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ABSTRACT 

Let X be a Banach space, let Y be its subspace, and let F be an infinite set. We study the consequences 
of  the assumption that an operator T embeds foo(F) into X isomorphically with T(c0(F)) C Y. Under 
additional assumptions on T we prove the existence of  isomorphic copies of  c0(F s~) in X~ Y, and 
complemented copies (~(F) /c0(F)  in X/Y.  In concrete cases we obtain a new information about 

the structure of X~ g. In particular, Loo[O, I]/C[O, 1] contains a complemented copy of f~c/co, and 
some natural (lattice) quotients of real Orlicz and Marcinkiewicz spaces contain lattice-isometric and 
positively I-complemented copies of(real) ~ / c l ) .  

1. INTROI)tJCTION 

Let X be a Banach space, let Y be a closed subspace of X, and let F be an infinite 
set. The present paper deals with the structure of the space X~ Y and is motivated 
by two recent results: by Rusu [23] and the second named author [29]. In [23, pp. 
86 87] it is proved implicitly that i f  a subspace Y oJ' ~ contains an isomorphic 
copy oj'cll but not ~vc, then c0(R) embeds isomorphically into f~c/ Y. On the other 
hand, in [29] the existence of lattice copies of ~oo(F)/c0(F) in some quotients of 
Banach lattices was examined. Regarding the structure of X~ Y we refer the reader 
to the monograph [5] by Castillo and Gonzalez describing the state in this setting 
up till 1997; the survey paper [21] by Plichko and Yost (of 2000) complements it 

partially. 
In this paper we study the consequences of the assumption that an operator T 

embeds ~ ( F )  into X isomorphically with 
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(1) c r.  

In Theorem 1 (extending the above-mentioned result by Rusu, and complementing 
the classical Drewnowski-Roberts theorem that the non-containment of g~ is 
a three-space property [5, Theorem 3.2.1]) we show, in particular, that X/Y 
contains a copy of coo "s0) provided that Y contains no copy of  gcc. In The- 
orem 2 we strengthen relation (1) between Y and c0(F) obtaining the exis- 
tence of  a continuous injection R from g~(F)/co(I ' )  into X/Y, and a projec- 
tion from X/Y onto the range of  R (under an additional assumption on T). 
The latter result is narrowed in Theorem 3 to the case studied in [29], giving 
that some quotients of  Banach lattices contain (positively) complemented copies 

o f f , / c 0 .  
These general results well apply to concrete cases and yield new informa- 

tion about the structure of  quotients of  classical spaces. For example, the space 
L~[0,  1]/C[0, 1] contains a complemented copy of  g~/co (Corollary 5), and an 
application of  Theorem 3 to an Orlicz space X -- L4,(/~) and Y its order continuous 
part E¢(#) gives that L¢(#)/E~(#) contains a lattice-isometric and positively 

1-complemented copy of g~/co whenever L~ (#) # E¢ (/z) (Corollary 9). 
The interested reader may apply further the result by Partington, which does 

not appear in our statements, that every isomorphic copy of go/co contains an 
isometric copy of g~ (see [18]; its lattice version is addressed in [29]); such 
an additional conclusion one obtains, e.g., in Corollary 5, Theorem 2(ii), and 
Corollary 8. Moreover, if F is uncountable then £~(F)/c0(F) ,  endowed with the 
natural quotient norm, contains a lattice-isometric copy of  g~(F),  see [28]; this 

complements part (i) of  Theorem 3. 
The main results of  this paper are given in Sections 2, 3 and 4, and their proofs 

are included in the last section. 
The terminology we use is standard and is that of  [16,17]. All spaces and 

subspaces are assumed to be linear and norm-closed, and all (linear) operators are 
continuous. A subspace U of X is said to be 1-complemented if there is a projection 
P from X onto U with II P II = 1. The term "copy" means "isomorphic copy". The 
letters Q and q, respectively, will denote the familiar quotient mappings X -~ X~ Y 
and e~(F)  -+ ~ ( F ) / c 0 ( F ) ,  respectively. 

By £~[0 ,  1] we denote the linear space of  all Lebesgue-measurable functions 
on the interval [0, 1] that are bounded almost everywhere. Then A/ denotes 
the subspace of  £~[0 ,  1] of  the functions that vanish almost everywhere on 
[0, 1], and £~[0 ,  1] is the subspace of  all bounded elements f of /2~[0 ,  1] (i.e., 
LLfLI~ := supt~[o, ll If(t)[ < cx~). By S we denote the natural quotient mapping 
£~[0 ,  1] ~ £~[0 ,  1]/A/, and the latter space is denoted by L~[0,  1]. Obviously, 
(£~[0,  1], l[ [l~) is a closed subspace o f / ~ [ 0 ,  1] containing C[0, 1] as a closed 
subspace. Moreover, L ~  [0, 1 ], endowed with the "ess sup"-norm, is a Banach space 
and S restricted to C[0, 1] is an isometry preserving disjointness. It is worth to 
notice that S(£~[0,  1]) = L~[0,  1] (see (9) in Section 5). 

By N and R we denote the sets of  positive integers and real numbers, respectively. 
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2. A GENERAL CASE 

We start with a generalization of  the above-mentioned result by Rusu. We recall that 

g denotes a subspace o f  a Banach space X. 

T h e o r e m  I. Let T : g ~ ( I ' )  --+ X be an isomorphic embedding that fulfills con- 

dition (1). Then co(F s°) embeds" isomorphically into X~ Y i[ one o f  the Jbllowing 

conditions holds: 

(a) Y does not contain a copy o / ' ~ ,  
(b) Y does not contain a copy o / ' ~ ( F )  and card(F) = card(F) s0. 

