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PROOF OF MILMAN’S THEOREM ON EXTENSION

OF M-BASIC SEQUENCE

Abstract. We prove Milman’s theorem on the extension, in a given direction, of M-basic

sequence to M-basis in a separable Banach space.
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Let X be a real separable Banach space and X∗ its dual. A subset F ⊂ X∗

is total on a subspace Y ⊂ X if for every y ∈ Y , y 6= 0, there is an f in F such

that f(y) 6= 0. A biorthogonal system (xn, fn)∞
1
, xn ∈ X, fn ∈ X∗ is said to be a

Markushevich basis (M-basis) if the closed linear span [xn]∞
1

= X and (fn) is total on

X. In this case, we also call the sequence (xn) an M-basis, because fn are determined

uniquely. Closed subspaces Y and Z of X are quasicomplemented if Y ∩ Z = 0 and

the closure Y + Z = X. The subspaces Y and Z are quasicomplemented if and only

if for their annihilators there is Y ⊥ ∩Z⊥ = 0 and Y ⊥ + Z⊥
∗

= X∗, where ◦∗ stands

for weak* closure. In [1], Theorem 1.8, the following theorem is stated.

Theorem 1. Let Y and Z be closed quasicomplemented subspaces of a separable

Banach space X. Let (yn, ĝn) be an M-basis in Y . Then there exists a sequence

(zn) ⊂ Z such that (yn) ∪ (zn) is M-basis in X.

I. Singer ([2], p.234) noted that Theorem 1 is not valid under the additional

condition [zn]∞
1

= Z. We present a complete proof of Theorem 1. A sketch of the

proof was published in ([2], p. 860). For another proof of Theorem 1, see [3]. We use

the same symbol to state for an element ĝ ∈ Y ∗ and its preimage under the quotient

map X∗ → X∗/Y ⊥ = Y ∗, hoping that this does not lead to misunderstanding. We

also consider elements of X as functionals on X∗ and denote by G⊤ the annihilator

of subset G ⊂ X∗ in X.
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Lemma 1. Under the conditions of Theorem 1, there are representatives gn ∈ ĝn for

which

[gn]∞
1

+ Z⊥
∗

∩ Y ⊥ = 0 . (1)

Proof. Since X is separable, one can present Y ⊥\{0} as a union of convex weakly*

compact sets Kn: Y ⊥\{0} = ∪nKn.

Let us construct elements xn ∈ X and representatives gn ∈ ĝn so that for

every n:

a) xn separates Gn−1 := [gi]
n−1

1
+ Z⊥ and Kn,

b) the restriction xn|Y ⊥ /∈ [xi|Y ⊥ ]n−1

1
,

c) Gn ⊂ ([xi]
n

1
)⊥ and

d) Gn ∩ Y ⊥ = 0.

Start from n = 1. Let us separate, by the Hahn-Banach theorem, the weakly*

closed subspace Z⊥ and K1 by a functional x1 ∈ X, and consider two cases.

1) ĝ1 ∩ Z⊥ 6= ⊘.

Take, as g1, any element of this intersection. Then G1 ⊂ x⊥
1
and G1 ∩ Y ⊥ = 0.

2) ĝ1 ∩ Z⊥ = ⊘.

Then

[ĝ1] ∩ Z⊥ = 0 . (2)

The intersection x⊥
1
∩ [ĝ1] cannot contain elements of Y

⊥ only, because then x1(Y
⊥+

Z⊥) ≡ 0, hence x1 = 0. Therefore, there exists g1 ∈ x⊥
1
∩[ĝ1], g1 /∈ Y ⊥. Then G1 ⊂ x⊥

1

and, by (2) , G1 ∩ Y ⊥ = 0 .

Let the collections (xi)
n−1

1
and (gi)

n−1

1
with conditions a)–d) be constructed.

Using condition d), separate the (weakly* closed) subspace Gn−1 and weakly* com-

pact set Kn by a functional x ∈ X : inf{x(f) : f ∈ Kn} = a > 0 and

x(Gn−1) ≡ 0 . (3)

If x|Y ⊥ /∈ [xi|Y ⊥ ]n−1

1
, put xn = x. In the opposite case, choose z ∈ G⊤

n−1
with

sup{z(f) : f ∈ Kn} < a/2 and z|Y ⊥ /∈ [xi|Y ⊥ ]n−1

1
(of course, the subspaces Y and Z

are assumed to be infinite-dimensional). Put xn = x+z. Obviously, for xn conditions

a) and b) are satisfied.

As for n = 1, let us consider two cases.

1) ĝn ∩ Gn−1 6= ⊘ .

Take, as gn, any element of this intersection. The verification of conditions c),

d) is trivial.

2) ĝn ∩ Gn−1 = ⊘ .

Then

[ĝi]
n

1
∩ Z⊥ = 0 . (4)
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The intersection ([xi]
n

1
)⊥∩ [ĝi]

n

1
cannot contain elements of [ĝi]

n−1

1
only, because

in this case, ([xi]
n

1
)⊥, which cuts out from Y ⊥ a subspace of codimension n (condition

b)), shall cut out from [ĝi]
n

1
a subspace of codimension n+1 (since (yn, ĝn) is M-basis,

ĝn /∈ [ĝi]
n−1

1
!). It is impossible.

Take an element

gn ∈ ([xi]
n

1
)⊥ ∩ [ĝi]

n

1
, (5)

gn /∈ [ĝi]
n−1

1
. Since (gi)

n−1

1
⊂ ([xi)]

n

1
)⊥, we can assume gn ∈ ĝn.

Condition c) follows from (3) and (5); condition d) follows from (4).

Therefore, the elements with conditions a)–d) are constructed. Condition c)

implies that [gn]∞
1

+ Z⊥
∗

⊂ ([xn]∞
1

)⊥. This and a) imply (1).

The Proof of Theorem 1. Let (gn) be the sequence from Lemma 1 and Z0 = ([gn]∞
1

+

Z⊥)⊤. By (1), the subspaces Y and Z0 are quasicomplemented. In the standard way

([2], p.224), choose an M-basis (ẑn, hn), in X/Y , ẑn ∈ X/Y , hn ∈ (X/Y )∗ = Y ⊥

such that there are representatives zn ∈ ẑn ∩ Z0 with [zn]∞
1

= Z0. Since [yn]∞
1

= Y ,

[(yn) ∪ (zn)] = X. Since ((hn)∞
1

)⊤ = Y and (gn) is total on Y , (gn) ∪ (hn) is total

on X. For every n, gn ∈ Z⊥
0
and hn ∈ Y ⊥. Hence, our system is biorthogonal.
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