Copies of $c_0(\Gamma)$ and $\ell_{\infty}(\Gamma)/c_0(\Gamma)$ in quotients of Banach spaces with applications to Orlicz and Marcinkiewicz spaces

by Anatolij Plichko^a and Marek Wójtowicz^b

^a Instytut Matematyki, Politechnika Krakowska, ul. Warszawska 24, 31-155 Kraków, Poland ^b Instytut Matematyki, Uniwersytet Kazimierza Wielkiego, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland

Communicated by Prof. J.J. Duistermaat at the meeting of September 25, 2006

ABSTRACT

Let X be a Banach space, let Y be its subspace, and let Γ be an infinite set. We study the consequences of the assumption that an operator T embeds $\ell_{\infty}(\Gamma)$ into X isomorphically with $T(c_0(\Gamma)) \subset Y$. Under additional assumptions on T we prove the existence of isomorphic copies of $c_0(\Gamma^{\aleph_0})$ in X/Y, and complemented copies $\ell_{\infty}(\Gamma)/c_0(\Gamma)$ in X/Y. In concrete cases we obtain a new information about the structure of X/Y. In particular, $L_{\infty}[0, 1]/C[0, 1]$ contains a complemented copy of ℓ_{∞}/c_0 , and some natural (lattice) quotients of real Orlicz and Marcinkiewicz spaces contain lattice-isometric and positively 1-complemented copies of (real) ℓ_{∞}/c_0 .

1. INTRODUCTION

Let *X* be a Banach space, let *Y* be a closed subspace of *X*, and let Γ be an infinite set. The present paper deals with the structure of the space *X*/*Y* and is motivated by two recent results: by Rusu [23] and the second named author [29]. In [23, pp. 86–87] it is proved implicitly that *if a subspace Y of* ℓ_{∞} *contains an isomorphic copy of* c_0 *but not* ℓ_{∞} , *then* $c_0(\mathbf{R})$ *embeds isomorphically into* ℓ_{∞}/Y . On the other hand, in [29] the existence of lattice copies of $\ell_{\infty}(\Gamma)/c_0(\Gamma)$ in some quotients of Banach lattices was examined. Regarding the structure of *X*/*Y* we refer the reader to the monograph [5] by Castillo and Gonzalez describing the state in this setting up till 1997; the survey paper [21] by Plichko and Yost (of 2000) complements it partially.

In this paper we study the consequences of the assumption that an operator T embeds $\ell_{\infty}(\Gamma)$ into X isomorphically with

MSC: Primary: 46B25; secondary: 46B26, 46B42

E-mails: aplichko@usk.pk.edu.pl (A. Plichko), mwojt@ukw.edu.pl (M. Wójtowicz).

In Theorem 1 (extending the above-mentioned result by Rusu, and complementing the classical Drewnowski-Roberts theorem that *the non-containment of* ℓ_{∞} *is a three-space property* [5, Theorem 3.2.f]) we show, in particular, that X/Ycontains a copy of $c_0(\Gamma^{\aleph_0})$ provided that Y contains no copy of ℓ_{∞} . In Theorem 2 we strengthen relation (1) between Y and $c_0(\Gamma)$ obtaining the existence of a continuous injection R from $\ell_{\infty}(\Gamma)/c_0(\Gamma)$ into X/Y, and a projection from X/Y onto the range of R (under an additional assumption on T). The latter result is narrowed in Theorem 3 to the case studied in [29], giving that some quotients of Banach lattices contain (positively) complemented copies of ℓ_{∞}/c_0 .

These general results well apply to concrete cases and yield new information about the structure of quotients of classical spaces. For example, the space $L_{\infty}[0, 1]/C[0, 1]$ contains a complemented copy of ℓ_{∞}/c_0 (Corollary 5), and an application of Theorem 3 to an Orlicz space $X = L_{\phi}(\mu)$ and Y its order continuous part $E_{\phi}(\mu)$ gives that $L_{\phi}(\mu)/E_{\phi}(\mu)$ contains a lattice-isometric and positively 1-complemented copy of ℓ_{∞}/c_0 whenever $L_{\phi}(\mu) \neq E_{\phi}(\mu)$ (Corollary 9).

The interested reader may apply further the result by Partington, which does not appear in our statements, that *every isomorphic copy of* ℓ_{∞}/c_0 *contains an isometric copy of* ℓ_{∞} (see [18]; its lattice version is addressed in [29]); such an additional conclusion one obtains, e.g., in Corollary 5, Theorem 2(ii), and Corollary 8. Moreover, if Γ is uncountable then $\ell_{\infty}(\Gamma)/c_0(\Gamma)$, endowed with the natural quotient norm, contains a lattice-isometric copy of $\ell_{\infty}(\Gamma)$, see [28]; this complements part (i) of Theorem 3.

The main results of this paper are given in Sections 2, 3 and 4, and their proofs are included in the last section.

The terminology we use is standard and is that of [16,17]. All spaces and subspaces are assumed to be linear and norm-closed, and all (linear) operators are continuous. A subspace U of X is said to be 1-complemented if there is a projection P from X onto U with ||P|| = 1. The term "copy" means "isomorphic copy". The letters Q and q, respectively, will denote the familiar quotient mappings $X \to X/Y$ and $\ell_{\infty}(\Gamma) \to \ell_{\infty}(\Gamma)/c_0(\Gamma)$, respectively.

By $\mathcal{L}_{\infty}[0, 1]$ we denote the linear space of all Lebesgue-measurable functions on the interval [0, 1] that are bounded almost everywhere. Then \mathcal{N} denotes the subspace of $\mathcal{L}_{\infty}[0, 1]$ of the functions that vanish almost everywhere on [0, 1], and $\mathcal{L}_{\infty}^{b}[0, 1]$ is the subspace of all *bounded* elements f of $\mathcal{L}_{\infty}[0, 1]$ (i.e., $\|f\|_{\infty} := \sup_{t \in [0, 1]} |f(t)| < \infty$). By S we denote the natural quotient mapping $\mathcal{L}_{\infty}[0, 1] \to \mathcal{L}_{\infty}[0, 1]/\mathcal{N}$, and the latter space is denoted by $\mathcal{L}_{\infty}[0, 1]$. Obviously, $(\mathcal{L}_{\infty}[0, 1], \|\|_{\infty})$ is a closed subspace of $\ell_{\infty}[0, 1]$ containing C[0, 1] as a closed subspace. Moreover, $\mathcal{L}_{\infty}[0, 1]$, endowed with the "ess sup"-norm, is a Banach space and S restricted to C[0, 1] is an isometry preserving disjointness. It is worth to notice that $S(\mathcal{L}_{\infty}^{b}[0, 1]) = \mathcal{L}_{\infty}[0, 1]$ (see (9) in Section 5).

By N and \mathbf{R} we denote the sets of positive integers and real numbers, respectively.

2. A GENERAL CASE

We start with a generalization of the above-mentioned result by Rusu. We recall that Y denotes a subspace of a Banach space X.

Theorem 1. Let $T: \ell_{\infty}(\Gamma) \to X$ be an isomorphic embedding that fulfills condition (1). Then $c_0(\Gamma^{\aleph_0})$ embeds isomorphically into X/Y if one of the following conditions holds:

(a) Y does not contain a copy of ℓ_{∞} ,

(b) *Y* does not contain a copy of $\ell_{\infty}(\Gamma)$ and $\operatorname{card}(\Gamma) = \operatorname{card}(\Gamma)^{\aleph_0}$.

(Of course, if $\operatorname{card}(\Gamma) = \operatorname{card}(\Gamma)^{\aleph_0}$ then condition (b) is weaker than (a).) The theorem covers partially also the case when the cardinality $\alpha := \operatorname{card}(\Gamma)$ fulfills inequality $\alpha^{\aleph_0} > \alpha$. Because $\alpha = 2^{\aleph_0}$ implies that $\alpha^{\aleph_0} = \alpha$, we then have two cases:

(j) $\aleph_0 \leq \alpha < 2^{\aleph_0}$, and (jj) $\alpha > 2^{\aleph_0}$.

