Anatolij Plichko

PROOF OF MILMAN'S THEOREM ON EXTENSION OF M-BASIC SEQUENCE

Abstract. We prove Milman's theorem on the extension, in a given direction, of M-basic sequence to M-basis in a separable Banach space.

Keywords: quasicomplement, Markushevich basis.

Mathematics Subject Classification: 46B15.

Let X be a real separable Banach space and X^* its dual. A subset $F \subset X^*$ is total on a subspace $Y \subset X$ if for every $y \in Y$, $y \neq 0$, there is an f in F such that $f(y) \neq 0$. A biorthogonal system $(x_n, f_n)_1^{\infty}$, $x_n \in X$, $f_n \in X^*$ is said to be a Markushevich basis (M-basis) if the closed linear span $[x_n]_1^{\infty} = X$ and (f_n) is total on X. In this case, we also call the sequence (x_n) an M-basis, because f_n are determined uniquely. Closed subspaces Y and Z of X are quasicomplemented if $Y \cap Z = 0$ and the closure $\overline{Y} + \overline{Z} = X$. The subspaces Y and Z are quasicomplemented if and only if for their annihilators there is $Y^{\perp} \cap Z^{\perp} = 0$ and $\overline{Y^{\perp} + Z^{\perp}}^* = X^*$, where $\overline{\circ}^*$ stands for weak* closure. In [1], Theorem 1.8, the following theorem is stated.

Theorem 1. Let Y and Z be closed quasicomplemented subspaces of a separable Banach space X. Let (y_n, \hat{g}_n) be an M-basis in Y. Then there exists a sequence $(z_n) \subset Z$ such that $(y_n) \cup (z_n)$ is M-basis in X.

I. Singer ([2], p.234) noted that Theorem 1 is not valid under the additional condition $[z_n]_1^{\infty} = Z$. We present a complete proof of Theorem 1. A sketch of the proof was published in ([2], p. 860). For another proof of Theorem 1, see [3]. We use the same symbol to state for an element $\hat{g} \in Y^*$ and its preimage under the quotient map $X^* \to X^*/Y^{\perp} = Y^*$, hoping that this does not lead to misunderstanding. We also consider elements of X as functionals on X^* and denote by G^{\top} the annihilator of subset $G \subset X^*$ in X.

128 Anatolij Plichko

Lemma 1. Under the conditions of Theorem 1, there are representatives $g_n \in \hat{g}_n$ for which

$$\overline{[g_n]_1^{\infty} + Z^{\perp}}^* \cap Y^{\perp} = 0. \tag{1}$$

Proof. Since X is separable, one can present $Y^{\perp}\setminus\{0\}$ as a union of convex weakly* compact sets K_n : $Y^{\perp}\setminus\{0\} = \cup_n K_n$.

Let us construct elements $x_n \in X$ and representatives $g_n \in \hat{g}_n$ so that for every n:

- a) x_n separates $G_{n-1} := [g_i]_1^{n-1} + Z^{\perp}$ and K_n ,
- b) the restriction $x_n|_{Y^{\perp}} \notin [x_i|_{Y^{\perp}}]_1^{n-1}$,
- c) $G_n \subset ([x_i]_1^n)^{\perp}$ and
- d) $G_n \cap Y^{\perp} = 0$.

Start from n = 1. Let us separate, by the Hahn-Banach theorem, the weakly* closed subspace Z^{\perp} and K_1 by a functional $x_1 \in X$, and consider two cases.

- 1) $\hat{g}_1 \cap Z^{\perp} \neq \emptyset$. Take, as g_1 , any element of this intersection. Then $G_1 \subset x_1^{\perp}$ and $G_1 \cap Y^{\perp} = 0$.
- 2) $\hat{g}_1 \cap Z^{\perp} = \emptyset$. Then

$$[\hat{g}_1] \cap Z^{\perp} = 0 \ . \tag{2}$$

The intersection $x_1^{\perp} \cap [\hat{g}_1]$ cannot contain elements of Y^{\perp} only, because then $x_1(Y^{\perp} + Z^{\perp}) \equiv 0$, hence $x_1 = 0$. Therefore, there exists $g_1 \in x_1^{\perp} \cap [\hat{g}_1], g_1 \notin Y^{\perp}$. Then $G_1 \subset x_1^{\perp}$ and, by (2), $G_1 \cap Y^{\perp} = 0$.