(Of  course, i f  card(F) = card(F) s0 then condition (b) is weaker than (a).) The 

theorem covers partially also the case when the cardinality oe := card(F) fulfills 

inequality a s0 > a.  Because oe = 2 s0 implies that c~ s(} = oe, we then have two cases: 

(j) b~{} ~< c~ < 2 s{}, and 
(jj) ~ > 2s<}. 

In case (j) we apply condition (a). In case (jj) the set o f  infinite cardinals {fi < 

a:  fl¢0 _- fl} is not empty, and hence we can apply condition (b) for every subset 

F/~ o f  F, with card(F/3) = fi, instead o f  F. That is, we consider the restriction of  

T to the set o f  elements of  foo(F) with support contained in Ft~ , which form a 

subspace of  foe(F) which is isometric to £oo(F~). This is so, for example,  for oe := 

E,,% 2-. l oe,,, where ~1 = ~{}, and c6,+1 = , n = l, 2 . . . .  ; here we have ~ 0  > c~ (see 

[ 15, Corollary V.8.3]). 

The first corollary of  Theorem 1 is a consequence of  the result o f  Bessaga and 

Petczyfiski on copies o f  co and C~ in duals o f  Banach spaces. 

Coro l l a ry  I.  Let V be a subspace of  X* such that V contains a copy of  co. I f  V 

does not contain a copy q/" f ~c, then co(R) embeds' isomorphically into X* / V. 

The next result is due to Rusu [23, pp. 86 87]. It immediately follows from 

Corollary 1 applied to the space X = f ~. Another argument is given in Section 5. 

Coro l l a ry  2. Let Y be a subspace o f  f,~ containing a copy of  co. I f  Y does not 

contain a copy oJC~, then ~ / Y  contains a copy o f  co(R). 

In particulaz jbr every separable subspace Y qf  £~ containing a copy o f  co, the 

quotient s'pace ( ,~/ g contains a copy q/co(R) .  

In the next theorem, which is a partial generalization o f  [29, Proposition 1], we 

strengthen condition ( 1 ), obtaining much stronger results than in Theorem 1. 
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Theorem 2. (i) Let T : e~(F)  --+ X be an isomorphic embedding such that 

(2) T(co(V)) = Y n Im T. 

Then the induced operator R : ~ ( r ) / c o ( r )  --+ x / Y  defined by R o q = Q o T is 

injective and IIRH ~< IITII. 
(ii) I f  moreover there is a projeetion P from X onto Im T with 

(3) P(Y) C Y, 

then the operator P: X / Y  --+ X / Y  of  the form P(Q(x)) = Q(P(x)) is a projection 

onto the range of R with IrPll ~< IIPII, and we additionally have IIR -l[I ~< lIT - l  II" 

IIPII. 
Under these assumptions for T and P, the space X~ Y contains a complemented 

copy of  g~(F)/co(F). 

Notice that, in contrast to Theorem l, the subspace Y in Theorem 2 (and the 
corresponding with Y subspaces in the next two corollaries) may now contain a 
copy of g~ because condition (2) refers to afixed operator T. 

Remark  1. From the conditions (2) and (3) it follows that P(Y) = T(c0(F)), i.e., 
the restriction Ply is a projection from Y onto T(c0(F)). On the other hand, it can be 
easily checked that if P a projection in X with P(Y) = T(c0(F)) C Y and P(X) = 
T(g~(F))  then condition (2) is fulfilled, and this allows us to construct a continuous 
injection R as in part (i) of  Theorem 2. 

The corollary below follows from part (i) of  Theorem 2. 

Corollary 3. Let T : g ~ ( r )  ~ X be an isomorphic embedding that fulfills condi- 
tion (2). Then the space X~ Y does not possess an equivalent strictly convex norm, 
and it contains a copy of co(FSO). 

Moreover,/fcard(F) ~> 2 ~o then X / Y  contains a copy of  ~ ( F ' )  for some F' C F 
with card(F') ~> 2 ~o, and an isometric copy of  g~. 

The next corollary is an immediate consequence of the preceding corollary and 
the following observation: if an operator S embeds isomorphically co into a Banach 
space X, then its second conjugate S** embeds isomorphically ~ into X** with 
S** (e~) n t(X) = t(S(co)), where t denotes the canonical embedding of  X into X**. 
The corollary is also a completion of [29, Corollary 5] dealing with the quotient 
E**/t(E) for E a Banach lattice. 

Corollary 4. I f  X contains an isomorphic copy of  co, then the quotient space 
X**/t(X) does not possess an equivalent strictly convex norm, and it contains a 
copy of  co(R) and an isometric copy of  g~. 
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It is obvious that the above corollary is essential when X does not contain a 
complemented copy of co (thus, X must be nonseparable). The examples of  such 
spaces are furnished by Ca(F),  f~ /e0 ,  and C(K)-spaces with few operators [13, 
20], among others. 

The last corollary of this section illustrates part (ii) of  Theorem 2 for the spaces 
X = L~[O, I1 and X : E~[O, I], and Y = C[{}, 1]. 

Corollary 5. Let X denote ~/' [0, 1 ] or L~[0, 1], and let Y denote its closed sub- 
space (isometric in the second case to) C [0, 1 ]. Then X~ Y contains a complemented 

copy o f ' ~ / c o .  
More exactly, there is an isomorphism R : ~ /c{}  ~ X~ Y with II R ll. IlR-l]l ~< 2 

and a projection P fi'om X / Y onto the range o[" R with ilPll = 2. 

3. THE {.'ASfi OF BA N A( 'H  LATTICES 

Let us examine now how Theorem 2 works within the class of real Banach lattices. 