In case (j) we apply condition (a). In case (jj) the set of infinite cardinals { $\beta < \alpha$: $\beta^{\aleph_0} = \beta$ } is not empty, and hence we can apply condition (b) for every subset Γ_{β} of Γ , with card(Γ_{β}) = β , instead of Γ . That is, we consider the restriction of *T* to the set of elements of $\ell_{\infty}(\Gamma)$ with support contained in Γ_{β} , which form a subspace of $\ell_{\infty}(\Gamma)$ which is isometric to $\ell_{\infty}(\Gamma_{\beta})$. This is so, for example, for $\alpha := \sum_{n=1}^{\infty} \alpha_n$, where $\alpha_1 = \aleph_0$, and $\alpha_{n+1} = 2^{\alpha_n}$, n = 1, 2, ...; here we have $\alpha^{\aleph_0} > \alpha$ (see [15, Corollary V8.3]).

The first corollary of Theorem 1 is a consequence of the result of Bessaga and Pełczyński on copies of c_0 and ℓ_{∞} in duals of Banach spaces.

Corollary 1. Let V be a subspace of X^* such that V contains a copy of c_0 . If V does not contain a copy of ℓ_{∞} , then $c_0(\mathbf{R})$ embeds isomorphically into X^*/V .

The next result is due to Rusu [23, pp. 86–87]. It immediately follows from Corollary 1 applied to the space $X = \ell_1$. Another argument is given in Section 5.

Corollary 2. Let Y be a subspace of ℓ_{∞} containing a copy of c_0 . If Y does not contain a copy of ℓ_{∞} , then ℓ_{∞}/Y contains a copy of $c_0(\mathbf{R})$.

In particular, for every separable subspace Y of ℓ_{∞} containing a copy of c_0 , the quotient space ℓ_{∞}/Y contains a copy of $c_0(\mathbf{R})$.

In the next theorem, which is a partial generalization of [29, Proposition 1], we strengthen condition (1), obtaining much stronger results than in Theorem 1.

Theorem 2. (i) Let $T : \ell_{\infty}(\Gamma) \to X$ be an isomorphic embedding such that

(2)
$$T(c_0(\Gamma)) = Y \cap \operatorname{Im} T.$$

Then the induced operator $R: \ell_{\infty}(\Gamma)/c_0(\Gamma) \to X/Y$ defined by $R \circ q = Q \circ T$ is injective and $||R|| \leq ||T||$.

(ii) If moreover there is a projection P from X onto $\operatorname{Im} T$ with

$$(3) \qquad P(Y) \subset Y,$$

then the operator $\mathbf{P}: X/Y \to X/Y$ of the form $\mathbf{P}(Q(x)) = Q(P(x))$ is a projection onto the range of R with $\|\mathbf{P}\| \leq \|P\|$, and we additionally have $\|R^{-1}\| \leq \|T^{-1}\| \cdot \|P\|$.

Under these assumptions for T and P, the space X/Y contains a complemented copy of $\ell_{\infty}(\Gamma)/c_0(\Gamma)$.

Notice that, in contrast to Theorem 1, the subspace Y in Theorem 2 (and the corresponding with Y subspaces in the next two corollaries) may now contain a copy of ℓ_{∞} because condition (2) refers to a *fixed* operator T.

Remark 1. From the conditions (2) and (3) it follows that $P(Y) = T(c_0(\Gamma))$, i.e., the restriction $P_{|Y}$ is a projection from Y onto $T(c_0(\Gamma))$. On the other hand, it can be easily checked that if P a projection in X with $P(Y) = T(c_0(\Gamma)) \subset Y$ and $P(X) = T(\ell_{\infty}(\Gamma))$ then condition (2) is fulfilled, and this allows us to construct a continuous injection R as in part (i) of Theorem 2.

The corollary below follows from part (i) of Theorem 2.

Corollary 3. Let $T : \ell_{\infty}(\Gamma) \to X$ be an isomorphic embedding that fulfills condition (2). Then the space X/Y does not possess an equivalent strictly convex norm, and it contains a copy of $c_0(\Gamma^{\aleph_0})$.

Moreover, if $\operatorname{card}(\Gamma) \ge 2^{\aleph_0}$ then X/Y contains a copy of $\ell_{\infty}(\Gamma')$ for some $\Gamma' \subset \Gamma$ with $\operatorname{card}(\Gamma') \ge 2^{\aleph_0}$, and an isometric copy of ℓ_{∞} .

The next corollary is an immediate consequence of the preceding corollary and the following observation: if an operator S embeds isomorphically c_0 into a Banach space X, then its second conjugate S^{**} embeds isomorphically ℓ_{∞} into X^{**} with $S^{**}(\ell_{\infty}) \cap \iota(X) = \iota(S(c_0))$, where ι denotes the canonical embedding of X into X^{**} . The corollary is also a completion of [29, Corollary 5] dealing with the quotient $E^{**}/\iota(E)$ for E a Banach lattice.

Corollary 4. If X contains an isomorphic copy of c_0 , then the quotient space $X^{**}/\iota(X)$ does not possess an equivalent strictly convex norm, and it contains a copy of $c_0(\mathbf{R})$ and an isometric copy of ℓ_{∞} .

It is obvious that the above corollary is essential when X does not contain a complemented copy of c_0 (thus, X must be nonseparable). The examples of such spaces are furnished by $\ell_{\infty}(\Gamma)$, ℓ_{∞}/c_0 , and C(K)-spaces with few operators [13, 20], among others.

The last corollary of this section illustrates part (ii) of Theorem 2 for the spaces $X = L_{\infty}[0, 1]$ and $X = \mathcal{L}_{\infty}^{b}[0, 1]$, and Y = C[0, 1].

Corollary 5. Let X denote $\mathcal{L}^b_{\infty}[0, 1]$ or $L_{\infty}[0, 1]$, and let Y denote its closed subspace (isometric in the second case to) C[0, 1]. Then X/Y contains a complemented copy of ℓ_{∞}/c_0 .

More exactly, there is an isomorphism $R: \ell_{\infty}/c_0 \to X/Y$ with $||R|| \cdot ||R^{-1}|| \leq 2$ and a projection *P* from *X*/*Y* onto the range of *R* with ||P|| = 2.

3. THE CASE OF BANACH LATTICES

Let us examine now how Theorem 2 works within the class of *real* Banach lattices. For the basic notions and results regarding Banach lattices we refer the reader to the monographs [2] and [17]. For the convenience of the reader we recall some definitions.

In this section, the term "lattice copy" means "both lattice and topological copy", and "lattice-isometric copy" means "both lattice and isometric copy". A linear lattice E is called Dedekind $[\sigma]$ complete if every [countable, resp.] subset V of E bounded from above has a supremum sup V in E; and it is called super Dedekind *complete* if in addition the "sup" of V is attained on a countable subset V_0 of V. If E = (E, || ||) is a Banach lattice, then its topological dual E^* is a Dedekind complete Banach lattice, and the real Banach function spaces (e.g., Orlicz and Marcinkiewicz spaces) are the examples of super Dedekind complete Banach lattices. We recall that for every $x \in E$ we have ||x|| = ||x|||, where |x| denotes the modulus of x, and hence some calculations in E may be done on the positive part E^+ of E. By E_a we denote the *order continuous part* of E, i.e., the largest ideal in E such that the norm restricted to E_a is order continuous: $E_a = \{x \in E : |x| \ge x_s \downarrow 0 \text{ implies } ||x_s|| \rightarrow 0\}.$ The ideal E_a is both Dedekind complete and norm-closed in E, and it does not contain lattice copies of ℓ_{∞} (see [17, Proposition 2.4.10, Corollary 2.4.3]). The Banach lattice E is said to have the Fatou property if for every increasing net $(x_i)_{i \in I}$ in E^+ with $x = \sup_{i \in I} x_i$ it follows that $||x|| = \sup_{i \in I} ||x_i||$; the examples are furnished by dual Banach lattices [17, Proposition 2.4.19] and some function spaces [26, p. 144]. If E, F are two Banach lattices then an injective operator $T: E \to F$ is called a *lattice isomorphism* provided that $Tx \ge 0$ iff $x \ge 0$ (equivalently, |T(x)| = T(|x|) for all $x \in E$, and T is called a *lattice-topological isomorphism* provided that it is, additionally, a homeomorphism. An ideal M of E is said to be order dense if for every $x \in E^+$ there is $y \in M^+ \setminus \{0\}$ with $y \leq x$. For some function spaces E the order continuous part E_a is always proper and order dense in E (see the next section), and hence E/E_a is of infinite dimension.