Let the collections $(x_i)_1^{n-1}$ and $(g_i)_1^{n-1}$ with conditions a)-d) be constructed. Using condition d), separate the (weakly* closed) subspace G_{n-1} and weakly* compact set K_n by a functional $x \in X$: $\inf\{x(f): f \in K_n\} = a > 0$ and

$$x(G_{n-1}) \equiv 0. (3)$$

If $x|_{Y^{\perp}} \notin [x_i|_{Y^{\perp}}]_1^{n-1}$, put $x_n = x$. In the opposite case, choose $z \in G_{n-1}^{\top}$ with $\sup\{z(f): f \in K_n\} < a/2$ and $z|_{Y^{\perp}} \notin [x_i|_{Y^{\perp}}]_1^{n-1}$ (of course, the subspaces Y and Z are assumed to be infinite-dimensional). Put $x_n = x + z$. Obviously, for x_n conditions a) and b) are satisfied.

As for n = 1, let us consider two cases.

- $1) \hat{g}_n \cap G_{n-1} \neq \emptyset.$
 - Take, as g_n , any element of this intersection. The verification of conditions c), d) is trivial.
- 2) $\hat{g}_n \cap G_{n-1} = \emptyset$. Then

$$[\hat{g}_i]_1^n \cap Z^\perp = 0 \ . \tag{4}$$

The intersection $([x_i]_1^n)^{\perp} \cap [\hat{g}_i]_1^n$ cannot contain elements of $[\hat{g}_i]_1^{n-1}$ only, because in this case, $([x_i]_1^n)^{\perp}$, which cuts out from Y^{\perp} a subspace of codimension n (condition b)), shall cut out from $[\hat{g}_i]_1^n$ a subspace of codimension n+1 (since (y_n, \hat{g}_n) is M-basis, $\hat{g}_n \notin [\hat{g}_i]_1^{n-1}$!). It is impossible.

Take an element

$$g_n \in ([x_i]_1^n)^{\perp} \cap [\hat{g}_i]_1^n$$
, (5)

 $g_n \notin [\hat{g}_i]_1^{n-1}$. Since $(g_i)_1^{n-1} \subset ([x_i)]_1^n)^{\perp}$, we can assume $g_n \in \hat{g}_n$.

Condition c) follows from (3) and (5); condition d) follows from (4).

Therefore, the elements with conditions a)-d) are constructed. Condition c) implies that $\overline{[g_n]_1^{\infty} + Z^{\perp}}^* \subset ([x_n]_1^{\infty})^{\perp}$. This and a) imply (1).

The Proof of Theorem 1. Let (g_n) be the sequence from Lemma 1 and $Z_0 = ([g_n]_1^{\infty} + Z^{\perp})^{\top}$. By (1), the subspaces Y and Z_0 are quasicomplemented. In the standard way ([2], p.224), choose an M-basis (\hat{z}_n, h_n) , in X/Y, $\hat{z}_n \in X/Y$, $h_n \in (X/Y)^* = Y^{\perp}$ such that there are representatives $z_n \in \hat{z}_n \cap Z_0$ with $[z_n]_1^{\infty} = Z_0$. Since $[y_n]_1^{\infty} = Y$, $[(y_n) \cup (z_n)] = X$. Since $((h_n)_1^{\infty})^{\top} = Y$ and (g_n) is total on Y, $(g_n) \cup (h_n)$ is total on X. For every $n, g_n \in Z_0^{\perp}$ and $h_n \in Y^{\perp}$. Hence, our system is biorthogonal. \square

REFERENCES

- [1] Milman V.D., Geometric theory of Banach spaces. Part I: The theory of basis and minimal systems, Russ. Math. Surv. 25 (1970) 3, 111–170.
- [2] Singer I., Bases in Banach spases, II, Berlin e.a., Springer-Verlag 1981.
- [3] Terenzi P., On bounded and total biorthogonal systems spanning given subspaces. Rend. Accad. Naz. Lincei. 67 (1979), 1–11.

Anatolij Plichko aplichko@usk.pk.edu.pl

Cracow University of Technology Institute of Mathematics ul. Warszawska 24, 31-155 Cracow, Poland

Received: March 11, 2005.