For the basic notions and results regarding Banach lattices we refer the reader to 
the monographs [2] and [17]. For the convenience of the reader we recall some 

definitions. 
In this section, the term "lattice copy" means "both lattice and topological copy", 

and "lattice-isometric copy" means "both lattice and isometric copy". A linear 

lattice E is called Dedekind [a-]complete if every [countable, resp.] subset V of  
E bounded from above has a supremum sup V in E; and it is called super Dedekind 
complete if in addition the "sup" of  V is attained on a countable subset V0 of V. If 
E = (E, II II) is a Banach lattice, then its topological dual E* is a Dedekind complete 
Banach lattice, and the real Banach function spaces (e.g., Orlicz and Marcinkiewicz 
spaces) are the examples of  super Dedekind complete Banach lattices. We recall 

that for every x ~ E we have Ilx II = II Ix lll, where Ix l denotes the modulus of x, and 
hence some calculations in E may be done on the positive part E + of E. By Ea we 

denote the order continuous part of  E, i.e., the largest ideal in E such that the norm 
restricted to E,  is order continuous: E~ = {x c E: Ixl /> xs $ 0 implies II&ll ~ 0}. 
The ideal E~, is both Dedekind complete and norm-closed in E, and it does not 
contain lattice copies of (-~ (see [17, Proposition 2.4.10, Corollary 2.4.3]). The 
Banach lattice E is said to have the Fatou property if for every increasing net 

(Yi)icl in E + with x = supie/xi it follows that [Ix II = sup/e / I[xi II; the examples are 
furnished by dual Banach lattices [17, Proposition 2.4.19] and some function spaces 
[26, p. 144]. If E, F are two Banach lattices then an injective operator T : E -+ F 
is called a lattice isomorphism provided that Tx ~> 0 iff x ~> 0 (equivalently, 

[T(x)l = T(Ixt) for all x c g), and T is called a lattice-topological isomorphism 
provided that it is, additionally, a homeomorphism. An ideal M of E is said to be 

order dense if for every x E E + there is y c M + \ {0} with y ~< x. For some function 

spaces E the order continuous part E,  is always proper and order dense in E (see 

the next section), and hence E / E ,  is of infinite dimension. 

l f M  is a norm-closed ideal o fa  Banach lattice E, then the quotient space E/M,  
endowed with the quotient norm, becomes a Banach lattice, if in the hypotheses of  
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Theorem 2 we put X = E, Y = M, and T a lattice-topological isomorphism then 
from [29, Proposition 1] we obtain a much stronger conclusion: 

( , )  condition (2) alone implies that the operator R in part (i) of  Theorem 2 is a 
lattice isomorphism with Im R a norm-closed sublattice of  E / M (hence, R is 
additionally a topological isomorphism) and II R -1 II ~< II T-1 II; 

in particular, 

(**) i f  T is a lattice isometry then R is a lattice isometry too. 

Further, from the form of the projection P in Theorem 2(ii) we obtain that 

(***) i f  P is positive then P is positive as well. 

From the statements (,), (**), (***) and Remark 1 we immediately obtain a 
Banach-lattice version of Theorem 2. 

Theorem 3. Let E be a Banach lattice, and let M be a norm-closed ideal of  E. 
I f  T : e ~ ( F ) ~  E is a lattice-topological isomorphism, and P is a positive 

projection from E onto its norm-closed sublattice Im T, with PIM a projection onto 
T(co(F)) C M, then 

(i) the operator R, defined as in part (i) of  Theorem 2, maps £~(F)/co(F) onto 
a norm-closed sublattice V of  E / M  with Ilell ~< IITII and IIR-III ~< lIT-Ill; 
moreover, V is the range of  a positive projection P in E / M, defined as in part 

(ii) of  Theorem 2, with IIPII ~< IIPII. 
(ii) In particular, / f lm  T is positively 1-complemented in E then V is positively 

1-complemented in E / M, and if  T is an isometry then V is a lattice-isometric 
copy of  g.~ (F)/co(F). 

This theorem will be applied to the case when M equals the order continuous part 
Ea of E. It was shown in [29, Theorems 1 and 2] that the quotient Banach lattice 
E/Ea contains lattice copies of e~/co whenever E is Dedekind a-complete with 
Ea order dense in E and E ~ E,. We shall show below these copies are positively 
complemented in E/Ea. 

Let us recall that the assumption E ¢ Ea, appearing in a few next results, 
implies (for E Dedekind ~r-complete) that E contains a lattice copy of ~ (see 
[2, Theorem 14.9]). 

The first corollary of Theorem 3 says generally about the quality of lattice copies 
of e~/co inside E / E , ,  strengthening [29, Corollary 3]; its proof is immediate. 

Corollary 6. Let E be a Dedekind cr-complete Banach lattice with E ~ Ea and 
Ea order dense in E. Then E / E, contains a positively complemented lattice copy 

of  e~/co. 
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The next theorem is a nontrivial consequence of Theorem 3 and deals with the 
existence and complementability of lattice-isometric and lattice-almost isometric 
copies of f~ / co  in E/Ea whenever E possesses the Fatou property. It strengthens 
the results obtained in [29, Theorem 2]. For clarity and further applications 
of Theorem 4, we consider only the case F = N (similar conclusions, for r 
uncountable, can be obtained by combining the proofs of our Corollary 7 and 
Theorem 2 in [29]). To shorten the text, we say that a Banach lattice F contains 

lattice-almost isometric copies of  another Banach lattice G (see [29, p. 151]) 
provided that, for every E > 0 there is a lattice-topological isomorphism T~. from 
G onto a sublattice V~ of  F with II T~,II • IIT~ 7] II < 1 + e; and if, additionally, there is 

a positive projection P~ from F onto V~ with II P~ II < 1 + c, then the copies are said 
to be positively-almost l-complemented in F. 

Theorem 4. Let E be a Dedekind (7-complete Banach lattice with E # Eo and Eo 
order dense in E. Assume also that E has the Fatou property. Then 

(i) E/Eo contains lattice-almost isometric copies oJ' C,~/co that are positively- 
almost 1-complemented in E/Eo; 

(ii) i f  additionally, E contains a lattice-isometric copy ()f £~ then E / Eo contains 
a lattice-isometric andpositively 1-complemented copy o f f ,~co .  