If *M* is a norm-closed ideal of a Banach lattice *E*, then the quotient space E/M, endowed with the quotient norm, becomes a Banach lattice. If in the hypotheses of

Theorem 2 we put X = E, Y = M, and T a lattice-topological isomorphism then from [29, Proposition 1] we obtain a much stronger conclusion:

(*) condition (2) alone implies that the operator R in part (i) of Theorem 2 is a lattice isomorphism with Im R a norm-closed sublattice of E/M (hence, R is additionally a topological isomorphism) and $||R^{-1}|| \leq ||T^{-1}||$;

in particular,

(**) if T is a lattice isometry then R is a lattice isometry too.

Further, from the form of the projection **P** in Theorem 2(ii) we obtain that

(***) if P is positive then P is positive as well.

From the statements (*), (**), (***) and Remark 1 we immediately obtain a Banach-lattice version of Theorem 2.

Theorem 3. Let *E* be a Banach lattice, and let *M* be a norm-closed ideal of *E*. If $T: \ell_{\infty}(\Gamma) \to E$ is a lattice-topological isomorphism, and *P* is a positive projection from *E* onto its norm-closed sublattice Im *T*, with $P_{|M}$ a projection onto $T(c_0(\Gamma)) \subset M$, then

- (i) the operator R, defined as in part (i) of Theorem 2, maps ℓ_∞(Γ)/c₀(Γ) onto a norm-closed sublattice V of E/M with ||R|| ≤ ||T|| and ||R⁻¹|| ≤ ||T⁻¹||; moreover, V is the range of a positive projection P in E/M, defined as in part (ii) of Theorem 2, with ||P|| ≤ ||P||.
- (ii) In particular, if Im T is positively 1-complemented in E then V is positively 1-complemented in E/M, and if T is an isometry then V is a lattice-isometric copy of $\ell_{\infty}(\Gamma)/c_0(\Gamma)$.

This theorem will be applied to the case when M equals the order continuous part E_a of E. It was shown in [29, Theorems 1 and 2] that the quotient Banach lattice E/E_a contains lattice copies of ℓ_{∞}/c_0 whenever E is Dedekind σ -complete with E_a order dense in E and $E \neq E_a$. We shall show below these copies are positively complemented in E/E_a .

Let us recall that the assumption $E \neq E_a$, appearing in a few next results, implies (for *E* Dedekind σ -complete) that *E* contains a lattice copy of ℓ_{∞} (see [2, Theorem 14.9]).

The first corollary of Theorem 3 says generally about the quality of lattice copies of ℓ_{∞}/c_0 inside E/E_a , strengthening [29, Corollary 3]; its proof is immediate.

Corollary 6. Let E be a Dedekind σ -complete Banach lattice with $E \neq E_a$ and E_a order dense in E. Then E/E_a contains a positively complemented lattice copy of ℓ_{∞}/c_0 .

The next theorem is a nontrivial consequence of Theorem 3 and deals with the existence and complementability of lattice-isometric and lattice-almost isometric copies of ℓ_{∞}/c_0 in E/E_a whenever E possesses the Fatou property. It strengthens the results obtained in [29, Theorem 2]. For clarity and further applications of Theorem 4, we consider only the case $\Gamma = \mathbf{N}$ (similar conclusions, for Γ uncountable, can be obtained by combining the proofs of our Corollary 7 and Theorem 2 in [29]). To shorten the text, we say that a Banach lattice F contains *lattice-almost isometric copies* of another Banach lattice G (see [29, p. 151]) provided that, for every $\varepsilon > 0$ there is a lattice-topological isomorphism T_{ε} from G onto a sublattice V_{ε} of F with $||T_{\varepsilon}|| \cdot ||T_{\varepsilon}^{-1}|| < 1 + \varepsilon$; and if, additionally, there is a positive projection P_{ε} from F onto V_{ε} with $||P_{\varepsilon}|| < 1 + \varepsilon$, then the copies are said to be *positively-almost 1-complemented* in F.

Theorem 4. Let *E* be a Dedekind σ -complete Banach lattice with $E \neq E_a$ and E_a order dense in *E*. Assume also that *E* has the Fatou property. Then

- (i) E/E_a contains lattice-almost isometric copies of ℓ_{∞}/c_0 that are positivelyalmost 1-complemented in E/E_a ;
- (ii) if, additionally, E contains a lattice-isometric copy of ℓ_{∞} then E/E_a contains a lattice-isometric and positively 1-complemented copy of ℓ_{∞}/c_0 .

The last result of this section follows from part (ii) of Theorem 4. Since its proof depends on the existence of lattice-isometric copies of ℓ_{∞} in *E* whenever E_a is an *M*-ideal of *E* [9, Theorem 3], we refer the reader to Section 5 for a comment on that property.

We recall that a closed subspace Y of a Banach space X is an M-ideal if there is a projection $P: X^* \to X^*$ with range Y^{\perp} (the annihilator of Y in X^*) such that $||x^*|| = ||Px^*|| + ||(I - P)x^*||$ for all x^* in X^* .

Theorem 5. Let *E* be a super Dedekind complete Banach lattice with $E \neq E_a$ and E_a order dense in *E*. If *E* has the Fatou property and E_a is an *M*-ideal in *E*, then E/E_a contains a lattice-isometric and positively 1-complemented copy of ℓ_{∞}/c_o .

4. APPLICATIONS TO ORLICZ AND MARCINKIEWICZ SPACES

In this section we shall apply the last theorem of the previous section to two concrete Banach function lattices with the Fatou property; similar results can be obtained for other function spaces (see [9, p. 526]).

The first application deals with Orlicz spaces.

Let (Ω, Σ, μ) be a σ -finite measure space, and let $L_0(\mu)$ denote the linear lattice of all (classes of real) μ -measurable functions on Ω . A function $\varphi : [0, \infty) \to [0, \infty)$ is called an Orlicz function if it is convex, continuous, with $\varphi(0) = 0$ and $\varphi \neq 0$. The function φ determines a functional $\varrho_{\varphi} : L_0(\mu) \to [0, \infty]$ defined by the rule $\varrho_{\varphi}(f) = \int_{\Omega} \varphi(|f(\omega)|) d\mu(\omega)$. The subspace

$$L_{\varphi}(\mu) = \left\{ f \in L_0(\mu): \, \varrho_{\varphi}(rf) < \infty \text{ for some } r > 0 \right\}$$

of $L_0(\mu)$ is called an Orlicz space. It is a super Dedekind complete Banach lattice with respect to the *Luxemburg norm* $||f||_{\varphi} := \inf\{t > 0: \varrho_{\varphi}(f/t) \leq 1\}$, and its order continuous part $(L_{\varphi}(\mu))_a$ equals

$$E_{\varphi}(\mu) = \left\{ f \in L_0(\mu) \colon \varrho_{\varphi}(rf) < \infty \text{ for all } r > 0 \right\}$$

(see [26, p. 145]). It is known that $L_{\varphi}(\mu)$ has the Fatou property, that if $L_{\varphi}(\mu) \neq E_{\varphi}(\mu)$ (i.e., if φ does not fulfill the so called Δ_2 -condition; see e.g. [7, p. 14]), then $E_{\varphi}(\mu)$ is order dense in $L_{\varphi}(\mu)$ (cf. [7, Theorem 1.25]), and $L_{\varphi}(\mu)$ contains a lattice-isometric copy of ℓ_{∞} (see the proof of Theorem 1.89 in [7]; cf. [9, p. 526]). It is also known that $E_{\varphi}(\mu)$ is an *M*-ideal in $L_{\varphi}(\mu)$ (see [7, Theorems 1.47 and 1.48]).

