Anatolij Plichko

PROOF OF MILMAN'S THEOREM ON EXTENSION OF M-BASIC SEQUENCE

Abstract

We prove Milman's theorem on the extension, in a given direction, of M-basic sequence to M-basis in a separable Banach space.

Keywords: quasicomplement, Markushevich basis.

Mathematics Subject Classification: 46B15.

Let X be a real separable Banach space and X^{*} its dual. A subset $F \subset X^{*}$ is total on a subspace $Y \subset X$ if for every $y \in Y, y \neq 0$, there is an f in F such that $f(y) \neq 0$. A biorthogonal system $\left(x_{n}, f_{n}\right)_{1}^{\infty}, x_{n} \in X, f_{n} \in X^{*}$ is said to be a Markushevich basis (M-basis) if the closed linear span $\left[x_{n}\right]_{1}^{\infty}=X$ and $\left(f_{n}\right)$ is total on X. In this case, we also call the sequence $\left(x_{n}\right)$ an M-basis, because f_{n} are determined uniquely. Closed subspaces Y and Z of X are quasicomplemented if $Y \cap Z=0$ and the closure $\overline{Y+Z}=X$. The subspaces Y and Z are quasicomplemented if and only if for their annihilators there is $Y^{\perp} \cap Z^{\perp}=0$ and $\overline{Y^{\perp}+Z^{\perp}}{ }^{*}=X^{*}$, where $\bar{\sigma}^{*}$ stands for weak* closure. In [1], Theorem 1.8, the following theorem is stated.

Theorem 1. Let Y and Z be closed quasicomplemented subspaces of a separable Banach space X. Let $\left(y_{n}, \hat{g}_{n}\right)$ be an M-basis in Y. Then there exists a sequence $\left(z_{n}\right) \subset Z$ such that $\left(y_{n}\right) \cup\left(z_{n}\right)$ is M-basis in X.
I. Singer ([2], p.234) noted that Theorem 1 is not valid under the additional condition $\left[z_{n}\right]_{1}^{\infty}=Z$. We present a complete proof of Theorem 1. A sketch of the proof was published in ([2], p. 860). For another proof of Theorem 1, see [3]. We use the same symbol to state for an element $\hat{g} \in Y^{*}$ and its preimage under the quotient map $X^{*} \rightarrow X^{*} / Y^{\perp}=Y^{*}$, hoping that this does not lead to misunderstanding. We also consider elements of X as functionals on X^{*} and denote by G^{\top} the annihilator of subset $G \subset X^{*}$ in X.

Lemma 1. Under the conditions of Theorem 1, there are representatives $g_{n} \in \hat{g}_{n}$ for which

$$
\begin{equation*}
\overline{\left[g_{n}\right]_{1}^{\infty}+Z^{\perp}}{ }^{*} \cap Y^{\perp}=0 . \tag{1}
\end{equation*}
$$

Proof. Since X is separable, one can present $Y^{\perp} \backslash\{0\}$ as a union of convex weakly* compact sets $K_{n}: Y^{\perp} \backslash\{0\}=\cup_{n} K_{n}$.

Let us construct elements $x_{n} \in X$ and representatives $g_{n} \in \hat{g}_{n}$ so that for every n :
a) x_{n} separates $G_{n-1}:=\left[g_{i}\right]_{1}^{n-1}+Z^{\perp}$ and K_{n},
b) the restriction $\left.x_{n}\right|_{Y \perp} \notin\left[\left.x_{i}\right|_{Y \perp}\right]_{1}^{n-1}$,
c) $G_{n} \subset\left(\left[x_{i}\right]_{1}^{n}\right)^{\perp}$ and
d) $G_{n} \cap Y^{\perp}=0$.

Start from $n=1$. Let us separate, by the Hahn-Banach theorem, the weakly* closed subspace Z^{\perp} and K_{1} by a functional $x_{1} \in X$, and consider two cases.

1) $\hat{g}_{1} \cap Z^{\perp} \neq \oslash$.

Take, as g_{1}, any element of this intersection. Then $G_{1} \subset x_{1}^{\perp}$ and $G_{1} \cap Y^{\perp}=0$.
2) $\hat{g}_{1} \cap Z^{\perp}=\oslash$.

Then

$$
\begin{equation*}
\left[\hat{g}_{1}\right] \cap Z^{\perp}=0 \tag{2}
\end{equation*}
$$

The intersection $x_{1}^{\perp} \cap\left[\hat{g}_{1}\right]$ cannot contain elements of Y^{\perp} only, because then $x_{1}\left(Y^{\perp}+\right.$ $\left.Z^{\perp}\right) \equiv 0$, hence $x_{1}=0$. Therefore, there exists $g_{1} \in x_{1}^{\perp} \cap\left[\hat{g}_{1}\right], g_{1} \notin Y^{\perp}$. Then $G_{1} \subset x_{1}^{\perp}$ and, by (2), $G_{1} \cap Y^{\perp}=0$.