The last result of this section follows from part (ii) of Theorem 4. Since its proof 
depends on the existence of lattice-isometric copies of  f~c in E whenever Eo is an 
M-ideal of E [9, Theorem 3], we refer the reader to Section 5 for a comment on 
that property. 

We recall that a closed subspace g of a Banach space X is an M-ideal if there 
is a projection P : X* ~ X* with range Y± (the annihilator of  Y in X*) such that 

Ilx*ll =-ItPx*ll + II(l - P)x*ll for all x* in x*. 

Theorem 5. Let E he a super Dedekind complete Banach lattice with E # Eo and 
E, order dense in E. I['E has the Fatou property and E, is an M-ideal in E, then 
E / E,, contains a lattice-isometric and positively I-complemented copy off ,~Co. 

4. APPLI CA] ' I O NS  TO O R I A ( ' Z  AND M A R C I N K I E W I C Z  S P A C E S  

In this section we shall apply the last theorem of the previous section to two concrete 
Banach function lattices with the Fatou property; similar results can be obtained for 
other function spaces (see [9, p. 526]). 

The first application deals with Orlicz spaces. 

Let (f2, Z,/x) be a cs-finite measure space, and let L0(/x) denote the linear lattice 
of  all (classes of real) t~-measurable functions on ~. A function q) : [0, co) --+ [0, ec) 

is called an Orlicz function if it is convex, continuous, with ~p(0) = 0 and ~p ~ 0. 

The function q) determines a functional Q~ : L0(/~) ~ [0, oc] defined by the rule 

Q~(f) = j'~ q)(I.f (co)l)dbl((o). The subspace 

L~)(U) = {./" ~ Lo(u): oe(rf)  < oc for some r > 0} 
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of L0(/z) is called an Orlicz space. It is a super Dedekind complete Banach lattice 
with respect to the Luxemburg norm Ilf[l¢ := inf{t > 0: o~(f/t)  <~ 1}, and its order 
continuous part (L~(#))~ equals 

E~o(#) = {f  6 Lo(#): O~o(rf) < ec for all r > 0} 

(see [26, p. 145]). It is known that L~(#) has the Fatou property, that if L~o(#) :fi 
E~(#) (i.e., if q) does not fulfill the so called Az-condition; see e.g. [7, p. 14]), 
then Ee(#) is order dense in L~(#) (cf. [7, Theorem 1.25]), and Le(#) contains a 
lattice-isometric copy o f ~  (see the proof of Theorem 1.89 in [7]; cf. [9, p. 526]). It 
is also known that E~o(#) is an M-ideal in L~o(#) (see [7, Theorems 1.47 and 1.48]). 

Now from Theorem 4(ii) (or, from Theorem 5) we immediately obtain a strength- 
ening of [29, Corollary 6]. 

Corollary 7. Let q) be a finite Orlicz function. I f  L~(#) ~ E~(#), then the 
quotient Banach lattice L~(#)/ E~(#) contains a lattice-isometric and positively 
1 -complemented copy ofg~/co. 

This result is, in a sense, not surprising because L~(#)/E~(#) is lattice-isometric 
to a sublattice of a C(K)-space for some K compact Hausdorff [26, Theorems 10 
and 11]. 

Let us now consider L~(#) endowed with another (equivalent) norm II II ° ,  
called the Orlicz norm: Ilfll ° := sup{f~ f • gd#: O~*(g) ~ 1}, where ~p* is the 

O complementary function of ~p (see [7, Theorem 1.38(4)]). The symbol L~ (it) will 
denote the Banach space (L~0(#), II I1°); the previous symbol L~(#) will still 
denote the Orlicz space endowed with the Luxemburg norm. Then we have (see 
[7, Theorem 1.45], with the same proof for the general case): (E~, (tz))* o = L~ (#). 
It follows that o L~ (~), as a dual Banach lattice, is a (super Dedekind complete) 
Banach lattice with the Fatou property. However, if (p is strictly monotone then the 
Orlicz norm II II ° is strictly monotone (see [10], i.e., Ilfl II ° < Ilf211 ° whenever 
0 <~ fl 4 f2 and f l ¢  f2); therefore L ° ( # )  cannot contain lattice-isometric copies 
o f £ ~ .  In this case, from part (i) of Theorem 4 we immediately obtain 

Corollary 8. Let ~o be a finite and strictly monotone Orlicz function. I f  L~(#) 
Ee(#), then the quotient Banach lattice L°(#) /Ee(#)  contains lattice-almost 
isometric and positively-almost 1-complemented copies of £~/  co. 

The second application of Theorem 5 deals with Marcinkiewicz spaces. Now we 
restrict our considerations to the function space Lo := Lo(l, B, ~.), where I = (0, 1), 
)~ is the Lebesgue measure on the ~r-algebra B of the Lebesgue measurable subsets 
of I. If f 6 Lo then f* denotes the decreasing rearrangement of f defined by the 
formula f*(t) := inf{s > 0: mr(s) ~< t}, t > 0, where mf is the distribution function 
of f :  mf(s) = )~{r E I: If(r)l > s}. Further, let ko be a strictly increasing concave 
function qJ: [0, 1] ~ [0, ec), with qJ continuous at 0 = qJ(0) (a more general case 
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is considered in [12]). Then the Marcinkiewicz 3pace M(qQ is the set of all f ~ Lo 
such that the number 

1 

II f I I ,  = sup ) *  dX 
t>O 

0 

is finite, and II II,p is a norm on M(qQ. It is well known that (M(qJ), 11 I[ q,) is a (super 
Dedekind complete) Banach lattice with the Fatou property [3,14]. By M0(qJ) we 
denote a subspace of M (q J) consisting of all f satisfying 

[ ' /  lim j'* d,k =0 .  
~o+  qJct) 

0 

The properties of Mo(~P) which are useful for our purposes are collected in the 
lemma below (proper references are given in Section 5). 