Now from Theorem 4(ii) (or, from Theorem 5) we immediately obtain a strengthening of [29, Corollary 6].

Corollary 7. Let φ be a finite Orlicz function. If $L_{\varphi}(\mu) \neq E_{\varphi}(\mu)$, then the quotient Banach lattice $L_{\varphi}(\mu)/E_{\varphi}(\mu)$ contains a lattice-isometric and positively 1-complemented copy of ℓ_{∞}/c_0 .

This result is, in a sense, not surprising because $L_{\varphi}(\mu)/E_{\varphi}(\mu)$ is lattice-isometric to a sublattice of a C(K)-space for some K compact Hausdorff [26, Theorems 10 and 11].

Let us now consider $L_{\varphi}(\mu)$ endowed with another (equivalent) norm $|| ||^{O}$, called the *Orlicz norm*: $||f||^{O} := \sup\{\int_{\Omega} f \cdot g \, d\mu: \varrho_{\varphi^*}(g) \ge 1\}$, where φ^* is the complementary function of φ (see [7, Theorem 1.38(4)]). The symbol $L_{\varphi}^{O}(\mu)$ will denote the Banach space $(L_{\varphi}(\mu), || ||^{O})$; the previous symbol $L_{\varphi}(\mu)$ will still denote the Orlicz space endowed with the Luxemburg norm. Then we have (see [7, Theorem 1.45], with the same proof for the general case): $(E_{\varphi^*}(\mu))^* = L_{\varphi}^{O}(\mu)$. It follows that $L_{\varphi}^{O}(\mu)$, as a dual Banach lattice, is a (super Dedekind complete) Banach lattice with the Fatou property. However, if φ is strictly monotone then the Orlicz norm $|| ||^{O}$ is strictly monotone (see [10], i.e., $||f_1||^{O} < ||f_2||^{O}$ whenever $0 \le f_1 \le f_2$ and $f_1 \ne f_2$); therefore $L_{\varphi}^{O}(\mu)$ cannot contain lattice-isometric copies of ℓ_{∞} . In this case, from part (i) of Theorem 4 we immediately obtain

Corollary 8. Let φ be a finite and strictly monotone Orlicz function. If $L_{\varphi}(\mu) \neq E_{\varphi}(\mu)$, then the quotient Banach lattice $L_{\varphi}^{O}(\mu)/E_{\varphi}(\mu)$ contains lattice-almost isometric and positively-almost 1-complemented copies of ℓ_{∞}/c_{0} .

The second application of Theorem 5 deals with Marcinkiewicz spaces. Now we restrict our considerations to the function space $L_0 := L_0(I, \mathcal{B}, \lambda)$, where I = (0, 1), λ is the Lebesgue measure on the σ -algebra \mathcal{B} of the Lebesgue measurable subsets of I. If $f \in L_0$ then f^* denotes the *decreasing rearrangement* of f defined by the formula $f^*(t) := \inf\{s > 0: m_f(s) \leq t\}, t > 0$, where m_f is the distribution function of $f: m_f(s) = \lambda\{r \in I: |f(r)| > s\}$. Further, let Ψ be a strictly increasing concave function $\Psi: [0, 1] \rightarrow [0, \infty)$, with Ψ continuous at $0 = \Psi(0)$ (a more general case

is considered in [12]). Then the *Marcinkiewicz space* $M(\Psi)$ is the set of all $f \in L_0$ such that the number

$$||f||_{\Psi} = \sup_{t>0} \frac{1}{\Psi(t)} \int_{0}^{t} f^{*} d\lambda$$

is finite, and $\| \|_{\Psi}$ is a norm on $M(\Psi)$. It is well known that $(M(\Psi), \| \|_{\Psi})$ is a (super Dedekind complete) Banach lattice with the Fatou property [3,14]. By $M_0(\Psi)$ we denote a subspace of $M(\Psi)$ consisting of all f satisfying

$$\lim_{t \to 0^+} \frac{1}{\Psi(t)} \int_{0}^{t} f^* d\lambda = 0.$$

The properties of $M_0(\Psi)$ which are useful for our purposes are collected in the lemma below (proper references are given in Section 5).

Lemma 1. (a) We have $M_0(\Psi) \neq \{0\}$ if and only if $\inf_{t>0} \frac{t}{\Psi(t)} = 0$. (b) Let $M_0(\Psi) \neq \{0\}$. Then

- (i) $M_0(\Psi)$ is an order continuous part of $M(\Psi)$,
- (ii) $M_0(\Psi)$ is order dense in $M(\Psi)$ with $M_0(\Psi) \neq M(\Psi)$, and

(iii) $M_0(\Psi)$ is an *M*-ideal in $M(\Psi)$.

By way of example, every function $\Psi_p(t) := t^p$, with $0 , fulfills the equivalent condition in part (a) of the lemma, while <math>\overline{\Psi}(t) = \min\{1/2, t\}$ does not; hence the quotient Banach lattices $M(\Psi_p)/M_0(\Psi_p)$ are nontrivial and of infinite dimension, and $M(\overline{\Psi})/M_0(\overline{\Psi})$ is isometric to $M(\overline{\Psi})$.

From Lemma 1 and Theorem 5 we immediately obtain a somewhat unexpected (in the context of the remark following Corollary 7) information about the structure of $M(\Psi)/M_0(\Psi)$.

Corollary 9. Let $M_0(\Psi) \neq \{0\}$. Then the quotient Banach lattice $M(\Psi)/M_0(\Psi)$ contains a lattice-isometric and positively 1-complemented copy of ℓ_{∞}/c_0 .

5. THE PROOFS

We recall that the letters Q and q, respectively, denote the natural quotient mappings $X \to X/Y$ and $\ell_{\infty}(\Gamma) \to \ell_{\infty}(\Gamma)/c_0(\Gamma)$, respectively.

By e_{γ} , e_n , and e_f , respectively, we denote the familiar γ th, *n*th, and *f*th unit vectors of the spaces $\ell_{\infty}(\Gamma)$, ℓ_{∞} , and $\ell_{\infty}(F)$, respectively, where *F* is an infinite set (another, in general, than **N** or Γ).

For A an infinite subset of Γ the symbol $\ell_{\infty}^{A}(\Gamma)$ will denote the isometric copy of $\ell_{\infty}(A)$ of the elements of $\ell_{\infty}(\Gamma)$ with support included in A; the symbol $c_{0}^{A}(\Gamma)$ has a similar meaning.

Proof of Theorem 1. We follow partially an idea of the proof of Theorem 1 in [23] (given only for Γ countable; an application in our proof of a Rosenthal theorem makes it more general and simple).

Put $\alpha = \operatorname{card}(\Gamma)$, and let *F* be a set of the cardinality α^{\aleph_0} . By Tarski's theorem (see its proof in [25, p. 121]), there is a class $\{\mathcal{G}_f: f \in F\}$ of infinite *countable* subsets of Γ with $\mathcal{G}_{f_1} \cap \mathcal{G}_{f_2}$ finite for $f_1 \neq f_2$.

If $\alpha^{\aleph_0} = \alpha$ (when we consider condition (b)), then there exists a class $\{H_f: f \in F\}$ of pairwise disjoint subsets of Γ with $\operatorname{card}(H_f) = \alpha$ for all $f \in F$, and then we define $\Gamma_f := \mathcal{G}_f \cup H_f$. Note that this implies that $\operatorname{card}(\Gamma_f) = \alpha$. We can arrange that

(4)
$$\Gamma_{f_1} \cap \Gamma_{f_2}$$
 is finite when $f_1 \neq f_2$.