Let the collections $\left(x_{i}\right)_{1}^{n-1}$ and $\left(g_{i}\right)_{1}^{n-1}$ with conditions a)-d) be constructed. Using condition d), separate the (weakly* closed) subspace G_{n-1} and weakly* compact set K_{n} by a functional $x \in X: \inf \left\{x(f): f \in K_{n}\right\}=a>0$ and

$$
\begin{equation*}
x\left(G_{n-1}\right) \equiv 0 \tag{3}
\end{equation*}
$$

If $\left.x\right|_{Y \perp} \notin\left[\left.x_{i}\right|_{Y \perp}\right]_{1}^{n-1}$, put $x_{n}=x$. In the opposite case, choose $z \in G_{n-1}^{\top}$ with $\sup \left\{z(f): f \in K_{n}\right\}<a / 2$ and $\left.z\right|_{Y \perp} \notin\left[\left.x_{i}\right|_{Y \perp}\right]_{1}^{n-1}$ (of course, the subspaces Y and Z are assumed to be infinite-dimensional). Put $x_{n}=x+z$. Obviously, for x_{n} conditions a) and b) are satisfied.

As for $n=1$, let us consider two cases.

1) $\hat{g}_{n} \cap G_{n-1} \neq \oslash$.

Take, as g_{n}, any element of this intersection. The verification of conditions c), d) is trivial.
2) $\hat{g}_{n} \cap G_{n-1}=\oslash$.

Then

$$
\begin{equation*}
\left[\hat{g}_{i}\right]_{1}^{n} \cap Z^{\perp}=0 . \tag{4}
\end{equation*}
$$

The intersection $\left(\left[x_{i}\right]_{1}^{n}\right)^{\perp} \cap\left[\hat{g}_{i}\right]_{1}^{n}$ cannot contain elements of $\left[\hat{g}_{i}\right]_{1}^{n-1}$ only, because in this case, $\left(\left[x_{i}\right]_{1}^{n}\right)^{\perp}$, which cuts out from Y^{\perp} a subspace of codimension n (condition b)), shall cut out from $\left[\hat{g}_{i}\right]_{1}^{n}$ a subspace of codimension $n+1$ (since $\left(y_{n}, \hat{g}_{n}\right)$ is M-basis, $\hat{g}_{n} \notin\left[\hat{g}_{i}\right]_{1}^{n-1}$!). It is impossible.

Take an element

$$
\begin{equation*}
g_{n} \in\left(\left[x_{i}\right]_{1}^{n}\right)^{\perp} \cap\left[\hat{g}_{i}\right]_{1}^{n}, \tag{5}
\end{equation*}
$$

$g_{n} \notin\left[\hat{g}_{i}\right]_{1}^{n-1}$. Since $\left.\left(g_{i}\right)_{1}^{n-1} \subset\left(\left[x_{i}\right)\right]_{1}^{n}\right)^{\perp}$, we can assume $g_{n} \in \hat{g}_{n}$.
Condition c) follows from (3) and (5); condition d) follows from (4).
Therefore, the elements with conditions a)-d) are constructed. Condition c) implies that $\overline{\left[g_{n}\right]_{1}^{\infty}+Z^{\perp^{*}}} \subset\left(\left[x_{n}\right]_{1}^{\infty}\right)^{\perp}$. This and a) imply (1).

The Proof of Theorem 1. Let $\left(g_{n}\right)$ be the sequence from Lemma 1 and $Z_{0}=\left(\left[g_{n}\right]_{1}^{\infty}+\right.$ $\left.Z^{\perp}\right)^{\top}$. By (1), the subspaces Y and Z_{0} are quasicomplemented. In the standard way ([2], p.224), choose an M-basis $\left(\hat{z}_{n}, h_{n}\right)$, in $X / Y, \hat{z}_{n} \in X / Y, h_{n} \in(X / Y)^{*}=Y^{\perp}$ such that there are representatives $z_{n} \in \hat{z}_{n} \cap Z_{0}$ with $\left[z_{n}\right]_{1}^{\infty}=Z_{0}$. Since $\left[y_{n}\right]_{1}^{\infty}=Y$, $\left[\left(y_{n}\right) \cup\left(z_{n}\right)\right]=X$. Since $\left(\left(h_{n}\right)_{1}^{\infty}\right)^{\top}=Y$ and $\left(g_{n}\right)$ is total on $Y,\left(g_{n}\right) \cup\left(h_{n}\right)$ is total on X. For every $n, g_{n} \in Z_{0}^{\perp}$ and $h_{n} \in Y^{\perp}$. Hence, our system is biorthogonal.

REFERENCES

[1] Milman V.D., Geometric theory of Banach spaces. Part I: The theory of basis and minimal systems, Russ. Math. Surv. 25 (1970) 3, 111-170.
[2] Singer I., Bases in Banach spases, II, Berlin e.a., Springer-Verlag 1981.
[3] Terenzi P., On bounded and total biorthogonal systems spanning given subspaces. Rend. Accad. Naz. Lincei. 67 (1979), 1-11.

Anatolij Plichko
aplichko@usk.pk.edu.pl

Cracow University of Technology
Institute of Mathematics
ul. Warszawska 24, 31-155 Cracow, Poland

Received: March 11, 2005.