Lemma 1. (a) Wehave Mo(q j) ¢ {0} ifandonlv(['inft~o. - . - ~551 =0.  
(b) Let mo(qJ) ¢ {0}. Then 

(i) Mo(q j) is' an order continuous part (.fM(qJ), 
(ii) Mo(qJ) is" order dense in M(qJ) with Mo(qQ ~ M(qJ), and 

(iii) Mo(q j) is an M-ideal in M(qJ). 

By way of example, every function qJ+,(t) := t 1', with 0 < p < 1, fulfills the 
equivalent condition in part (a) of the lemma, while U~(t) = rain{l/2, t} does not; 
hence the quotient Banach lattices M(qJp)/Mo(qJp) are nontrivial and of infinite 
dimension, and M(~) /Mo(~)  is isometric to M(~).  

From Lemma 1 and Theorem 5 we immediately obtain a somewhat unexpected 
(in the context of the remark following Corollary 7) information about the structure 
of M( qJ )/Mo (q j ). 

Corollary 9. Let Mo(q j) ~ {0}. Then the quotient Banach lattice M(qQ/Mo(qJ) 
contains a lattice-isometric and positively 1-complemented copy of g~ ~co. 

5. THE P R O O F S  

We recall that the letters Q and q, respectively, denote the natural quotient mappings 
X ~ X~ Y and C~(F) ~ (~(F)/c0(F),  respectively. 

By O,  e,,, and e/ ,  respectively, we denote the familiar yth, nth, and f th  unit 
vectors of the spaces ~ ( F ) ,  C~, and ~ ( F ) ,  respectively, where F is an infinite 
set (another, in general, than N or F). 

For A an infinite subset of F the symbol ga(F)  will denote the isometric copy of 
t ~  (A) of the elements of C~c(F) with support included in A; the symbol cA(f ") has 
a similar meaning. 
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Proof  of Theorem 1. We follow partially an idea of the proof of Theorem 1 in [23] 

(given only for F countable; an application in our proof of  a Rosenthal theorem 
makes it more general and simple). 

Put ~ = card(F), and let F be a set of the cardinality aso. By Tarski's theorem 

(see its proof in [25, p. 121]), there is a class {GI: f ~ F} of  infinite countable 
subsets of  F with G¢i n ~.t~ finite for fl  # f2. 

I f a  s0 = ot (when we consider condition (b)), then there exists a class {H f: f 
F} of  pairwise disjoint subsets of  F with card(Hf) = a for all f c F, and then we 

define F f  := Gf U Hf. Note that this implies that card(F f )  = ce. We can arrange 
that 

(4) Ffl ¢3 Ff2 is finite when fl  # f2. 

Indeed, fixing f0 6 F, we can choose Hfo and apply Tarski's theorem to Hfo 

obtaining Hfo = UIcF GI. Then the elements of  the class {F f: f E F \ {f0}} 

fulfill condition (4). In the other case that ot s0 > a (which can be assumed in 

condition (a)), when such a class {Hf: f c F} does not exist, we define FI  := @,  
f E F. In this case we also have (4), but now card(F f)  = 1%. 

Now assume that Y contains no copy of  £~(F)  if aSo = a, and that Y contains 

no copy of  e ~  otherwise. Using the class {F f:  f E F} introduced above we will 
show the existence of  an isomorphism R from co(F) into X~ Y. Because card(F) = 
card(FS0), this would prove our theorem. 

Because £ ~  (F) is isometric to £~(F)  ifc~ s0 = c~, and isometric to £~ otherwise, 

the assumption implies that T ( £ ~  (F)) is not contained in Y. Therefore we can find, 

for every f 6 F, an element x f  in the unit ball o f £ ~ ( F )  such that xf E g.~ (F) and 

Q(Txz) # O. For the sets Fn := {f ~ F: IIQ(TxI)I[ >1 1/n} we have Fn C Fn+l, 
n ---- 1,2 . . . .  , and since ct s0 cannot be represented as the sum of an infinite strictly 
increasing sequence of  cardinal numbers [ 15, Corollary V.8.3], we have card(Fn0) = 
aSo for some no. Since the spaces co(F) and co(Fno) are isometric, without loss of  
generality we may assume that 

(5) thenumber a:=inf{llQ(Txf)[[: f c F }  is positive. 

Let ef be the f t h  unit vector of co(F). Now we consider the operator R from co(F) 
into X/Y of the form 

R E tfef = 

We shall prove first it is well defined and continuous. To this end, for B a finite 
subset of F, we define an auxiliary finite (by (4)) set A8 by the formula 

A8 := U F t i M Fj~, 
fl # f2, fl, ./2 E B 
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and for x /  fixed, f c B, we put xf(AB) := ~×+zx~ xt(v)e× (where xf(O) = 0), 
1"/ 

and vf(B) := x / -  x/(AB). Then v/(B) c ~ ( F )  \ c o (F), and since x f (As )  c 

clll (F) C co(F), we obtain T(x/.(AB)) E Y (by (1)), whence 

(6) Q(Tv/.(B)) = Q(Tx/.), .f c B. 