Indeed, fixing $f_0 \in F$, we can choose H_{f_0} and apply Tarski's theorem to H_{f_0} obtaining $H_{f_0} = \bigcup_{f \in F} \mathcal{G}_f$. Then the elements of the class $\{\Gamma_f: f \in F \setminus \{f_0\}\}$ fulfill condition (4). In the other case that $\alpha^{\aleph_0} > \alpha$ (which can be assumed in condition (a)), when such a class $\{H_f: f \in F\}$ does not exist, we define $\Gamma_f := \mathcal{G}_f$, $f \in F$. In this case we also have (4), but now card $(\Gamma_f) = \aleph_0$.

Now assume that *Y* contains no copy of $\ell_{\infty}(\Gamma)$ if $\alpha^{\aleph_0} = \alpha$, and that *Y* contains no copy of ℓ_{∞} otherwise. Using the class { Γ_f : $f \in F$ } introduced above we will show the existence of an isomorphism *R* from $c_0(F)$ into X/Y. Because card(F) = card(Γ^{\aleph_0}), this would prove our theorem.

Because $\ell_{\infty}^{\Gamma_f}(\Gamma)$ is isometric to $\ell_{\infty}(\Gamma)$ if $\alpha^{\aleph_0} = \alpha$, and isometric to ℓ_{∞} otherwise, the assumption implies that $T(\ell_{\infty}^{\Gamma_f}(\Gamma))$ is not contained in *Y*. Therefore we can find, for every $f \in F$, an element x_f in the unit ball of $\ell_{\infty}(\Gamma)$ such that $x_f \in \ell_{\infty}^{\Gamma_f}(\Gamma)$ and $Q(Tx_f) \neq 0$. For the sets $F_n := \{f \in F: ||Q(Tx_f)|| \ge 1/n\}$ we have $F_n \subset F_{n+1}$, n = 1, 2, ..., and since α^{\aleph_0} cannot be represented as the sum of an infinite strictly increasing sequence of cardinal numbers [15, Corollary V.8.3], we have card $(F_{n_0}) =$ α^{\aleph_0} for some n_0 . Since the spaces $c_0(F)$ and $c_0(F_{n_0})$ are isometric, without loss of generality we may assume that

(5) the number
$$a := \inf\{ \| Q(Tx_f) \| : f \in F \}$$
 is positive.

Let e_f be the *f* th unit vector of $c_0(F)$. Now we consider the operator *R* from $c_0(F)$ into X/Y of the form

$$R\left(\sum_{f\in F}t_fe_f\right)=\sum_{f\in F}t_fQ(Tx_f).$$

We shall prove first it is well defined and continuous. To this end, for B a finite subset of F, we define an auxiliary finite (by (4)) set Δ_B by the formula

$$\Delta_B := \bigcup_{f_1 \neq f_2, f_1, f_2 \in B} \Gamma_{f_1} \cap \Gamma_{f_2},$$

and for x_f fixed, $f \in B$, we put $x_f(\Delta_B) := \sum_{\gamma \in \Delta_B} x_f(\gamma) e_{\gamma}$ (where $x_f(\emptyset) = 0$), and $v_f(B) := x_f - x_f(\Delta_B)$. Then $v_f(B) \in \ell_{\infty}^{\Gamma_f}(\Gamma) \setminus c_0^{\Gamma_f}(\Gamma)$, and since $x_f(\Delta_B) \in c_0^{\Gamma_f}(\Gamma) \subset c_0(\Gamma)$, we obtain $T(x_f(\Delta_B)) \in Y$ (by (1)), whence

(6)
$$Q(Tv_f(B)) = Q(Tx_f), \quad f \in B.$$

From the construction of Δ_B it follows that the elements $v_f(B)$ have pairwise disjoint supports (because $\operatorname{supp}(v_f(B)) \subset \Gamma_f \setminus \Delta_B$, for all $f \in B$; see (4)) with $||v_f(B)|| \leq ||x_f|| \leq 1$. It implies that

(7)
$$\left\|\sum_{f\in B}t_fv_f(B)\right\| \leqslant \max_{f\in B}|t_f|,$$

for all scalars t_f , $f \in B$. From (6) and (7) we obtain

$$\left\|\sum_{f\in B} t_f Q(Tx_f)\right\| = \left\|\sum_{f\in B} t_f Q(Tv_f(B))\right\| \leq \|T\| \max_{f\in B} |t_f|,$$

which proves that, for every element $(t_f)_{f \in F}$ of $c_0(F)$, the series $\sum_{f \in F} t_f Q(Tx_f)$ converges in X/Y, and hence the operator R is well defined. It is continuous because $||R|| \leq ||T||$.

We thus have shown that *R* maps $c_0(F)$, where $\operatorname{card}(F) = \operatorname{card}(\Gamma)^{\aleph_0}$, into the Banach space X/Y with $||R(e_f)|| = ||Q(Tx_f)|| \ge a > 0$ for all $f \in F$ (by (5)). The result of Rosenthal [22, Theorem 3.4] asserts that in this case there is a subset *G* of *F* with $\operatorname{card}(G) = \operatorname{card}(F)$ such that *R* restricted to $c_0^G(F)$ is an isomorphism. Since $c_0^G(F)$ and $c_0(F)$ are isometric, the latter conclusion on *R* shows finally that the space X/Y contains a copy of $c_0(F)$. The proof is complete.

Proof of Corollary 1. It is enough to apply the following variant of the well-known theorem of Bessaga and Pełczyński [16, Proposition 2.e.8]: if T maps isomorphically c_0 into X^* then there is an isomorphism S from ℓ_{∞} into X^* such that $S(c_0) \subset \text{Im } T$ (see [30, Theorem]).

Proof of Corollary 2. Let *Y* be a subspace of ℓ_{∞} which contains a subspace *V* isomorphic to c_0 . By the theorem of Lindenstrauss and Rosenthal ([16, Theorem 2.f.12(i)]), there is an automorphism *S* of ℓ_{∞} such that $SV = c_0$. If *Y* (hence *SY*) does not contain subspaces isomorphic to ℓ_{∞} then, by Theorem 1, $\ell_{\infty}/SY = S(\ell_{\infty})/SY$ contains a subspace isomorphic to $c_0(\mathbf{R})$. Finally, ℓ_{∞}/Y contains a copy of $c_0(\mathbf{R})$.

Proof of Theorem 2. The letters ξ and η will denote arbitrary (fixed) elements of $\ell_{\infty}(\Gamma)$ and $c_0(\Gamma)$, respectively.

Part (i). Condition (2) implies that the formula on *R* well defines a mapping from $\ell_{\infty}(\Gamma)$ into *X*/*Y* with the required properties (cf. [29, p. 153]).

Part (ii). It is easy to check that the formula on **P** defines a projection in X/Y. Moreover, $\xi + \eta = T^{-1}(T\xi + T\eta) = T^{-1}(P(T\xi + T\eta)) = T^{-1}(PT\xi + y) =$

 $T^{-1}(PT\xi + Py)$ for some $y \in P(Y)$ (by (3) and Remark 1). Hence $||q(\xi)|| \leq ||T^{-1}|| \cdot ||P|| \cdot ||T\xi + y||$. On the other hand, since $T(c_0(\Gamma)) = P(Y)$, the latter inequality holds for all $y \in Y$, whence $||q(\xi)|| \leq ||T^{-1}|| \cdot ||P|| \cdot ||Q(T\xi)|| = ||T^{-1}|| \cdot ||P|| \cdot ||R(q(\xi))||$. It immediately implies that $||R^{-1}|| \leq ||T^{-1}|| \cdot ||P||$, as claimed.

Proof of Corollary 3. Let *R* be the operator defined in Theorem 2. If *X*/*Y* had an equivalent strictly convex norm $|| ||_0$, say, then the space $W := \ell_{\infty}(\Gamma)/c_0(\Gamma)$ would possess an equivalent strictly convex norm || ||| of the form $|||q(\xi)|| = ||q(\xi)||_W + ||R(q(\xi))||_0$, where $|| ||_W$ is the natural quotient norm on *W*, but this is impossible (see [4,18]).

