlin, 1997.
[6] Chen J. The lattice-almost isometric copies of I^{1} and l^{∞} in Banach lattices, Acta. Math. Acad. Paedagog. Nyházi. (N.S.) 22 (2006) 73-76.
[7] Chen S. Geometry of Orlicz spaces, Dissertationes Math. 361 (1996).
[8] Harmand P., Werner D., Werner W. M-Ideals in Banach Spaces and Banach Algebras, SpringerVerlag, Berlin, 1993.
[9] Hudzik H. - Banach lattices with order isometric copies of ℓ_{x}, Indag. Math. N.S. 9 (1998) 521527.
[10] Hudzik H., Kurc W. - Monotonicity properties of Musielak-Orlicz spaces and dominated best approximation in Banach lattices, J. Approx. Theory 95 (1998) 353 386.
[II] Ionescu Tulcea A., Ionescu Tulcea (. - Topics in the Theory of Lifting, Springer-Verlag, Berlin, 1969.
[12] Kaminska A., Lee H.J. - M-ideal properties in Marcinkiewicz spaces, Ann. Soc. Math. Pol., Ser. I, Comment. Math. 2004, Spec. Iss. 123-144.
[13] Koszmider P. Banach spaces of continuous functions with few operators, Math. Ann. $\mathbf{3 3 0}$ (2004) 151-183.
[14] Krein S.G., Petunin Yu.l., Semenov E.M. - Interpolation of Linear Operators, Amer. Math. Soc. Transactions of Math. Monogr., vol. 54, Providence, 1982.
[15] Kuratowski K., Mostowski A. - Set Theory, Polish Scientific Publishers, Warszawa, 1976.
[16] Lindenstrauss J., Tzafriri L. - Classical Banach Spaces, I, Springer-Verlag, Berlin, 1977.
[17] Meyer-Nieberg P. Banach Lattices, Springer-Verlag, Berlin, 1991.
[18] Partington I.R. Subspaces of certain Banach sequence spaces, Bull. London Math. Soc. 13 (1981) 162-166.
[19] Partington J.R. Equivalent norms on spaces of bounded functions, Israel J. Math. 35 (1980) 205-209.
[20] Plebanck G. A construction of a Banach space $C(K)$ with few operators, Topology Appl. 143 (2004) 217239.
[21] Plichko A., Yost D. - Complemented and uncomplemented subspaces of Banach spaces, Extr. Math. 15 (2000) 335371.
[22] Rosenthal H.P. On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970) 13•36.
[23] Rusu (ih. - On certain subspaces of a class of Banach spaces, Bul. Acad. Ştiinţe Repub. Mold. Mat. 33 (2) (2000) 85-91.
[24] Strauss W., Macheras N.D., Musiał K. - Liftings, in: E. Pap (Ed.), Handbook of Measure Theory, Elscvier, 2002, pp. 1131-1184.
[25] Walker R.C. The Stone Cech Compactification, Springer-Verlag, Berlin, 1974.
[26] Wnuk W. - On the order-topological properties of the quotient space L / L_{A}, Studia Math. 79 (1984) 139-149.
[27] Wnuk W. - Banach Lattices with Order Continuous Norms, Polish Scientific Publishers, Warszawa, 1999.
[28] Wójtowicz M. - The lattice-isometric copies of $\ell_{\infty}(\Gamma)$ in quotients of Banach lattices, Int. J. Math. Math. Sci. 2003 (47) (2003) 3003-3006.
[29] Wójtowicz M. - The lattice copies of $\ell_{\infty}(\Gamma) / c_{0}(\Gamma)$ in a quotient of a Banach lattice, Indag. Math. N.S. 16 (2005) 147-155.
[30] Wójtowicz M. - Isomorphic and isometric copies of $\ell_{\infty}(\Gamma)$ in duals of Banach spaces and Banach lattices, Comment. Math. Univ. Carolinae 47 (2006) 467-471.
(Received January 2006)

[^0]: MSC: Primary: 46B25; secondary: 46B26, 46B42
 E-mails: aplichko(ω)usk.pk.edu.pl (A. Plichko), mwojt((α) ukw.edu.pl (M. Wójtowicz).