From the construction of At~ it follows that the elements v f(B) have pairwise 
disjoint supports (because supp(vf(B)) C F f \  AR, for all f 6 B; see (4)) with 
[Ivf(B)U <~ IlxfU ~< 1. It implies that 

(7) y-~ t./v/(B) ~maxl t f l ,  
./¢ B 

for all scalars t / ,  f c B. From (6) and (7) we obtain 

~-~ t /O(Tx / )  = ~-~ t /O(Tvf (B))  <~ llTllmaxlt/.I, 

which proves that, for every element (tf)./cF of co(F), the series ~ J ~ F  tf Q(Tx/)  
converges in X~ Y, and hence the operator R is well defined. It is continuous because 

IIRII 4 IITII. 
We thus have shown that R maps co(F), where card(F) = card(F) ~0, into the 

Banach space X~ Y with II R(ef)II = II Q(Txf)II/> a > 0 for all . f~  F (by (5)). The 
result of Rosenthal [22, Theorem 3.4] asserts that in this case there is a subset G 
of F with card(G) = card(F) such that R restricted to cff(F) is an isomorphism. 
Since c~(F) and co(F) are isometric, the latter conclusion on R shows finally that 
the space X~ Y contains a copy of co(F). The proof is complete. 

Proof of Corollary !. It is enough to apply the following variant of the well-known 
theorem of Bessaga and Pelczyfiski [16, Proposition 2.e.8]: if T maps isomor- 
phically co into X* then there is an isomorphism S from ~ into X* such that 
S(co) C Im T (see [30, Theorem]). 

Proof of Corollary 2. Let Y be a subspace of £~ which contains a subspace V 
isomorphic to c<l. By the theorem of Lindenstrauss and Rosenthal ([16, Theorem 
2.f.12(i)]), there is an automorphism S of C~ such that SV = co. If Y (hence 
SY) does not contain subspaces isomorphic to ~ then, by Theorem 1, £~ /SY  = 
S ( ~ ) / S Y  contains a subspace isomorphic to co(R). Finally, ~ / Y  contains a copy 
ofc0(R). 

Proof of Theorem 2. The letters ~ and r/will denote arbitrary (fixed) elements of 
(~ (F )  and c0(F), respectively. 

Part (i). Condition (2) implies that the formula on R well defines a mapping from 
f~ (F )  into X / f  with the required properties (cf. [29, p. 153]). 

Part (ii). It is easy to check that the formula on P defines a projection in 
X/Y .  Moreover,~ +rl= 7" I(T~ + Ttl)= T -I(P(T~ + Trl))= T - I (PT~ + y )= 

261 



T- I (pT~  + Py) for some y E P(Y) (by (3) and Remark 1). Hence IIq(~)ll ~< 
lIT -l  I1" IIPII" [IT~ + yll. On the other hand, since T(co(F)) = P(Y), the latter 
inequality holds for all y ~ Y, whence IIq(~)ll ~< liT -~ II " IIPLI • II Q(T~)II =I tT Ill • 
I[ell" IIe(q(~))ll. It immediately implies that IIR -~ II ~< liT -1 I1" II Pll, as claimed. 

Proof of Corollary 3. Let R be the operator defined in Theorem 2. If X~ Y had an 
equivalent strictly convex norm II IIo, say, then the space W := e~(F)/c0(F) would 
possess an equivalent strictly convex norm III III of the form tllq (~)1 II = I Iq (~)11 w + 
II R(q(~))II0, where II II w is the natural quotient norm on W, but this is impossible 
(see [4,18]). 

Moreover, since W contains a copy V o f g ~ ( F )  (see [28, Corollary 1.3]), let us 
assume for simplicity that V = e~(F).  Then for the sets F~ := {y E F: IlR(e×)[I/> 
I/n} we have U~=x Fn = F, and hence, by our assumption (that card(F)/> 2s0), 
there is no such that card(Fn0) ) 2 s°. By Rosenthal's result [22, Proposition 1.2 and 
Remark 1 on p. 17], the latter condition implies there is F' C F, o with card(F') = 
card(Fn0) such that the operator R restricted to an isometric copy o fe~ (F ' )  in V is 
an isomorphism. Thus, X / Y  contains a copy o f ~ ( F ' )  with card(F')/> 2 so indeed. 
The last assertion of Corollary 3 follows from the fact that every isomorphic copy 
o f e~ ( R )  contains an isometric copy o f e ~  (see [19, Corollary on p. 207]). 

Proof of Corollary 5. Let On = n/(n + 1), n = 1, 2 . . . . .  and let (xn) be a sequence 
of positive and pairwise disjoint elements of C[0, 1] with 1 = xn (On) = Ilxn II for all 
n's. 

We first consider the case X = £~[0,  1] and Y = C[0, 1]. The operator T :~ec 
Z;~[0, 1] of the form 

(8) 
OQ 

T(tn) = (p) y~  tnXn, 
n = l  

where (p) denotes the pointwise sum, is well defined and T is an isometry. 
Moreover, we have T(co) C C[0, 1] = Y, because the series in (8) converges 
uniformly for (tn) 6 co, and T(co) = [xn] (the norm-closure oflin{xn: n c N}). Let 
us now consider the operator P from Ebb[0, 1] onto Im T defined by the formula 

P x  = (p)  

oo 

n = l  

It is easy to check that P is a projection with II Pll = 2. Moreover, if u c C[0, 1] 
then the series ~n=l (u(On) - u(1))xn is norm-convergent in Y = C[0, 1]; hence 
P(Y) = T(co) c Y. By Remark 1, the operators T and P fulfill the assumptions (i) 
and (ii) of Theorem 2, and hence the required result follows. 