Moreover, since *W* contains a copy *V* of $\ell_{\infty}(\Gamma)$ (see [28, Corollary 1.3]), let us assume for simplicity that $V = \ell_{\infty}(\Gamma)$. Then for the sets $\Gamma_n := \{\gamma \in \Gamma : ||R(e_{\gamma})|| \ge$ $1/n\}$ we have $\bigcup_{n=1}^{\infty} \Gamma_n = \Gamma$, and hence, by our assumption (that card($\Gamma) \ge 2^{\aleph_0}$), there is n_0 such that card(Γ_{n_0}) $\ge 2^{\aleph_0}$. By Rosenthal's result [22, Proposition 1.2 and Remark 1 on p. 17], the latter condition implies there is $\Gamma' \subset \Gamma_{n_0}$ with card(Γ') = card(Γ_{n_0}) such that the operator *R* restricted to an isometric copy of $\ell_{\infty}(\Gamma')$ in *V* is an isomorphism. Thus, X/Y contains a copy of $\ell_{\infty}(\Gamma')$ with card(Γ') $\ge 2^{\aleph_0}$ indeed. The last assertion of Corollary 3 follows from the fact that every isomorphic copy of $\ell_{\infty}(\mathbf{R})$ contains an isometric copy of ℓ_{∞} (see [19, Corollary on p. 207]).

Proof of Corollary 5. Let $\theta_n = n/(n+1)$, n = 1, 2, ..., and let (x_n) be a sequence of positive and pairwise disjoint elements of C[0, 1] with $1 = x_n(\theta_n) = ||x_n||$ for all *n*'s.

We first consider the case $X = \mathcal{L}^b_{\infty}[0, 1]$ and Y = C[0, 1]. The operator $T : \ell_{\infty} \to \mathcal{L}^b_{\infty}[0, 1]$ of the form

(8)
$$T(t_n) = (p) \sum_{n=1}^{\infty} t_n x_n,$$

where (p) denotes the pointwise sum, is well defined and *T* is an isometry. Moreover, we have $T(c_0) \subset C[0, 1] = Y$, because the series in (8) converges *uniformly* for $(t_n) \in c_0$, and $T(c_0) = [x_n]$ (the norm-closure of $\lim\{x_n: n \in \mathbb{N}\}$). Let us now consider the operator *P* from $\mathcal{L}^b_{\infty}[0, 1]$ onto Im *T* defined by the formula

$$Px = (p)\sum_{n=1}^{\infty} (x(\theta_n) - x(1))x_n.$$

It is easy to check that *P* is a projection with ||P|| = 2. Moreover, if $u \in C[0, 1]$ then the series $\sum_{n=1}^{\infty} (u(\theta_n) - u(1))x_n$ is norm-convergent in Y = C[0, 1]; hence $P(Y) = T(c_0) \subset Y$. By Remark 1, the operators *T* and *P* fulfill the assumptions (i) and (ii) of Theorem 2, and hence the required result follows.

For $X = L_{\infty}[0, 1]$, we shall apply both the previous constructions of T and P and a *function lifting* $\phi : L_{\infty}[0, 1] \to \mathcal{L}^{b}_{\infty}[0, 1]$. We recall that ϕ is a linear mapping preserving multiplication (hence disjointness) with

(9)
$$\|\phi\| = 1$$
 and $\phi Sf = f$ for all $f \in \mathcal{L}^b_{\infty}[0, 1]$,

where $S: \mathcal{L}_{\infty}[0, 1] \to L_{\infty}[0, 1]$ is the natural quotient map (see Section 1), and that such ϕ does exist (see [11, pp. 34–35, 46]; cf. [24, pp. 1140–1141]). Let us put Y = S(C[0, 1]). Since *S* restricted to C[0, 1] is an isometry preserving disjointness, the operator $\widetilde{T} := ST$ is an isometry from ℓ_{∞} into $L_{\infty}[0, 1]$, with $\widetilde{T}(c_0) \subset S(C[0, 1]) = Y$. Moreover, by (9), the operator $\widetilde{P} := SP\phi$ is a projection from $X = L_{\infty}[0, 1]$ onto Im \widetilde{T} (an isometric copy of ℓ_{∞}) with $\|\widetilde{P}\| = 2$, and $\widetilde{P}(Y) = \widetilde{T}(c_0) \subset Y$. By Remark 1 and Theorem 2, the result holds true also for the case $X = L_{\infty}[0, 1]$ and Y = S(C[0, 1]).

The remaining proofs deal with positive operators on a Banach lattice *E*. We recall that in this case it is enough to define an additive and positively homogeneous operator T_0 , say, on the cone E^+ ; then T_0 extends to *E* to a linear operator *T* by the formula $T(x) = T_0(x^+) - T_0(x^-)$, $x \in E$ (see [2, Theorem 1.7]).

Proof of Theorem 4. Part (i) depends on the following property which can be derived from the proof of Partington's result [18, Theorem 3]: *If a Banach lattice E contains a lattice copy of* ℓ_{∞} *then E contains lattice-almost isometric copies of* ℓ_{∞} (cf. [6, Theorem 3]; we recall that here we only consider *real* Banach lattices). Thus, fixing $\varepsilon > 0$, there is a lattice isomorphism $S_{\varepsilon} : \ell_{\infty} \to E$ with

(10)
$$1/(1+\varepsilon)\sup_{n\geq 1}|t_n| \leq \left\|S_{\varepsilon}((t_n))\right\| \leq \sup_{n\geq 1}|t_n| = \left\|(t_n)\right\|_{\ell_{\infty}},$$

for all $(t_n) \in \ell_{\infty}$. Let us put $x_n = S_{\varepsilon}(e_n)$, and $\mathbf{1} = \sup_{n \ge 1} e_n$. Since *E* has the Fatou property, for every $n \in \mathbf{N}$ we can find $u_n \in E_a$ with

(11)
$$0 \leq u_n \leq x_n$$
 and $||u_n|| \geq 1/(1+\varepsilon)^2$.

By (11), for every $(t_n) \in \ell_{\infty}^+$ we obtain

(12)
$$\sup_{m\geq 1}\sum_{n=1}^{m}t_{n}u_{n}\leqslant \sup_{m\geq 1}S_{\varepsilon}\left(\sum_{n=1}^{m}t_{n}e_{n}\right)\leqslant S_{\varepsilon}\left((t_{n})\right)\leqslant \left\|(t_{n})\right\|_{\ell_{\infty}}S_{\varepsilon}(1)$$

(the suprema exist because E is Dedekind σ -complete). From (10), (11) and (12) we get

(13)
$$1/(1+\varepsilon)^2 \|(t_n)\|_{\ell_{\infty}} \leq \left\| \sup_{m \geq 1} \sum_{n=1}^m t_n u_n \right\| \leq \|(t_n)\|_{\ell_{\infty}},$$

for all $(t_n) \in \ell_{\infty}$ (because $x_n \wedge x_m = 0$, for all $n \neq m$, and hence, by (11), the elements of the sequence (u_n) are pairwise disjoint; it follows that $|\sum_{n=1}^{m} t_n u_n| = \sum_{n=1}^{m} |t_n|u_n$ for all real numbers t_n , n = 1, 2, ...). From the latter remark, and from (12) and (13) it follows that the formula

(14)
$$T_{\varepsilon}((t_n)) := \sup_{m \ge 1} \sum_{n=1}^{m} t_n^+ u_n - \sup_{m \ge 1} \sum_{n=1}^{m} t_n^- u_n,$$

defines a lattice-topological isomorphism T_{ε} from ℓ_{∞} to E with

(15)
$$\|T_{\varepsilon}\| \cdot \|T_{\varepsilon}^{-1}\| \leq (1+\varepsilon)^2.$$

From (13) we also obtain that for every $(t_n) \in c_0$ the series $\sum_{n=1}^{\infty} t_n u_n$ is norm-convergent in *E*, and hence in the (norm-closed) ideal E_a . Thus,

(16)
$$T_{\varepsilon}(c_0) \subset E_a$$
.