For X = Lee[0, 1], we shall apply both the previous constructions of T and P 
and a function lifting q5 : L~[0, 1] ~ z;b[0, 1]. We recall that ~b is a linear mapping 
preserving multiplication (hence disjointness) with 

(9) IIqSIl=l and c k S f = f  f o r a l l f c £ ~ [ 0 , 1 ] ,  
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where S:£~[0,  11 ---, Lc~[0, l] is the natural quotient map (see Section l), and that 

such q5 does exist (see [11, pp. 34-35,  46]; cf. [24, pp. 1140 1141]). Let us put Y = 
S(C[O, 1]). Since S restricted to C[0, 1] is an isometry preserving disjointness, the 

operator T := ST is an isometry from f ~  into Lot[0, 11, with T(c0) C S(C[0, l I) = 
Y. Moreover, by (9), the operator ,~ :-- SP4) is a projection from X = Lot[0, 1] 
onto Im T (an isometric copy of  ~ )  with II'gll = 2, and ,~(Y) = T(co) C Y. By 
Remark 1 and Theorem 2, the result holds true also for the case X = Lot[0, 1] and 

Y -- S(CI0, 11). 
The remaining proofs deal with positive operators on a Banach lattice E. We 

recall that in this case it is enough to define an additive and positively homogeneous 
operator 7i), say, on the cone E+;  then T0 extends to E to a linear operator T by the 

formula T(x) = 7i)(x +) - 7b(x-) ,  x c E (see [2, Theorem 1.7]). 

Proof of  T h e o r e m  4. Part (i) depends on the following property which can be 
derived from the proof  o f  Partington's result [18, Theorem 3]: Ira Banach lattice 
E contains a lattice cop3; q['g~ then E contains lattice-almost isometric copies of  
~.~ (cf. [6, Theorem 3]; we recall that here we only consider real Banach lattices). 

Thus, fixing e > 0, there is a lattice isomorphism & : (..~ --~ E with 

(lo) J/<~ ÷.;)sup i,,,q ~ II s, ((t,,))tl ~ sup it,,i = I1<,,,)11~. 
n~l n/~l 

for all (t,,) c g~c. Let us put x,, = &.(e,,), and 1 = sup,,~>l e, .  Since E has the Fatou 

property, for every n ~ N we can find u,, ~ E,, with 

(11) O~<u,, ~<x, and Ilu,,ll >~ 1/(1 +~)2.  

By (11), tbr every (t,,) E ~ we obtain 

(12) 
DI I11 I 

sup ~'~,,,u,, ~< sup S, ( Z t , , e , ,  ~< S,.((t,,))<~ II(,.)ll~s,(l) 
m~l n=l m/>l \n=l  / 

(the suprema exist because E is Dedekind (r-complete). From (10), (11) and (12) 

we get 

(13) sup '" I/(1 + *:/211(t,,)bl:~ ~ E t . . .  ~< II(t,,)ll~, 
m~l n=l 

for all (t,,) c f ~  (because x,  /~ Xm = 0, for all n ~ m, and hence, by (11), the 
elements of  the sequence (u,,) are pairwise disjoint; it follows that I y-~.,m_j t,,u,, [ = 
~,," 1 It,, lu,, for all real numbers t,,, n = 1.2 . . . .  ). From the latter remark, and from 

(12) and (13) it follows that the formula 

(14) 
k m 

T~((t,,/) := ~op t ,+ . , , -  sup ~t,;.,,, 
m~l n--I m~l n=l 
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defines a lattice-topological isomorphism Tc from ~ to E with 

(15) Ilrcll' lIT7 ' II -< (1 + 

From (13) we also obtain that for every (tn) c co the series ~ is norm- Zn=l  tnUn 
convergent in E, and hence in the (norm-closed) ideal E~. Thus, 

(16) To(co) C E~. 

Let (Qn) be the sequence of positive projections in E of the form Q~(x) = sup{x A 
ku~: k ~ N}, x/> 0 (since E is Dedekind a-complete, Q, exists for every n; see 
[2, Theorem 3.13]), and let (f~) be a sequence of positive elements of E* with 
fn (b tm)  = (~nm and IIf, II ~< (1 + e) 2 (the existence of such f~'s follows from (11)). 
By (12), the operator Pc defined by the formula 

(17) 
my_, 

Pc(x) := sup ~ fn(Qnx)Un, x >. O, 
m/>ln= I 

is a positive projection in E with 

(18) Pc(E)=Tc(g.oo) and IIPcll~(1-I-e) 2 

(cf. [27, p. 37]). Moreover, i f0  ~< x 6 Ea, then for all n we have On(x) <~ x which 
follows that Q~ (x) E Ea (because Ea is an ideal of E) and hence, by [2, Theorem 
12.13], limn-+oo II Q,,x II = 0. We thus obtain Pc(E,,) C T(co), but obviously Pc(x) = 
x for all x E To(co), whence 

(19) Pc(Ea) = To(co) 

(cf. [2, Theorem 1.8]). From (16), (18), (19) and part (i) of Theorem 3 we obtain 
the required result for part (i) of Theorem 4. 

Part (ii). Let S : g ~  ~ E be a lattice isometry, and let e e (0, 1) be fixed. We 
put xn = S(en), n = 1,2 . . . .  , and choose positive un <~ Xn with 1 - e/n <~ Ilunll. As 
in the proof of item (i), we find a sequence (fn) C (E*) + with fn(Um) = (~nm and 
Ilfn II ~< 1/(1 - e/n)  for all n's. Let Tc be the operator defined, for our sequence (un), 
by the above formula (14). Let R be the operator mapping ~ into E/E,,  defined in 
item (ii) of Theorem 3, i.e., R(q(~)) = Q(Tc(~)), ~ ~ e~.  In the proof of Theorem 2 
in [29] it has been shown that R is a lattice isometry. It proves the first part of our 
item (ii). 

Further, let us consider the projection Pc defined for our sequences (un) and (f~) 
by the formula (17), and let Pc be the positive projection from E/Ea onto the range 
of R of the form Pc(Qx) = Q(Pc(x)) (see item (ii) of Theorem 3). We claim that 
Pc fulfills the second part of item (ii), i.e., IIPcll = 1; equivalently, for all x ~ E +, 
to E Ea and k c N the following inequality holds 

(20) IIPc¢Qx)ll ~< IIx+wll/(1-elk). 

The proof of (20) will be based on the following property 
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(#) Let E be a Dedekind a-complete Banach lattice, let (Un) be a sequence o f  
positive and pairwise disjoint elements orE, and let (tn), (sn) be two sequences 
( f  real numbers with t,~ >~ OJbr all n :~' such that SUpm>~l Znn~l t,u,, exists in E 
and the series oc is norm-convergent in E. Then 

(21) lnUn q- ShUn 

m > /  t i l l  I Z = I  

I l l  

= ,,~>lsup ~ =  It,, + s,,lUn. 

To prove (21), we shall use the notion o f  order convergence in E. We recall (see 

[2, p. 30]) that a sequence (an) in E is order convergent to an element a E E (in 
(o) 

symbols, a,, --+ a) whenever there exists a sequence (vn) C E + with U n ~, 0 and 
(o) (o) . 

l a,, -- a I ~< Vn for all n 's. It i s obvious that if an ---> a and b. (~ b then an + b~ --> a + b, 

and hence (by inequality Ilxl - lYll ~< Ix - Yl for all x, y 6 E) 

(22) lan +t),,I ~ la +bl .  

Z n = l  SnUn,  = Z n = l  SnUn = ~ n = l  t n u n ,  = supine> I We put A., m A Am, Bm m and B 

Then we have Am ~ A, whence Am (~ A, and B,,, ~ B because 

IBm-  BI = 
n--m+l 

Is,, l u~ & 0. 

By (22) and the remark following (13), we thus obtain 

~ l t n  ÷ s,,lu,, = lA,,, + Bml ~ IA + BI. 

On the other hand, the sequence (]A,,, + Bm[) is increasing, and hence IA + B[ = 

supine> l ]Am + B m  ] = sup,,,~> l ~',i'-J It,, + sn ]u,,. The proof  o f  (#) is complete. 
Now we shall prove inequality (20). We fix x c E + and w E Ea, and we consider 

the elements A = P~.(x) and B = P~.(w). We notice first that, by (17), we have here 
tl l , O0 

A = sup,,,~> 1 ~n=l tnUn, where t,, = j ; , (Q.x)  >~ 0 for all n s, and B = ~ , ,= l  snu.,  
where s,, = J;,(Qn w) for all n's, and that the series defining B is norm-convergent 

in E. because liln,, ~ ~c t,, = 0 (see (16) and (19), and the remark preceding (19)). We 
m A(k )  define next, for k = 1,2 . . . . .  the tbur elements: A (k) :=  supine> k Y-~,,=k tnu., ,.m :=  

Y~,~'-k t,,Uz,, B tkl = Y-~,,~--k s,,u,,, and B,t,~ ' = Y~',;;k snu,,. Since u,, c E,  for all n's, we 

have 

(23) Atk I)EE,, and B,B(m k-l) B(k) cE,,  f o r a l l m > ~ k > ~ l  
m " " 

Then, by (23), for every k fixed we have: 

IIP :(Qx)N = inf I1"+ = llY+ a + 8it 
vEEa " yEE~ 

,k-,,ll = inf ]IY + a(k) + A ]  k I ) + B ( k ) + B 1  
vG/: 
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= inf IlY + ACk) + B¢ )II ~ IIA (k) + B(k)[I 
ycEa 

= II Im< ) + B k>lll . 

The forms of  the elements A (k) and B (k) fulfill the assumptions in (#), whence 

(24) 
m 

[A (k) + B(k)l = sup Zlfn(Qn(x + w))lu~. 
m>/kn= k 

Since E has the Fatou property and the sums ~ m  If ,(Q,,(x + w))lu, increase 
with m (for k fixed), we get the equality 

(25) 2l . (Qn(x+w))lu  = (Qn(x+, ))lun 
m~/k n= k m>/k n=k 

Moreover, for all n's 

rl ~ n ~ u ~ l l  ~< IIS(1)ll 
from (24) and (25) we 

we have I1Qn II - -  1 (as 0 ~ Qnx <~ x for all x ~> 0), and 
= 1 (as u~'s have been chosen with 0 <. un <<. xn). Hence, 
obtain further estimations on IIP~(Qx)I1: 

(26) IIP (Qx)II sup( max Ifn(Q,,(x + w))l ) ~< (sup Ilfmll)llx + WlI. 
m>/k k<~n<~m "m>/k 

Since the functionals fn's have been chosen with Ilfn II ~ 1/(1 - e/n) ,  from (26) we 
finally obtain (20). The proof of part (ii) of  Theorem 4 is complete. 

Proof  of Theorem 5. Here we apply the result below, due to Hudzik [9, Theorem 
3], from which Theorem 5 follows immediately. However, the reader should note 
that in Hudzik's paper the term "monotone completeness" corresponds to what we 
call the "Fatou property" (as defined in the Meyer-Nieberg monograph [17]); see 
also [1, p. 282] for a comment on the name "monotone completeness" which is 
often called "the Levi property". 

Lemma 2. Let E be a super Dedekind complete Banach lattice with E ~ Ea and 
Ea order dense in E. I f  Ea is an M-ideal in E then E contains a lattice-isometric 
copy o f  g~. 

We shall present a shorter (than in [9]) proof of the lemma. Since E, is an 
M-ideal, it is proximal, i.e., for every x 6 E there is y 6 Ea with IIQ(x)ll = IIx - yll 
(see [8, Proposition II.1.1]). In particular, there exists x ~ E with Ilxll = 1 and 
II Q(x)ll = 1. By [9, Theorem 2], the latter property immediately implies that E 
contains a lattice-isometric copy of ~ .  [] 

Proof of Lemma 1. Part (a) is included in [12, Theorem 2.3(i)]. 
Part (b). Item (i) and the first part of  item (ii) are included in [12, Theorem 

2.3(ii)]. For a proof of  the second part of  our item (ii) observe that the function 
f = qJ' is laying in M(~o) \ M0(qJ). Item (iii) is included in [12, Theorem 2.4]. 
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