Let (Q_n) be the sequence of positive projections in E of the form $Q_n(x) = \sup\{x \land ku_n: k \in \mathbb{N}\}$, $x \ge 0$ (since E is Dedekind σ -complete, Q_n exists for every n; see [2, Theorem 3.13]), and let (f_n) be a sequence of positive elements of E^* with $f_n(u_m) = \delta_{nm}$ and $||f_n|| \le (1 + \varepsilon)^2$ (the existence of such f_n 's follows from (11)). By (12), the operator P_{ε} defined by the formula

(17)
$$P_{\varepsilon}(x) := \sup_{m \ge 1} \sum_{n=1}^{m} f_n(Q_n x) u_n, \quad x \ge 0,$$

is a positive projection in E with

(18) $P_{\varepsilon}(E) = T_{\varepsilon}(\ell_{\infty}) \text{ and } ||P_{\varepsilon}|| \leq (1+\varepsilon)^2$

(cf. [27, p. 37]). Moreover, if $0 \le x \in E_a$, then for all *n* we have $Q_n(x) \le x$ which follows that $Q_n(x) \in E_a$ (because E_a is an ideal of *E*) and hence, by [2, Theorem 12.13], $\lim_{n\to\infty} ||Q_nx|| = 0$. We thus obtain $P_{\varepsilon}(E_a) \subset T(c_0)$, but obviously $P_{\varepsilon}(x) = x$ for all $x \in T_{\varepsilon}(c_0)$, whence

(19)
$$P_{\varepsilon}(E_a) = T_{\varepsilon}(c_0)$$

(cf. [2, Theorem 1.8]). From (16), (18), (19) and part (i) of Theorem 3 we obtain the required result for part (i) of Theorem 4.

Part (ii). Let $S: \ell_{\infty} \to E$ be a lattice isometry, and let $\varepsilon \in (0, 1)$ be fixed. We put $x_n = S(e_n), n = 1, 2, ...,$ and choose positive $u_n \leq x_n$ with $1 - \varepsilon/n \leq ||u_n||$. As in the proof of item (i), we find a sequence $(f_n) \subset (E^*)^+$ with $f_n(u_m) = \delta_{nm}$ and $||f_n|| \leq 1/(1 - \varepsilon/n)$ for all *n*'s. Let T_{ε} be the operator defined, for our sequence (u_n) , by the above formula (14). Let *R* be the operator mapping ℓ_{∞} into E/E_a defined in item (ii) of Theorem 3, i.e., $R(q(\xi)) = Q(T_{\varepsilon}(\xi)), \xi \in \ell_{\infty}$. In the proof of Theorem 2 in [29] it has been shown that *R* is a lattice isometry. It proves the first part of our item (ii).

Further, let us consider the projection P_{ε} defined for our sequences (u_n) and (f_n) by the formula (17), and let \mathbf{P}_{ε} be the positive projection from E/E_a onto the range of R of the form $\mathbf{P}_{\varepsilon}(Qx) = Q(P_{\varepsilon}(x))$ (see item (ii) of Theorem 3). We claim that \mathbf{P}_{ε} fulfills the second part of item (ii), i.e., $\|\mathbf{P}_{\varepsilon}\| = 1$; equivalently, for all $x \in E^+$, $w \in E_a$ and $k \in \mathbf{N}$ the following inequality holds

(20)
$$\|\mathbf{P}_{\varepsilon}(Qx)\| \leq \|x+w\|/(1-\varepsilon/k).$$

The proof of (20) will be based on the following property

(#) Let *E* be a Dedekind σ -complete Banach lattice, let (u_n) be a sequence of positive and pairwise disjoint elements of *E*, and let (t_n) , (s_n) be two sequences of real numbers with $t_n \ge 0$ for all *n*'s such that $\sup_{m\ge 1} \sum_{n=1}^{m} t_n u_n$ exists in *E* and the series $\sum_{n=1}^{\infty} s_n u_n$ is norm-convergent in *E*. Then

(21)
$$\left|\sup_{m\geq 1}\sum_{n=1}^{m}t_{n}u_{n}+\sum_{n=1}^{\infty}s_{n}u_{n}\right|=\sup_{m\geq 1}\sum_{n=1}^{m}|t_{n}+s_{n}|u_{n}|$$

To prove (21), we shall use the notion of *order convergence* in *E*. We recall (see [2, p. 30]) that a sequence (a_n) in *E* is order convergent to an element $a \in E$ (in symbols, $a_n \xrightarrow{(o)} a$) whenever there exists a sequence $(v_n) \subset E^+$ with $v_n \downarrow 0$ and $|a_n - a| \leq v_n$ for all *n*'s. It is obvious that if $a_n \xrightarrow{(o)} a$ and $b_n \xrightarrow{(o)} b$ then $a_n + b_n \xrightarrow{(o)} a + b$, and hence (by inequality $||x| - |y|| \leq |x - y|$ for all *x*, $y \in E$)

(22)
$$|a_n + b_n| \xrightarrow{(o)} |a + b|.$$

We put $A_m = \sum_{n=1}^m t_n u_n$, $A = \sup_{m \ge 1} A_m$, $B_m = \sum_{n=1}^m s_n u_n$, and $B = \sum_{n=1}^\infty s_n u_n$. Then we have $A_m \uparrow A$, whence $A_m \stackrel{(o)}{\to} A$, and $B_m \stackrel{(o)}{\to} B$ because

$$|B_m-B|=\sum_{n=m+1}^{\infty}|s_n|u_n\downarrow 0.$$

By (22) and the remark following (13), we thus obtain

$$\sum_{n=1}^{m} |t_n + s_n| u_n = |A_m + B_m| \xrightarrow{(\alpha)} |A + B|.$$

On the other hand, the sequence $(|A_m + B_m|)$ is increasing, and hence $|A + B| = \sup_{m \ge 1} |A_m + B_m| = \sup_{m \ge 1} \sum_{n=1}^{m} |t_n + s_n|u_n$. The proof of (#) is complete.

Now we shall prove inequality (20). We fix $x \in E^+$ and $w \in E_a$, and we consider the elements $A = P_{\varepsilon}(x)$ and $B = P_{\varepsilon}(w)$. We notice first that, by (17), we have here $A = \sup_{m \ge 1} \sum_{n=1}^{m} t_n u_n$, where $t_n = f_n(Q_n x) \ge 0$ for all *n*'s, and $B = \sum_{n=1}^{\infty} s_n u_n$, where $s_n = f_n(Q_n w)$ for all *n*'s, and that the series defining *B* is norm-convergent in E_a because $\lim_{n \to \infty} t_n = 0$ (see (16) and (19), and the remark preceding (19)). We define next, for k = 1, 2, ..., the four elements: $A^{(k)} := \sup_{m \ge k} \sum_{n=k}^{m} t_n u_n$, $A_m^{(k)} := \sum_{n=k}^{m} t_n u_n$, $B^{(k)} = \sum_{n=k}^{\infty} s_n u_n$, and $B_m^{(k)} = \sum_{n=k}^{m} s_n u_n$. Since $u_n \in E_a$ for all *n*'s, we have

(23)
$$A_m^{(k-1)} \in E_a$$
 and $B, B_m^{(k-1)}, B^{(k)} \in E_a$ for all $m \ge k \ge 1$.

Then, by (23), for every k fixed we have:

$$\|\mathbf{P}_{\varepsilon}(Qx)\| = \inf_{y \in E_a} \|y + P_{\varepsilon}(x)\| = \inf_{y \in E_a} \|y + A + B\|$$

= $\inf_{y \in E_a} \|y + A^{(k)} + A_1^{(k-1)} + B^{(k)} + B_1^{(k-1)}\|$

$$= \inf_{y \in E_a} \| y + A^{(k)} + B^{(k)} \| \le \| A^{(k)} + B^{(k)} \|$$

= $\| |A^{(k)} + B^{(k)}| \|.$

The forms of the elements $A^{(k)}$ and $B^{(k)}$ fulfill the assumptions in (#), whence

(24)
$$|A^{(k)} + B^{(k)}| = \sup_{m \ge k} \sum_{n=k}^{m} |f_n(Q_n(x+w))| u_n.$$

Since *E* has the Fatou property and the sums $\sum_{n=k}^{m} |f_n(Q_n(x+w))| u_n$ increase with *m* (for *k* fixed), we get the equality

(25)
$$\left\|\sup_{m\geq k}\sum_{n=k}^{m}\left|f_n(Q_n(x+w))\right|u_n\right\| = \sup_{m\geq k}\left\|\sum_{n=k}^{m}\left|f_n(Q_n(x+w))\right|u_n\right\|.$$

Moreover, for all *n*'s we have $||Q_n|| = 1$ (as $0 \le Q_n x \le x$ for all $x \ge 0$), and $||\sum_{n=k}^{m} u_n|| \le ||S(1)|| = 1$ (as u_n 's have been chosen with $0 \le u_n \le x_n$). Hence, from (24) and (25) we obtain further estimations on $||\mathbf{P}_{\varepsilon}(Qx)||$:

(26)
$$\|\mathbf{P}_{\varepsilon}(Qx)\| \leq \sup_{m \geq k} \left(\max_{k \leq n \leq m} \left|f_n(Q_n(x+w))\right|\right) \leq \left(\sup_{m \geq k} \|f_m\|\right) \|x+w\|.$$

Since the functionals f_n 's have been chosen with $||f_n|| \le 1/(1 - \varepsilon/n)$, from (26) we finally obtain (20). The proof of part (ii) of Theorem 4 is complete.

Proof of Theorem 5. Here we apply the result below, due to Hudzik [9, Theorem 3], from which Theorem 5 follows immediately. However, the reader should note that in Hudzik's paper the term "monotone completeness" corresponds to what we call the "Fatou property" (as defined in the Meyer–Nieberg monograph [17]); see also [1, p. 282] for a comment on the name "monotone completeness" which is often called "the Levi property".

Lemma 2. Let *E* be a super Dedekind complete Banach lattice with $E \neq E_a$ and E_a order dense in *E*. If E_a is an *M*-ideal in *E* then *E* contains a lattice-isometric copy of ℓ_{∞} .

We shall present a shorter (than in [9]) proof of the lemma. Since E_a is an *M*-ideal, it is *proximal*, i.e., for every $x \in E$ there is $y \in E_a$ with ||Q(x)|| = ||x - y|| (see [8, Proposition II.1.1]). In particular, there exists $x \in E$ with ||x|| = 1 and ||Q(x)|| = 1. By [9, Theorem 2], the latter property immediately implies that *E* contains a lattice-isometric copy of ℓ_{∞} . \Box

Proof of Lemma 1. Part (a) is included in [12, Theorem 2.3(i)].

Part (b). Item (i) and the first part of item (ii) are included in [12, Theorem 2.3(ii)]. For a proof of the second part of our item (ii) observe that the function $f = \Psi'$ is laying in $M(\Psi) \setminus M_0(\Psi)$. Item (iii) is included in [12, Theorem 2.4].

ACKNOWLEDGEMENT

The authors thank the referee for remarks and comments which improved the quality of this paper.

REFERENCES

- Abramovich Y.A., Wickstead A.W. When each continuous operator is regular II, Indag. Math. N.S. 8 (1997) 281–294.
- [2] Aliprantis C.D., Burkinshaw O. Positive Operators, Academic Press, New York, 1985.
- [3] Bennett C., Sharpley R. Interpolation of Operators, Academic Press, Boston, 1988.
- [4] Bourgain J. ℓ_{∞}/c_0 has no equivalent strictly convex norm, Proc. Amer. Math. Soc. **78** (1980) 225–226.
- [5] Castillo J.M.F., González M. Three-space Problems in Banach Space Theory, Springer-Verlag, Berlin, 1997.
- [6] Chen J. The lattice-almost isometric copies of l¹ and l[∞] in Banach lattices, Acta. Math. Acad. Paedagog. Nyházi. (N.S.) 22 (2006) 73–76.
- [7] Chen S. Geometry of Orlicz spaces, Dissertationes Math. 361 (1996).
- [8] Harmand P., Werner D., Werner W. M-Ideals in Banach Spaces and Banach Algebras, Springer-Verlag, Berlin, 1993.
- [9] Hudzik H. Banach lattices with order isometric copies of ℓ_{∞} , Indag. Math. N.S. **9** (1998) 521–527.
- [10] Hudzik H., Kurc W. Monotonicity properties of Musielak–Orlicz spaces and dominated best approximation in Banach lattices, J. Approx. Theory 95 (1998) 353–386.
- [11] Ionescu Tulcea A., Ionescu Tulcea C. Topics in the Theory of Lifting, Springer-Verlag, Berlin, 1969.
- [12] Kamińska A., Lee H.J. M-ideal properties in Marcinkiewicz spaces, Ann. Soc. Math. Pol., Ser. I, Comment. Math. 2004, Spec. Iss. 123–144.
- [13] Koszmider P. Banach spaces of continuous functions with few operators, Math. Ann. 330 (2004) 151–183.
- [14] Krein S.G., Petunin Yu.I., Semenov E.M. Interpolation of Linear Operators, Amer. Math. Soc. Transactions of Math. Monogr., vol. 54, Providence, 1982.
- [15] Kuratowski K., Mostowski A. Set Theory, Polish Scientific Publishers, Warszawa, 1976.
- [16] Lindenstrauss J., Tzafriri L. Classical Banach Spaces, I, Springer-Verlag, Berlin, 1977.
- [17] Meyer-Nieberg P. Banach Lattices, Springer-Verlag, Berlin, 1991.
- [18] Partington J.R. Subspaces of certain Banach sequence spaces, Bull. London Math. Soc. 13 (1981) 162–166.
- [19] Partington J.R. Equivalent norms on spaces of bounded functions, Israel J. Math. 35 (1980) 205–209.
- [20] Plebanck G. A construction of a Banach space C(K) with few operators, Topology Appl. 143 (2004) 217–239.
- [21] Plichko A., Yost D. Complemented and uncomplemented subspaces of Banach spaces, Extr. Math. 15 (2000) 335–371.
- [22] Rosenthal H.P. On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970) 13–36.
- [23] Rusu Gh. On certain subspaces of a class of Banach spaces, Bul. Acad. Stiinte Repub. Mold. Mat. 33 (2) (2000) 85-91.
- [24] Strauss W., Macheras N.D., Musiał K. Liftings, in: E. Pap (Ed.), Handbook of Measure Theory, Elsevier, 2002, pp. 1131–1184.
- [25] Walker R.C. The Stone Cech Compactification, Springer-Verlag, Berlin, 1974.
- [26] Wnuk W. On the order-topological properties of the quotient space L/L_A , Studia Math. **79** (1984) 139–149.
- [27] Wnuk W. Banach Lattices with Order Continuous Norms, Polish Scientific Publishers, Warszawa, 1999.

- [28] Wójtowicz M. The lattice-isometric copies of
 θ_∞(Γ) in quotients of Banach lattices, Int. J. Math. Math. Sci. 2003 (47) (2003) 3003–3006.
- [29] Wójtowicz M. The lattice copies of $\ell_{\infty}(\Gamma)/c_0(\Gamma)$ in a quotient of a Banach lattice, Indag. Math. N.S. 16 (2005) 147–155.
- [30] Wójtowicz M. Isomorphic and isometric copies of $\ell_{\infty}(\Gamma)$ in duals of Banach spaces and Banach lattices, Comment. Math. Univ. Carolinae 47 (2006) 467–471.

(Received January 2006)